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Digital twins from microscope 
image data



Goal — develop computational design platforms that can be used to inform engineering 

processes and develop mechanisms to control the behavior of small systems 

Microscope image data: imaging techniques such as computed micro-tomography and light 

microscopy can non-invasively resolve the 3D structure of complex materials 

AI-based image enhancement: recent advances in artificial intelligence (AI) improve experimental 

data quality by enhancing signal-to-noise ratio and automate feature labeling

Physics-based models: mesoscale simulations provide a way to understand how the microscopic 

structure of a system controls the physical responses.

Physics informed machine learning: complex constitutive models can be “learned” from data while 

imposing physical constraints to accurately capture non-linear processes.

Physics-based data reduction: system responses can be characterized by upscaling simulated 

behaviors using fundamental physical principles. 

Digital Twins from microscope image data



Large Data Sources — 3D image data

• Synchrotron light sources are 

used to carry out a wide range of 

high-end imaging experiments

• Growth for data generation rates 

is faster than growth for 

compute, I/O

• Simulation provides a way to fill 

in additional physics that are not 

physically observable



Microscope Image Data
Geologic systems are heterogeous across all scales

• Microscopes provide a basic mechanism to 
advance understanding for small systems

- Mineral distribution and microstructure for Mt. 
Simon sandstone (right)

• Physical behavior at small scales has a 
deterministic relationship to larger scale behavior

• Fundamental physics are well-understood at small 
scales



• Scientific workflows for microscopy

• 3D image enhancement, noise reduction and 
segmentation

• Physics-informed machine learning
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F Alzubaidi, P Mostaghimi, Y Niu, RT Armstrong, G Mohammadi, S Berg, JE McClure Effective permeability of an 

immiscible fluid in porous media determined from its geometric state. arXiv:2208.08027

Image Enhancement with AI
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• Molecular dynamics — directly 
resolve molecular trajectories based 
on Newton’s equations of motion 

• Finite element models— constructed 
based on continuum mechanical  
closure approximations

• Mesoscopic models — formulated 
from lower level in modeling hierarchy, 
rely on coarse grained representation 
with quasi-molecular closure rules Length scale 
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larger systems require 
longer timescale to 

reach equilibrium
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Physics Simulations
Lattice Boltzmann Methods 



• Applications in water / energy sciences

• Vadose zone hydrology

• hydrocarbon recovery

• CO2 sequestration

• Fundamental physics questions

• crossover between viscous / 
capillary / inertial flow regimes 

• film dynamics
Zhao et al. Comprehensive comparison of pore-scale models for multiphase flow in porous media. Proceedings 

of the National Academy of Sciences (2019), 116 (28) 13799-13806; DOI: 10.1073/pnas.1901619116
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LBPM
Historical Development



• Geometric explaination of hysteresis for 
two-fluid flow in porous media

• Time-and-space averaging theory to 
predict upscaled model forms

• Mature digital rock physics simulation 
capabilities are now in use by industry 
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Complex Geometry

Fluctuating non-equilibrium dynamics

L B P M  — S c i e n t i f i c  A d v a n c e s
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Electrical tuning for dominant transport regime

Tang et al. A pore-scale model for electrokinetic in situ recovery of copper: the Influence of mineral occurrence, 

zeta potential, and electric potential, Transport in Porous Media, 1-26 (2023) 

https://doi.org/10.1007/s11242-023-02023-2

Rare Earth Elements
Ion Transport in Geological Materials

Microscope image data for material structure

https://doi.org/10.1007/s11242-023-02023-2


Hydrogen Fuel Cells
Structural optimization and performance tuning

Structural optimization & simulationAI-based super-resolution and segmentation

Da Wang et al. Large-scale physically accurate modelling of real proton exchange membrane fuel cell with 

deep learning. Nature Communications (2023) 14, 745. https://doi.org/10.1038/s41467-023-35973-8



Cell Biology — membrane biophysics

McClure & Li. Capturing membrane structure and function in lattice Boltzmann models, Physical Review E  (2023) 107 (2), 024408 https://doi.org/10.1103/PhysRevE.107.024408



• Predict the electric potential from 
concentration

• Linearized Poisson-Boltzmann breaks down 
in vicinity of membrane

• Analytical solution fails to fully capture 
discontinuity in electric potential (even with 
non-linear form)

• Membrane charge density should be 
simulation output (not input)
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Chloride Sodium

Electric potential

Nernst Potential



• Charging dynamics depend on membrane geometry and 
permeability

• Initial conditions are chosen as follows:

- gradient in ionic strength

- electrically neutral on both sides of membrane

- membrane permeable to one ion at a time

• Transport coefficients can be determined independently 
for each ion 
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Relaxation rate 

for Na+

Relaxation 

rate for K+

Membrane Charging Dynamics
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• Membrane permeable to multiple ions

• Multiple relaxation timescales produce refactory 
period for membrane

• Cell potential eventually relaxes to the value 
predicted by Goldman equation (stationary value)

Goldman Potential



Cell Biophysics — Future Vision



Next Steps

• Interfaces for biological systems— Improve workflows to ingest 
microscope image data and incorporate AI/ML models to automatically 
label cell structures 

• Soil microbial community dynamics — develop enhanced 
capabilities for systems with complex structure

• Reactive transport — Incorporate chemical reactions into the 
electrochemical modeling framework

• AI-based closure models— Develop and validate physics-informed 
machine learning models to define complex constitutive models 
(membrane transport, biofilms, chemical reactions)
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