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Abstract-Transportation networks are critical to the social 
and economic function of nations. Given the continuing increase 
in the populations of cities throughout the world, the criticality 
of transportation infrastructure is expected to increase. Thus, 
it is ever more important to mitigate congestion as well as 
to assess the impact disruptions would have on individuals 
who depend on transportation for their work and livelihood. 
Moreover, several government organizations are responsible for 
ensuring transportation networks are available despite the con
stant threat of natural disasters and terrorist activities. Most of 
the previous transportation network vulnerability research has 
been performed in the context of static traffic models, many 
of which are formulated as traditional optimization problems. 
However, transportation networks are dynamic because their 
usage varies over time. Thus, more appropriate methods to 
characterize the vulnerability of transportation networks should 
consider their dynamic properties. This paper presents a quan
titative approach to assess the vulnerability of a transportation 
network to disruptions with methods from traffic simulation. 
Our approach can prioritize the critical links over time and is 
generalizable to the case where both link and node disruptions 
are of concern. We illustrate the approach through a series of 
examples. Our results demonstrate that the approach provides 
quantitative insight into the time varying criticality of links. 
Such an approach could be used as the objective function of 
less traditional optimization methods that use simulation and 
other techniques to evaluate the relative utility of a particular 
network defense to reduce vulnerability and increase resilience. 

I. INTRODUCTION 

The Department of Homeland Security (DHS) identifies the 
Transportation Systems Sector (TSS) as one of 16 critical 
infrastructure sectors, which are considered so essential to the 
United States that their degradation or unavailability would 
have a serious impact on a combination of security, national 
economic security, and national public health or safety. The 
Transportation Systems Sector is critical to national economic 
security because the majority of citizens utilize the ground 
transportation network to conunute to work on a daily basis 
and is also a medium by which domestic and international 
tourist move about. Thus, the United States and other nations 
are critically dependent on transportation for both work and 
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leisure activities and the corresponding economic stability that 
such activities bring. Moreover, the Transportation Systems 
Sector is a fundamental enabler of the Emergency Services 
Sector (ESS), which is defined as a system of prevention, 
preparedness, response, and recovery elements to mitigate risk 
from terrorist attacks [1], man made incidents, and natural 
disasters [2]. This dependence among critical infrastructures 
makes the Transportation Systems Sector even more important 
because of its role in ensuring conununal safety and well-being 
of the population. 

The Federal Emergency Management Agency (FEMA) ad
ministers the Urban Areas Security Initiative (UASI), which 
invests nearly $600 million annually to assist high-threat, 
high-density Urban Areas build and sustain the capabilities 
necessary to prevent, protect against, mitigate, respond to, and 
recover from acts of terrorism as well as related preparedness 
capabilities for other hazards. High-density areas include New 
York City, Los Angeles, Miami, and Boston. Washington, DC 
and cities with major international airports such as Chicago 
and Charlotte as well as many of these high-density areas 
are also high-threat areas Thus, quantitative methodologies 
to characterize vulnerability and risk can guide defensive 
strategies to enable greater resilience have gained significant 
attention in recent years. Decision support tools based on 
such methods to systematically reduce the consequences of 
disruptions and preserve the continuity of activities enabled 
by transportation are therefore highly desirable. 

Several previous studies have proposed transportation net
work vulnerability assessment methods [3] and strategies to 
quantitatively enhance resilience. Conunonly used techniques 
include traditional optimization methods and game theoretic 
approaches. Examples of game theoretic approaches include 
Bell [4] who proposed a mixed strategy stochastic game 
between a router seeking minimum cost paths for vehicles and 
a tester attempting to maximize the cost of these trips. Murray
Tuite and Mahmassani [5] developed a bi-Ievel non-zero-sum 
game between an attacker and the traffic management agency 
to quantify vulnerability. An example of an optimization-based 



approach is the work of Ukkusuri and Yushimito [6] who 
proposed a heuristic procedure that draws upon concepts from 
network science to assess the importance of transportation 
networks using increased travel time as a measure of criticality. 
Wang et al. [7] incorporated static traffic assignment and the 
corresponding concepts of network congestion into a two
player attacker-defender game, sorting link attack and defense 
strategies and interpreting them as priority lists of the most 
critical links. Fiondella et al. [8] combine game theoretic 
vulnerability assessment and metaheuristic optimization to 
allocate limited resources to defend the U.S. high-speed rail 
network as it expands in a discrete sequence of times steps. 

Most of the previous research and all of the references 
cited above are restricted to static traffic assignment (STA) 
problems which only consider a static snapshot of the network 
at a single point in time. Static vulnerability and resilience 
methods can characterize structural risk within a transportation 
network and mitigation strategies. However, they are unable 
to consider how traffic demand changes over time and the 
corresponding impact of both location and timing of a disrup
tion on vulnerability. Unlike static traffic assignment, dynamic 
traffic assignment (DTA) considers the time-varying nature 
of network congestion. This means that the criticality of a 
link can be studied as a function of time. Given that most 
vulnerability quantification approaches account for the number 
of individuals at risk or the increase in system travel time 
computed as the sum of the times of the individual trips, 
more realistic vulnerability assessment should consider DTA 
methods which explicitly model travel demand as a function of 
time such as the morning and evening rush hours and activities 
such as sporting events and other large social gatherings. This 
would enable dynamic vulnerability mitigation strategies that 
consider not only where but also when to deploy defenses that 
either deter attack or reduce the effectiveness of an attack. 
However, relatively few studies consider dynamic methods 
such as simulation. For example, Duanmu et al. [9] assessed 
the utility of effective information dissemination on evacua
tion, but limited analysis to a case study with three primary 
evacuation routes. 

This paper presents an approach to assess the dynamic 
vulnerability of transportation network using simulation tech
niques. We employ a microscopic road traffic simulator to 
compute baseline measures of congestion within a fully op
erational network and systematically compare these measures 
with results obtained when individual links within the network 
are disrupted at specific times. Thus, unlike static methods that 
only consider network demand at a single point in time to 
identify structural vulnerabilities, the proposed approach can 
consider both the network structure as well as time varying 
demand to assess the relative criticality of the impact of timed 
disruptions. The dynamic network vulnerability assessment 
method is illustrated through a series of examples. A small 
example provides details of the mechanics of the approach 
and inferences enabled. A university campus-level example is 
given to illustrate the potential for application to evacuation. 
Our results demonstrate that the approach can quantify the 
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time varying criticality of links, which can inform network 
defense and resilience planning. Because pervasive deploy
ment of defenses is prohibitively expensive, identifying how 
the vulnerability of links change over time will provide greater 
insight, enabling quantitative assessment of competing defense 
strategies to preserve continuity of travel time reliability within 
a transportation network despite disruptions. 

The remainder of the paper is organized as followed. Sec
tion II proposes an algorithmic approach to assess the dynamic 
vulnerability of a transportation network. Section III illustrates 
the approach through examples. Section IV summarizes with 
conclusions and possible directions for future research. 

II. DYNAMIC TRANSPORTATION NETWORK 

VULNERABILITY ASSESSMENT 

Travel demand within a network is a function of time, 
meaning that trips are generated in discrete epochs to ap
proximate continuous time activities such as the morning 
and evening rush to commute to and from work or school. 
Dynamic equilibrium routes this and existing demand flowing 
within the network to achieve equilibrium that characterizes 
individual traveler's natural desire to minimize their travel 
time. A link outage will disrupt this equilibrium necessitating 
rerouting to achieve a new equilibrium. Some disruptions will 
increase overall and individual travel times more significantly 
than others. Thus, a simple yet systematic strategy to assess the 
vulnerability of a dynamic transportation network is to con
sider the relative impact of disruptions on specific links for a 
specified duration. Such an approach can answer the question, 
"When and where would a disabled link be the most disruptive 
to the network?" In doing so, one can identify both when 
and where would an intentional attack or accidental incident 
be most harmful to network travel times, there by suggesting 
how to prioritize the time and location of defensive strategies. 
This is substantially more detailed than static approaches that 
only consider where to defend and thus require permanent 
deployment of defenses to locations within the network. 

To enable a dynamic transportation network vulnerability 
approach that is both methodical and scalable, a transportation 
simulator that allows interaction with the network during 
simulation through a programming interface is desirable. The 
strengths and weaknesses of several simulators were assessed 
to determine suitability for use as the driver of dynamic 
transportation network vulnerability studies. Proprietary tools 
such as Visum [10] and VISSIM [11] are used to study 
traffic demands and traffic flow optimizations. However, the 
closed source nature of these tools prevents the independent 
verification of models and the simulation results produced. 
MATSim [12] is an open source multi-agent traffic simulator 
that was designed to simulate individual vehicles but ignores 
the physics behind the behavior of vehicles. We ultimately 
selected the open source simulator SUMO (Simulator of 
Urban MObility) [13], which is also a microscopic simulator. 
In addition to allowing programmatic interaction with the 
network during simulation, SUMO can import OpenStreetMap 
(OSM) data for use in simulations. The Dynamic Traffic 



Assignment algorithm is based on Gawron's algorithm [14] 
and the shortest path to the destination is calculated with 
Dijkstra's algorithm [15]. 

Algorithm 1 shows the pseudo code of our approach to 
assess the vulnerability of a dynamic transportation network 
using SUMO as a black box function to quantify the impact of 
temporary link disruptions in order to quantify their relative 
criticality. While SUMO is used for the analysis presented 
here, we note that our approach is general and could utilize 
another traffic simulator to perform vulnerability assessment. 

Algorithm 1 Pseudo code for transportation network vulner
ability assessment 

Require: Road network G with n nodes and e edges 
Require: Traffic demand data D 
Require: Array of time intervals T 

(�tl' �t2'" . ,  �ti" . .  , �tk) 
Vo = Run simulation without disabling links 
for Each edge e E G do 

for For each interval �ti E T do 
Ve,i = Run simulation, disabling edge e in interval �ti 

end for 
� Ve,i = Ve,i/Vo 

end for 

Inputs include the static graph G of the road network contain
ing n nodes to represent road junctions and e edges for the 
roads that convey vehicles through the network from source to 
destination. The origin-destination (OD) demand matrix is a 
discrete sequence of matrices D, where D(i) is the n x n 

OD demand matrix of the trips wishing to travel between 
distinct pairs of nodes generated in the ith of k epochs in 
the simulation. To establish a baseline, the simulation is first 
run under the scenario where all links are available at all 
time steps to produce the nominal vulnerability Vo. Next, a 
single link is disabled for a single time period to determine 
Ve,i and the simulation rerun with no change to the demand 
matrix to determine the vulnerability edge e poses to the 
network at time i. The increase in vulnerability incurred by 
this transient disruption � Ve,i is calculated by dividing the 
nominal vulnerability Vo by the elevated vulnerability Ve,i that 
results from this disruption. The larger the ratio the greater the 
impact such a disruption would have because it could increase 
congestion, thereby slowing evacuation and response times. 

The asymptotic run time required to perform dynamic 
transportation network vulnerability assessment based on this 
approach is O( eks), where e is the number of edges, k the 
number of time intervals, and s the time needed to execute a 
single DTA simulation. Therefore, runtime increases linearly 
with respect to the number of edges within the network, 
but increasing e also increases s in larger networks. As a 
result, efficient DTA simulation techniques that can accurately 
characterize network behavior will have a large influence 
on the run time of the approach. Increasing the number of 
intervals k will also increase the run time, but could enable 
additional applications such as identification of the value of 
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fast restoration. While the approached described here uses 
disruptions of uniform duration on a single link, the approach 
could also be generalized to non-uniform disruption of one 
or more links on potentially overlapping intervals. Such and 
approach could characterize the impact of staggered attacks, 
cascading failures, and many other complex scenarios to 
disrupt multiple links over time. 

A. Sources of input for dynamic transportation network vul

nerability assessment 

This section describes the inputs required for simulation 
simulation and potential sources for this data. Figure 1 indi
cates traffic simulators require the network structure and traffic 
demand data. 

Fig. 1: Overview of data sources and simulation 

The sources of these data can vary. For example, many static 
traffic assignment studies use the network structure and traffic 
demand data provided by the Transportation Networks for 
Research [16] website, now hosted on Github. An emerging 
source of road network data is OpenStreetMap (OSM) [17], a 
freely available crowdsourced map of the world. We used the 
NETCONVERT application [18] which can extract network 
data from a variety of sources including OSM and convert it 
into other usable formats including SUMO simulator input. 
Similarly, traffic simulation studies can use traffic demand 
data feeds from a variety of sources. Smartphones have 
become increasingly popular, both as a data collection and 
delivery platform. Our ongoing research [19] is developing 
an open source smartphone app to enable data collection 
for transportation network studies that do not charge a fee, 
thereby promoting novel modeling and analysis. A second 
motivation of our work is to attract transportation researchers 
to network vulnerability research of interest to the Department 
of Homeland Security and other organizations. As pervasive 
real-time traffic demand data feeds become available, high
fidelity dynamic network vulnerability should become feasible. 

III. ILLUSTRATIONS 

To demonstrate the utility of the proposed approach, we 
apply our dynamic transportation network vulnerability as
sessment algorithm to a number of road networks. The first 
example uses a simple test network as a pedagogical tool to 
easily highlight the benefits of the methodology. The second 



example uses the University of Massachusetts Dartmouth road 
network, which was evacuated after the April 15, 2013 Boston 
Marathon bombing when it was discovered that one of the 
bombers was a student there. 

A. Example 1: Simple network 

This example uses the simple test network show in Figure 2 
to illustrate inferences enabled by the Algorithm 1 to assess 
dynamic transportation network vulnerability. 

800m 

800m 

E 
o 
o 
C\I 

Fig. 2: Structure of simple network 

The network consists of n = 6 nodes and e = 13 directed 
edges (links), which are labeled with their distance in meters. 
The speed limit on each edge was set to 30 miles/hour (13.41 
m/s). 

In the scenario we created for the sake of illustration, the 
array of time intervals in which link disruption could occur 
were T = {�tl = (0, 500), �t2 = (500, 1000), �t3 = 

(1000, 1500)}. 500 vehicles depart node zero at the beginning 
of each of these three time steps with the objective of reaching 
node five. Since there are eight (i, j) pairs of adjacent nodes 
with links between them and three disconnection intervals, 
a total of 24 ( = 8 x 3) simulations were performed. A 
25th simulation where none of the links were disconnected 
was performed to quantify the baseline vulnerability of the 
network. 

Figure 3 provides a visual summary of the results of 
our dynamic network vulnerability assessment for the simple 
network. 
The x-axis indicates the direct link from node i to j that was 
disrupted as well as the time interval in which the disruption 
occurred. The y-axis denotes the ratio of the simulation time 
when that link is disabled divided by the simulation time taken 
for the nominal case. 

Figure 3 indicates that a disruption to the link between nodes 
two and four in the time interval �t3 = (1000,1500) would 
elevate the total time by over 10%. This agrees with intuition 
and can be explained based on the structure of the network 
given in Figure 2 where it can be seen that either (1,3) or 
(2,4) is needed to cross from the left to right side of the 
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Fig. 3: Dynamic network vulnerability assessment of simple 
network 

graph. However, (1,3) is not of equal structural importance 
because there exist a (1,2) link, but no (2,1) link. Thus, 
vehicles that traveled along (0,2) would be trapped until (2,4) 
was restored. Hence, a later disruption to (2,4) would increase 
total travel time most significantly. 

The results suggest that the pairs (1,2) and (3,4) would 
have virtually no impact on network vulnerability because 
Figure 2 indicates that these links do not lie on shortest paths 
from the source to destination. Moreover, our analysis only 
considers a single disruption in isolation. Therefore, disabling 
these links are of little importance to the simple network 
case study representative of an evacuation scenario and would 
not be identified as priority links for defense to ensure that 
they remain open during a crisis. However, scenarios where 
multiple links are simultaneously disabled or are disabled at 
different periods of time may change the criticality of these 
links. Pairwise link failures would require a quadratic number 
of simulations and the possibility of link unavailability in the 
same or different time intervals adds additional complexity to 
the pairwise problem O( m ITI2), where ITI is the cardinality 
of the number of time intervals considered. Three-way failures 
impose cubic complexity (O( (;) ITI3» and an exhaustive ap
proach to assess all subsets of links would require at least time 
exponential in the number of links comprising the network. 
Thus, when the network is large, exhaustive analysis must be 
tempered with common sense that considers a core set of links 
that are likely to be critical in isolation or in conjunction with 
a small number of other edges. 

Figure 4 provides an intuitive view of dynamic vulnerability. 

Figure 4a, 4b, and 4a correspond to the nominal case when 
none of the links are disabled for the respective time periods 
�tl' �t2, and �t3. Edges of the graph are labeled with 
numbers indicating the density of vehicles (vehicleslkm). The 
most critical links with the highest densities are colored red, 
followed by orange, yellow, and green. Alternative heat maps 
with a larger number of distinct colors are also possible. 
Figure 4a indicates that (0,2) is most heavily utilized in 
�tl' while 4b shows (0,2), (2,4), and (4,5) form a critical 
path from source to destination as traffic flows through the 
network. Figure 4c shows that criticality of earlier stages 
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Fig. 4: Vehicle densities in fully functioning network 

such as (0,2) decrease as trips generated at the beginning 
of the first two time intervals approach their destination, but 
(0,2) remains elevated (orange) because of the trips departing 
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from node zero in this final time interval. Thus, the dynamic 
transportation network vulnerability assessment approach can 
intuitively visualize the time varying criticality of links within 
a network for emergency scenarios such as evacuation as well 
as other more commonly occurring events such as delays due 
to rush hour and traffic accidents. Animating a sequence of 
color coded graphs such as those shown in Figure (4a-4c) can 
provide decision makers with a criticality "weather map" to 
easily understand how link criticality can change as a scenario 
progresses. 

To illustrate the effect of link unavailability, Figure 5 shows 
the vehicle density map when the link between two and four is 
disabled in the interval !1t2. In this scenario, Figures 4a and 5a 
are identical. However, when (2,4) is disabled at the beginning 
of the second time interval, traffic that was moving in that 
direction must turn around because there is no alternative path 
and backtracking becomes necessary. As a result, the criticality 
(0,1) during !1t2 is significantly higher in Figure 5b than it 
was in 4b. Moreover, the (1,3) and (3,5) links along the upper 
path from zero to five also increase, while the (2,4) and (4,5) 
links decrease because they become inaccessible. However, 
in the final time step, access to the lower path is restored 
and vulnerability increases, but not to the level observed in 
Figure 4c. It can also be observed from Figure 5c that the 
traffic that rerouted itself through the upper path when (2,4) 
was disrupted during !1t2 drastically increasing (3,5) during 
the final time step. Thus, the dynamic transportation network 
vulnerability assessment indicates the importance of ensuring 
safe passage of travelers on link (3,5) during !1t3 despite 
restoration of (2,4). 

B. Example II: University of Massachusetts Dartmouth evac

uation 

On April 15, 20l3, the Boston Marathon bombing killed 
three civilians and injured approximately 250 others. The Uni
versity of Massachusetts (UMass) Dartmouth was evacuated 
only a few days later when it was discovered that one of 
the suspects was a student there. This example applies our 
dynamic network vulnerability assessment algorithm to the 
UMass Dartmouth campus road network. 

Figure 6 shows the campus map imported from Open
StreetMaps. All traffic entering and leaving campus must pass 
through the entrance at the north (top of Figure 6), which is 
connected to Ring Road encircling the library, classroom, and 
administrative buildings. Dormitories and facilities are located 
to the east, the Fitness Center to the south, and additional 
dormitories are located in the south west. The main parking 
lots PI through PIO are located on the interior of the ring and 
are the source of vehicles seeking to evacuate in this example. 
Twelve distinct link SI through S12 are considered. Due to the 
circular nature of the road, any single disruption would require 
that vehicles reverse direction to reach the campus exit. 

Figure 7 shows the campus network map simplified to nodes 
and edges with geographic details removed. Four thousand 
vehicles are generated from PI -PlO with the exit as their 
destination common destination. Twelve off nominal scenarios 
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Fig. 5: Impact of disconnecting link from node two to four at 
6.t2 on vehicle densities 

are considered where links in both directions on one of 51-
512 are disabled in three possible time intervals T = {6.t1 = 
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Fig. 6: University of Massachusetts Dartmouth campus map 

(0,3000),6.t2 = (3000,6000), 6.t3 = (6000, 9000)}. 

Fig. 7: University of Massachusetts Dartmouth conceptual map 

Figure 8 summarizes the results of the dynamic transporta
tion network vulnerability assessment of UMass Dartmouth. 
The general trend is that lower numbered links such as 51 as 
well as higher numbered links like 512 are the most critical, 
which agrees with intuition because these are the links closest 
to the exit. Thus, vehicles encountering a disrupted link would 
need to reverse course and drive the entire distance around 
Ring Road in the opposite direction. While the circular design 
of the campus appears effective, the lack of a second exit 
toward the south end of campus poses significant risk. As 
a result, links closer to the south end of campus are less 
critical with the single exit in the north because vehicles that 
would reverse course would only need to travel halfway around 
campus not all the way. The single largest disruption occurs 
at 51 in time interval 6.t3 because there are more parking lots 
on the east side of campus so many vehicles attempt to exit in 
a counter clockwise manner. However, many of these vehicles 
encounter the disrupted 51 link and must turn around and loop 
back around Ring Road. 

Counterintuitively, the evacuation time is lower when 55, 
56, 57, or 58 is disrupted when compared to the time required 
of the fully functioning network. In scenarios 55 and 56, 
vehicles traveling counter clockwise bypass the disruption by 
taking the road that loops around the dorms on the right, while 
disruptions to 57 and 58 require vehicles to exit campus by 
traveling clockwise around Ring Road. This turns out to be 
advantageous because the density of vehicles on the west side 
of campus is lower due to the fewer number of source parking 
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Fig. 8: UMass Dartmouth Simulation Results 

lots from which trips originate. Thus, the vehicles originating 
from P6 or P7 exit the campus faster. 

IV. CONCLUSION AND FUTURE RESEARCH 

This paper presents an approach to assess the dynamic 
vulnerability of a transportation network using simulation 
techniques. We employed a microscopic road traffic simu
lator to compute baseline measures of congestion within a 
fully operational network and systematically compared these 
measures with results obtained when individual network links 
are disrupted at specific times. Unlike static methods that 
only consider network demand at a single point in time, the 
proposed approach considers both the network structure as 
well as time varying demand to assess the relative criticality of 
timed disruptions. The dynamic network vulnerability assess
ment method was illustrated through two examples. Our results 
indicate that visualizations provide intuitive interpretation of 
dynamic vulnerability, enabling insights that could be used to 
compare competing defense strategies. 

Future research will seek practical strategies to manage 
complexity which will be encountered during large-scale as
sessments and seek to tailor the approach with additional 
details that will render it suitable for use in multiple scenario 
such as emergency response, rerouting of the traveling public, 
and mass evacuation. To overcome anticipated scalability 
challenges posed by the deterministic approached given here, 
we will experiment with randomized defensive strategies iden
tified through game theoretic techniques that can consider the 
relative vulnerability of all links in a network in parallel. 
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