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The majority of the Earth’s terrestrial carbon is stored in the soil. 
If anthropogenic warming stimulates the loss of this carbon to the 
atmosphere, it could drive further planetary warming1–4. Despite 
evidence that warming enhances carbon fluxes to and from the 
soil5,6, the net global balance between these responses remains 
uncertain. Here we present a comprehensive analysis of warming-
induced changes in soil carbon stocks by assembling data from  
49 field experiments located across North America, Europe and 
Asia. We find that the effects of warming are contingent on the size 
of the initial soil carbon stock, with considerable losses occurring 
in high-latitude areas. By extrapolating this empirical relationship 
to the global scale, we provide estimates of soil carbon sensitivity to 
warming that may help to constrain Earth system model projections. 
Our empirical relationship suggests that global soil carbon 
stocks in the upper soil horizons will fall by 30 ± 30 petagrams 
of carbon to 203 ± 161 petagrams of carbon under one degree of 
warming, depending on the rate at which the effects of warming 
are realized. Under the conservative assumption that the response 
of soil carbon to warming occurs within a year, a business-as-usual 
climate scenario would drive the loss of 55 ± 50 petagrams of 
carbon from the upper soil horizons by 2050. This value is around 
12–17 per cent of the expected anthropogenic emissions over this 
period7,8. Despite the considerable uncertainty in our estimates, the 
direction of the global soil carbon response is consistent across all 
scenarios. This provides strong empirical support for the idea that 
rising temperatures will stimulate the net loss of soil carbon to the 

atmosphere, driving a positive land carbon–climate feedback that 
could accelerate climate change.

The exchange of carbon (C) between the soil and atmosphere  
represent a prominent control on atmospheric C concentrations and 
the climate1,6,9. These processes are driven by the organisms (plants, 
microbes and animals) that live in the soil, the activity of which could 
be accelerated by anthropogenic warming10. If warming stimulates 
the loss of C into the atmosphere, it could drive a land C–climate feed-
back that could accelerate climate change. Yet despite considerable 
scientific attention in recent decades, there remains no consensus on 
the direction or magnitude of warming-induced changes in soil C11,12. 
There is growing confidence that warming generally enhances fluxes 
to and from the soil8,12, but the net global balance between these 
responses remains uncertain and direct estimates of soil C stocks are 
limited to single-site experiments that generally reveal no detectable 
effects5,13–15.

Given the paucity of direct measurements of the responses of soil 
C stocks to warming, Earth system models (ESMs) must rely heavily 
on the short-term temperature responses of soil respiration (Q10) to 
infer long-term changes in global C stocks. Without empirical obser-
vations that capture longer-term C dynamics, we are limited in our 
ability to evaluate model performance or to constrain the uncertainty 
in model projections16. As such, the land C–climate feedback remains 
one of the largest sources of uncertainty in current ESMs12,14,17, restrict-
ing our capacity to develop C emissions targets that are compatible 
with specific climate change scenarios. Direct field measurements 
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of warming-induced changes in soil C stocks are urgently needed to 
increase confidence in future climate projections16.

We took advantage of the growing number of climate change exper-
iments around the world to compile a global database of soil C stock 
responses to warming. Soil samples were collected from replicate plots 
in 49 climate change experiments conducted across six biomes, ranging 
from arctic permafrost to dry Mediterranean forests (Extended Data 
Fig. 1). We compared soil C stocks across warmed (treatment) and 
ambient (control) plots to explore the effects of temperature across 
sites. The measured differences in the soil C stocks represent the net 
result of long-term changes in soil C inputs (plant production) and 
outputs (respiration) in response to warming. By linking these soil C 
responses to climatic and soil characteristics, we are able to generate a 
spatial understanding of the temperature sensitivity of soil C stocks at 
a global scale. To standardize collection protocols and account for the 
considerable variability in soil horizon depths, we focus on C stocks in 
the top 10 cm of soil. At a global scale, this upper soil horizon contains 
the greatest proportion of biologically active soil C9.

The effects of warming on soil C stocks were variable, with pos-
itive, negative and neutral impacts observed across sites (Fig. 1). 
However, the direction and magnitude of these warming-induced 
changes were predictable (Fig. 2) as they are contingent on the size 
of the standing soil C stocks and the extent and duration of warming.  
The interaction between control C stocks and degree-years (the 
standardized metric used to represent the multiplicative product of 
the extent (in °C) and duration (in years) of warming) was a strong 
explanatory variable when predicting warmed C stocks (additive 
model Akaike information criterion (AIC) = 383 versus multiplicative 
model AIC = 381; see Supplementary Information and Equation (1)).  
Specifically, the effects of warming were negligible in areas with 
small initial C stocks, but losses occurred beyond a threshold of 
2–5 kgC m−2 and were considerable in soils with ≥7 kgC m−2  

(Fig. 1). No other environmental characteristics (mean annual tem-
perature, precipitation, soil texture or pH) significantly (P > 0.1) 
influenced the responses of soil C stocks to warming in our statistical  
models (additive environmental with degree-year model AIC = 388; 
see Supplementary Information).

The dominant role of standing C stocks in governing the magnitude 
of warming-induced soil C losses is in line with both empirical and 
theoretical expectations17–19. The thawing of permafrost soils, where 
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Figure 1 | The effect of warming on soil C losses depends on the initial 
standing soil C stock. The interaction between warming (degree-years) 
and standing C stocks is a primary determinant of the final warmed soil 
C stocks in the top 10 cm of soil (estimated using a mixed effects model; 
n = 229; see Supplementary Information). Each point represents the 
difference (mean ± standard error) between soil C stocks in warmed and 
ambient plots within an individual experiment. The size of each point 
represents the length of the individual study and the colour indicates the 
amount of warming. The shaded area represents the bootstrapped 95% 
confidence interval (R2 = 0.49: see Supplementary Information for details).

Figure 2 | Validation plots highlighting the predictive strength of 
the statistical model. a, Predicted versus observed soil C stock values 
in warmed treatment plots (estimated using statistical Equation (1), 
R2 = 0.95; this high value is driven by the correlation between C values  
in the control and warmed plots). The black points represent the mean 
values for each study, and the shaded area represents the density of  
1,000 simulated points randomly selected from within the normal 
distribution for each study. The 1:1 line is included to highlight perfect 
correspondence between the predicted and observed points and 
distributions. b, Bootstrapped estimates of the model (Equation (2)) 
slope values for different sample sizes. Studies were removed at random, 
the slope coefficient was calculated and this was repeated 1,000 times. 
Each point represents a bootstrapped estimate of slope for the model that 
included any given number of studies, and we include the interquartile 
range and median slope estimates for each number. The average slope 
value remains unchanged until >38 studies have been removed from the 
initial analysis (with 49 studies), highlighting that the relationship we 
present is not disproportionately influenced by the effects of warming in 
any specific study or site.
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limited C decomposition has led to the accumulation of large C stocks, 
will undoubtedly contribute to this phenomenon20,21. However, our 
analysis also revealed considerable soil C losses in several non-perma-
frost regions, suggesting that additional mechanisms may contribute 
to the vulnerability of large soil C stocks. Presumably, the vulnerability 
of soils that contain large C stocks stems from the high temperature 
sensitivity of C decomposition and biogeochemical restrictions on the 
processes driving soil C inputs. In ecosystems with low initial soil C 
stocks, minor losses that result from accelerated decomposition under 
warming may be offset by concurrent increases in plant growth and 
soil C stabilization13,22. In contrast, in areas with larger standing soil 
C stocks, accelerated decomposition outpaces potential C accumula-
tion from enhanced plant growth, driving considerable C losses to the 
atmosphere.

By combining our measured soil C responses with spatially explicit 
estimates of standing C stocks20 and soil surface temperature change23, 
we reveal the global patterns in the vulnerability of soil C stocks (Fig. 3). 
Given that high-latitude regions have the largest standing soil C stocks20 
and the fastest expected rates of warming18,23, our results suggest that 
the overwhelming majority of warming-induced soil C losses are likely 
to occur in Arctic and subarctic regions (Fig. 3). These high-latitude C 
losses considerably outweigh any minor changes expected in mid- and 
lower-latitude regions, providing further support for the idea of Arctic 
amplification of climate change feedbacks18 (Fig. 3). These warming- 
induced soil C losses need to be considered in light of future changes in 
moisture stress and vegetation growth, which are also likely to increase 
disproportionately in high-latitude areas18. Notably, the spatial distri-
bution of soil C changes from our extrapolation contradicts projections 
from the CMIP5 archive of ESMs24, which show increases in soil C at 
high latitudes—presumably due to the increases in plant productivity25. 
The warming-induced losses of soil C that we observe have the poten-
tial to offset these vegetation responses, emphasizing the importance 
of representing soil C vulnerability in the process-based models that 
are used in climate change projections.

We extrapolated this relationship over the next 35 years to indicate 
how global soil C stocks might respond by 2050. The simple extrapo-
lation of our empirical relationship suggests that 1 °C of warming over 
35 years would drive the loss of 203 ± 161 PgC from the upper soil 
horizon (Fig. 3). However, this approach implicitly assumes that the 
effects of a given amount of warming are never fully realized (that is, 
C stocks fall continuously even under a small amount of warming), 
so are likely to markedly overestimate total soil C losses (see Methods 
for details). As with mechanistic models26, our assumptions about 
the rate at which soil C responds to warming will strongly influence 
the magnitude of our predicted C losses (see Fig. 3b). If we make the 
conservative assumption that the full effects of warming are fully 
realized within a year, then approximately 30 ± 30 PgC would be lost 
from the surface soil for 1 °C of warming. Given that global average 
soil surface temperatures are projected to increase by around 2 °C 
over the next 35 years under a business-as-usual emissions scenario16, 
this extrapolation would suggest that warming could drive the net 
loss of approximately 55 ± 50 PgC from the upper soil horizon. If, 
as expected, this C entered the atmospheric pool, the atmospheric 
burden of CO2 would increase by approximately 25 parts per million 
over this period.

The global extrapolation of our empirical data is broadly intended 
to contextualize our measured changes in soil C stocks. We stress that 
such statistical approaches cannot be used to project soil C losses far 
into the future because, unlike process-based models, they cannot cap-
ture the complex processes that govern long-term C dynamics. For 
example, extending the observed relationship over several centuries 
would lead to a global convergence of soil C stocks. Conversely, soil 
C stocks would increase exponentially in response to environmental 
cooling. Our linear extrapolation inherits weaknesses from simple 
single-pool models17,27. However, the value of such linear approxi-
mations lies in their descriptive strengths rather than their predictive 
capabilities: instead of using short-term flux estimates to project long-
term changes in C stocks, our approach allows the scaling of measured 
C differences over time frames (that is, decades) represented by the 
experimental studies. Our results capture the realized temperature 
sensitivity of current soil C stocks and can serve as a guideline (or 
target) for multi-pool process-based models. Specifically, these models 
can run forward simulations that attempt to reflect the outcomes of the 
warming experiments that we present. Those models that accurately 
capture the observed relationships between standing soil C stocks and 
losses under gradual step increases in global temperature are likely to 
be the most successful at projecting the land C–climate feedback into 
the future.

Our analysis reveals a number of outstanding challenges facing empiri-
cists and modellers that limit the certainty of current land C–climate  

–400

–200

0

–15 –11 –7 –3
kgC m–2

1 5

0 10 20 30

Effect-time (yr)

E
xt

ra
p

ol
at

ed
 C

 lo
ss

 b
y 

20
50

 (P
g)

1 °C of warming

2 °C of warming

a

b

Figure 3 | Spatial extrapolation of the temperature vulnerability of 
soil C stocks. a, Map of predicted changes in soil C stocks per pixel by 
2050 under the ‘no acclimatization’ scenario. This map was generated 
by extrapolating Equation (2) using spatially explicit estimates of soil 
C stocks19 and soil surface temperature change22 to reveal the spatial 
variation in projected changes in surface soil C stocks (0–15 cm depth) 
expected under a 1 °C rise in global average soil surface temperature. 
Note that Equation (2) reflects the maximum effect-time scenario, which 
generates the largest possible estimates of soil C change. This map also 
predicts C gains in tropical/desert regions that contain almost no soil 
C at present, but our lack of data in these mid-latitude regions means 
that we have low confidence in these effects. b, Total reductions in the 
global C pool under 1 °C and 2 °C global average soil surface warming 
by 2050, as expected under a full range of different soil C effect-time 
scenarios (x axis). Note that effect-time refers to the rate at which the full 
soil C response to warming is realized. Shaded areas indicate the 95% 
confidence intervals around the average C losses (dots) for each scenario. 
The rapid effect-time scenarios (for example, one week to one year) result 
in lower total soil C losses than the maximum effect-time scenario, but all 
simulations reveal considerable global losses of soil C under warming over 
the next 35 years.
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feedback predictions (see the list of critical research gaps in Table 1).  
These limitations fall into two distinct categories: more data are nec-
essary to improve both our current global estimates of the tempera-
ture sensitivity of soil C and modelling efforts to project these soil C 
responses into the future. First, along with the limited spatial and tem-
poral scale of current warming experiments, perhaps the most critical 
limitation to our present analysis is the paucity of information about the 
responses of soil C stocks at depth (below 10 cm). Although the sizes of 
C stocks decrease down the soil profile28, any extra C losses from these 
deeper soil horizons will undoubtedly enhance the effects we present. 
Second, incorporating global soil C information into modelling frame-
works requires a mechanistic understanding of how warming affects 
each of the individual components of the ecosystem C cycle. Now that 
we are beginning to generate a global picture of the temperature sen-
sitivity of soil C losses (respiration)6 and total C stocks, our limited 
understanding of how warming influences global soil C inputs remains 
a major source of uncertainty for modelling efforts14,25. These efforts 
also require more information about the interacting effects of other  
global change factors that may simultaneously influence soil C dynamics.  
This non-exclusive set of practical challenges calls for concerted, coor-
dinated investment in multi-factor climate change experiments for an 
extended period of time to generate the data necessary to improve  
confidence in future climate projections.

In conclusion, our global compilation of experimental data allows 
us to see past the conflicting results from single-site studies and 
capture larger patterns in the sensitivity of soil C to warming. The 
warming-induced changes in soil C stocks reflect the net result 
of changes in C fluxes into and from the soil, which can augment 
modelling efforts to project Earth system dynamics into the future. 
Ultimately, our analysis provides empirical support for the long-
held concern that rising temperatures stimulate the loss of soil C 
to the atmosphere, driving a positive land C–climate feedback that 
could accelerate planetary warming over the twenty-first century3,4. 
Reductions in greenhouse gas emissions are essential if we are to 
avoid the most damaging effects of this feedback over the rest of the  
century.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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deeper soil horizons
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are likely to enhance the magnitude of our reported effects

Uncertainty regarding current estimates of 
global soil C stocks

Our analysis highlights that soil C losses are highly dependent on the size of standing C stocks. Constraining our 
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Limited spatial scale of field warming 
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Data collection and standardization. Total percentage C and bulk density (BD) 
data (n = 456) were collected from each of the replicated warmed and ambient 
plots within 49 experimental warming studies located across North America, 
Europe and Asia. In several of these sites, it was not possible to access these data 
for deeper soil horizons. We therefore standardized collection protocols and 
account for the considerable variability in soil horizon depths by focusing on the 
top 10 cm of soil, which contains the majority of the biologically active C. Soil C 
stocks were then calculated for each plot (percentage C × BD/100), and expressed 
as the total mass of C (kg m−3 soil) in the top 10 cm of each plot. Metadata for each 
study included the mean annual difference in soil surface temperature between 
warmed and ambient plots and the duration of experimental warming. These 
were multiplied together to generate the standardized degree-years metric (which 
reflects the extent and duration of warming) to permit the comparison of warming 
effects across sites. Other collected data included a site-specific geospatial refer-
ence (latitude and longitude), which was linked to spatially explicit estimates of 
soil characteristics (pH and texture using the SoilGrids database19) and climate  
(using the Bioclim database) following the procedure used in ref. 29. These  
climate and soil characteristics were then used to explore the dominant controls 
on the sensitivity of soil C stocks to warming across our global compilation of 
experimental studies.

Some of the climate change studies in this analysis contained multiple separate  
warming experiments. Degree-years and soil C were calculated independently 
for each study within a site, but all other environmental data were shared. In addi-
tion, some sites included multifactor climate change studies. For these studies,  
ambient and warmed plots were only compared under equivalent experi-
mental conditions so that all other conditions remained consistent between  
treatments.
Statistical analysis. We fitted linear mixed models (LMMs) to evaluate the factors 
that correlate with the measured soil C stocks following warming. Study site was 
included as a random factor because clustering replicates by location could intro-
duce spatial autocorrelation30. The LMMs were fitted assuming a Gaussian error 
distribution in the lme4 package for the R statistical program. We constructed 
LMMs that included all of the putative explanatory variables to explain warmed 
soil C stocks including treatment variables (degrees warmed and degree-years) 
and environmental characteristics (standing soil C stocks (control C stocks), mean 
annual temperature, mean annual precipitation, pH (as H+ ion concentration) and 
soil texture (with percentage clay as the representative variable)). Given the mark-
edly different ranges in magnitudes of the explanatory variables at a global scale, 
variables were standardized using a z transformation before use in final models30 
although the response variable (soil C stock) was not standardized. Further, given 
a positive skew in the distributions of degrees, degree-year and control soil C, these 
variables were also natural-log transformed. Neither of these data transformations 
significantly altered the statistical outputs, so both were retained in final models. 
The only independent variables that were strongly correlated (pairwise coefficients 
>0.4) were mean annual temperature and mean annual precipitation, and mean 
annual temperature and percentage clay.

Model selection was performed using maximum likelihood comparison of 
competing models (see Supplementary Information), using AIC and Bayesian 
information criterion (BIC) approaches that provided identical results. Only 
warming (degrees and degree-years) and standing C stock (control soil C) were 
retained in the most parsimonious models, (full model AIC = 381 versus final 
model AIC = 372; Supplementary Tables 6 and 7) and the best-fit model included 
an interaction between these two variables (additive model AIC = 375 versus mul-
tiplicative model AIC = 372; Supplementary Table 7). All reported P values are 
quasi-Bayesian, rather than the classical frequentist P values, but retain the same 
interpretation. We considered coefficients with P < 0.05 significant and coefficients 
with P < 0.10 marginally significant. Variance explained by the model was also 
estimated by calculating R2 values for the minimally adequate LMM to retain the 
random effects structure.

The final statistical model was:

ε= ∆ ∆ + + ∆ ∆ +C aC T t bC d T t( ) ( ) (1)w c c

where Cw is the C stock in the warmed treatment, Cc is the C stock in the control 
plots, ΔTΔt is the degree-years calculated by multiplying the degrees warmed by 
the length of the treatment, ε is the random effects term that controls for study 
site (see Supplementary Information) and a,b,d represent fitted coefficients for 
the statistical model.

Statistical model development. To scale the changes in soil C stocks, we rear-
ranged our statistical equation to describe the relationship between standing soil 
C stocks (control C stocks) and warming (degree-years) over time:

−
∆ ∆

= +
C C

T t
fC g (2)w c

c

This new model explained a considerable proportion (R2 = 0.606; Supplementary 
Table 7) of the difference in soil C stocks between studies over treatment. This is 
further highlighted in Fig. 2.

We used sample-based bootstrapping (as opposed to the study-based boot-
strapping in Fig. 2b) to evaluate the strength of this simple statistical relationship 
and to generate a margin of error for global soil C stock projections. Equation (1) 
was extrapolated with 95% confidence interval bounds by randomly selecting 200 
samples from all studies, randomizing the control–warmed pairings and repeating 
the regression 1,000 times. This resulted in normally distributed parameters (see 
Supplementary Table 4) with the following 95% confidence interval. The intercept– 
slope pairs were then sampled to create the grey margin of error seen in Fig. 1.

The inclusion of a linear effect of time in our analysis implicitly assumes that the 
effects of warming on soil C stocks are never fully realized. That is, it assumes that even 
a small amount of warming would continue to drive C losses indefinitely, even if the 
temperature were held constant. However, it is likely that C stocks would ultimately 
plateau (that is, acclimatize), as the full effects of warming are realized after a given 
period of time. As such, the assumption that the warming effects are never fully real-
ized is likely to overestimate total soil C losses (see Fig. 3). But we do not know how 
long it takes for the full effects of warming to be realized (that is, how long it takes the 
soil to plateau/acclimatize after warming). To explore the importance of this effect-
time in determining the magnitude of soil C losses in our extrapolation, we repeated 
the analysis across a full range of scenarios, where the effect-time of warming varied 
continuously. To simulate different effect-times, we successively capped the study 
years (or experiment duration) at 1 week, 1 month, 6 months and 1, 5, 7, 8.75, 11.6 and 
17.5 years, then re-ran the linear regression described above (Equation (2) with the 
sample-based bootstrapping). The resulting coefficients are in Supplementary Table 4.
Extrapolation. To estimate the changes in global soil C stocks under projected 
warming scenarios we applied linear changes in soil temperature that result in a 
mean warming of 1 °C or 2 °C by 2050 (over 35 years); this warming is spatially 
distributed in a manner consistent with surface soil temperature projections from 
a single ensemble of the Community Earth System Model (CESM) that was sub-
mitted to the CMIP5 archive under RCP8.5 run from 2005 to 2050. We estimated 
initial soil C stocks in the upper soil horizon (0–15 cm) from the SoilGrids 50 km2 
product20, which was regridded using bilinear interpolation to the same spatial 
scale of soil surface temperature projections (roughly 1°).

The temporal extrapolations across the 35 years (until 2050) were applied 
separately for each of the possible effect-time scenarios described above. First, 
the single-time-step approach used the coefficients listed above and illustrated in  
Fig. 1 to generate a 95% confidence interval for projected C losses. On average, 
roughly 17.5 degree-years and 35 degree-years were seen cumulatively across the 
globe for the 1 °C and 2 °C warming scenarios, respectively. The exact warming 
seen by any individual grid cell was determined by the relative temperature shifts 
predicted by the CESM run described above. Each subsequent effect-time scenario 
was then extrapolated using a given time step for a forward integration where the 
change in soil C over that time was based on the soil C stock at the beginning and the  
degree-year change experienced by that site over the duration of at respective 
time step. For example, the 1 yr effect-time scenario used the coefficients from 
the analysis where experimental duration was capped at 1 yr (see Supplementary 
Table 4), and was extrapolated to 2050 using the sum of 35 annual time steps. The 
predicted soil C losses for a global average warming of 1 °C and 2 °C over 35 years, 
based on each of the full range of effect-time scenarios, is presented in Fig. 3b. This 
reveals how our assumption about effect-time influences the magnitude of our final 
expected C losses. Given that the effects of warming are likely to be realized within 
a year, we have expanded on the annual time-step option.
Code availability. The R code for the full analysis can be found in Supplementary 
Information.
Data availability. The data that support the findings of this study are available 
from the corresponding author upon reasonable request.
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Extended Data Figure 1 | Map of the study locations. The sizes of the points represent the number of separate warming experiments at that location and 
the colours indicate the biomes (as delineated by The Nature Conservancy; http://www.nature.org).
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