

OVERALL BUILDING SCORE

BUILDING INFORMATION

PS 118 123 Main Street New York City, NY 10001 Building Type: Gross Floor Area: Climate Zone: Year Built: Education 125,000 ft² 4A 1932 Score Date: Building ID #: Climate Description: Software Release: 03/09/2023 26706 Mixed - Humid 2023.0.0.486

Standard Occupancy and Operating Conditions		Estimated Source Energy Use and Carbon Emissions			Energy Use Intensity by Fuel Type	
Number of Assumed Occupants Hours of Operation	1250 40.75		Source EUI (kBtu/ft²/yr)	Emissions (kg CO ₂ e/ft²/yr)	Site Energy Use (kBtu/ft²/yr)	
Cooling Set Point	hrs/wk 75° F	Current Upgraded	202 107	5.84 2.92	Fuel Type [Site EUI , Source EUI]	
Heating Set Point Misc. Energy Loads	70° F 1.33 W/ft²				Natural Gas [27.8, 29.2] Electricity [54.9, 172.4] District Hot Water [0.0, 0.0] District Steam [0.0, 0.0] Fuel Oil [0.0, 0.0] Propane [0.0, 0.0] District Chilled Water [0.0, 0.0]	

The **Building Energy Asset Score** is a national rating system developed by the U.S. Department of Energy. The **Score** reflects the energy efficiency of a building based on the building's structure, heating, cooling, ventilation, and hot water systems. The building's **Structure and Systems** are individually evaluated and ranked. The **Upgrade Opportunities** page provides recommendations for how to improve the building's energy efficiency, increase the building's Asset Score, and save money.

¹ Savings reflect the reduction in source energy that would result from undertaking all of the user-selected energy efficiency measures identified on the **Upgrade Opportunities** page. Actual savings will depend on a variety of factors including actual operating conditions.

This report is based on self-reported building information. http://energy.gov/eere/buildings/building-energy-asset-score

UPGRADE OPPORTUNITIES

Building Name: PS 118

Gross Floor Area: 125,000 ft²

Cost Effective Upgrade Opportunities	Energy Savings ³	Cost⁴
Building Envelope		
• Seal building envelope reducing air infiltration [†] - Learn More	Low	\$\$
• Upgrade roof insulation in block Block 1 for Roof 1. [†] - Learn More	Low	\$-\$\$
• Upgrade wall insulation in block Block 1 for Wall 1. [†] - Learn More	Low	\$\$-\$\$\$
• Upgrade to high efficiency windows in block Block 1 for Window 1. [†] - Learn More	Medium	\$\$-\$\$\$
ighting Systems		
• Upgrade to LED fixtures in block Block 1 for Fixture 1. [†] - Learn More	Medium	\$
• Upgrade to LED fixtures in block Block 1 for Fixture 2. [†] - Learn More	Medium	\$
IVAC Systems and Controls		
Lower VAV box minimum flow setpoints in block Block 1 - Learn More	High	\$\$
• Add air-side economizer in block Block 1 - Learn More	Medium	\$-\$\$
Add variable frequency drive to condenser pumps in block Block 1 - Learn More	Low	\$\$
Implement chilled water temperature reset in block Block 1 - Learn More	Medium	\$
• Upgrade cooling plant pumping system to constant primary -variable secondary pumping system in block Block 1 - <i>Learn More</i>	Medium	\$\$
 Upgrade cooling plant pumping system to constant primary -variable secondary pumping system in block Block 1 - <i>Learn More</i> Implement demand controlled ventilation (DCV) in block Block 1 - <i>Learn More</i> 	Medium Medium	\$\$ \$\$
system in block Block 1 - Learn More		

³ The energy savings range reflects the expected incremental savings for the overall building associated with the specific efficiency upgrade opportunity assuming all other recommended upgrades have already been implemented. This assumption is made to avoid double counting of savings. The ranges reflect site energy savings and are based on standard operating assumptions, unless actual operating conditions are provided by the user.
⁴ The costs are based on Advanced Energy Retrofit Guide and RS Means. The costs are replacement costs, not incremental costs. The The costs are based on Advanced Energy Retrofit Guide and RS Means.

costs do not include local incentives. Costs are shown as a range (\$ = low cost, \$\$ = medium cost, \$\$\$ = high cost). [†] User-selected energy efficiency measure

Building Name: PS 118

UPGRADE OPPORTUNITIES

Gross Floor Area: 125,000 ft²

Cost Effective Upgrade Opportunities	Energy Savings ³	Cost⁴
Service Hot Water Systems		
Add low flow faucets in block Block 1 - Learn More	Low	\$\$

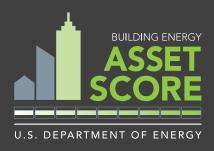
³ The energy savings range reflects the expected incremental savings for the overall building associated with the specific efficiency upgrade opportunity assuming all other recommended upgrades have already been implemented. This assumption is made to avoid double counting of savings. The ranges reflect site energy savings and are based on standard operating assumptions, unless actual operating conditions are provided by the user.
⁴ The costs are based on Advanced Energy Retrofit Guide and RS Means. The costs are replacement costs, not incremental costs. The The costs are based on Advanced Energy Retrofit Guide and RS Means.

costs do not include local incentives. Costs are shown as a range (\$ = low cost, \$\$ = medium cost, \$\$\$ = high cost). [†] User-selected energy efficiency measure

Gross Floor Area: 125,000 ft²

4

Health and Safety Impact of Upgrade Opportunities


Health and Safety Impact
Air sealing can improve thermal comfort by reducing cold drafts, and reduce occupant exposure to outdoor air pollutants, such as vehicle exhaust. It may also help with moisture and pest control by eliminating entry points. But with less outside air being provided by air infiltration, it is important to make sure that the building has sufficient ventilation after air sealing, such as by HVAC commissioning, otherwise indoor air quality may deteriorate.
Better insulation may improve thermal comfort. However, adding insulation can disturb existing building materials that may contain asbestos. Consult an accredited asbestos professional to determine if this is a concern.
Better insulation may improve thermal comfort. But note that adding insulation can disturb existing building materials that may contain asbestos. Consult an accredited asbestos professional to determine if this is a concern.
Selecting windows with the appropriate heat gain and visible light transmittance can help maintain thermal comfort and improve occupant satisfaction with indoor lighting level.

Lighting Systems

\bullet Upgrade to LED fixtures in block Block 1 for Fixture 1.*	Indoor lighting retrofit has the potential to improve lighting quality and occupant satisfaction. Retrofits that also allow occupants to have more lighting control can provide greater flexibility to adapt and respond to changing needs.
\bullet Upgrade to LED fixtures in block Block 1 for Fixture 2.*	Indoor lighting retrofit has the potential to improve lighting quality and occupant satisfaction. Retrofits that also allow occupants to have more lighting control can provide greater flexibility to adapt and respond to changing needs.

HVAC Systems and Controls

HEALTH AND SAFETY IMPACT

Building Name: PS 118

Gross Floor Area: 125,000 ft²

Health and Safety Impact of Upgrade Opportunities

Lower VAV box minimum flow setpoints in block Block 1	Lowering VAV box minimum flow setpoints can improve thermal comfort by avoiding overcooling in summer and overheating during the winter. However, this may impact the outside air ventilation rate. Therefore, increase attention is needed to make sure that adequate outside air ventilation rate is provided to maintain indoor air quality.
• Add air-side economizer in block Block 1	Adding an economizer will increase outside air and can improve indoor air quality. In offices and schools, studies found that more outside air can reduce building-related symptoms and improves work performance and learning. Increasing ventilation can also mean more outdoor air pollutants may be brought indoors, such as vehicle exhausts if the outside air intake is near an area with significant traffic. It is therefore even more important to use high efficiency air filters, such as MERV 13 or better, to removal particulate matter (PM).
Add variable frequency drive to condenser pumps in block Block 1	This measure is not expected to directly impact occupant health and safety. Follow commissioning, operation and maintenance, and performance monitoring best practices to enable efficient operation.
 Implement chilled water temperature reset in block Block 1 	Adjustment of HVAC system control can affect thermal comfort by impacting zone or room level relative humidity. Monitor indoor temperature, relative humidity, and supply air flow, or conduct occupancy survey, to check for potential impact.
 Upgrade cooling plant pumping system to constant primary -variab secondary pumping system in block Block 1 	eThis measure can affect thermal comfort as the pumping system upgrade may improve chilled water flow compared to current condition. Monitor indoor temperature, relative humidity, and supply air flow, or conduct occupancy survey, to check for potential impact.
 Implement demand controlled ventilation (DCV) in block Block 1 	For DCV with zone level CO2 sensors, the control system can reduce the risk of having insufficient outside air ventilation when the space is occupied. Adequate ventilation is important for occupant health, work performance and learning. Adequate ventilation is also important for reducing building-related symptoms and mitigating infectious disease airborne transmission risks. For proper functioning of DCV, it is important that CO2 sensors are calibrated regularly.
 Implement fan static pressure reset in block Block 1 	Adjustment of HVAC system control can affect thermal comfort. Monitor indoor temperature, relative humidity, and supply air flow, or conduct occupancy survey, to check for potential impact.
Implement supply air temperature reset in block Block 1	Adjustment of HVAC system control can affect thermal comfort. Monitor indoor temperature, relative humidity, and supply air flow, or conduct occupancy survey, to check for potential impact.

HEALTH AND SAFETY IMPACT

Building Name: PS 118

Gross Floor Area: 125,000 ft²

Health and Safety Impact of Upgrade Opportunities

Service Hot Water Systems

Add low flow faucets in block Block 1

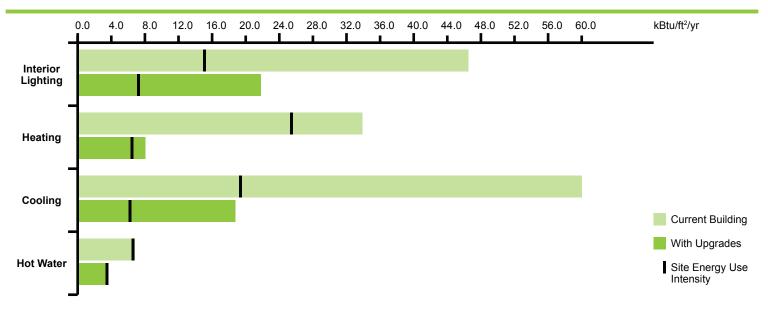
This measure is not expected to directly impact occupant health and safety. However, installing low flow faucets is an important strategy for water conservation and sustainability.

STRUCTURES AND SYSTEMS

Building Name: PS 118

Gross Floor Area: 125,000 ft²

ABOUT THE BUILDING SYSTEMS


	Ranking⁵
Interior Lighting	Good
Whole Building HVAC System TSPR	Fair
Air Handler 1	Fair

ABOUT THE BUILDING ENVELOPE

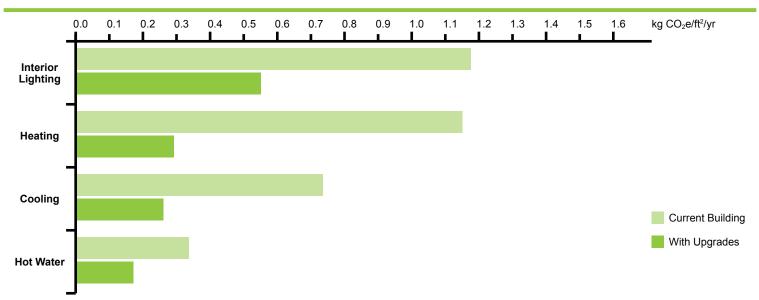
	Ranking⁵
Roof U-Value, Non-Attic (Btu/ft²-h.°F)	Fair
Walls U-Value, Framed (Btu/ft²-h.°F)	Fair
Windows U-Value (Btu/ft ² ·h.°F)	Fair
Walls + Windows U-Value (Btu/ft ² ·h·°F)	Fair
Window Solar Heat Gain Coefficient	Good

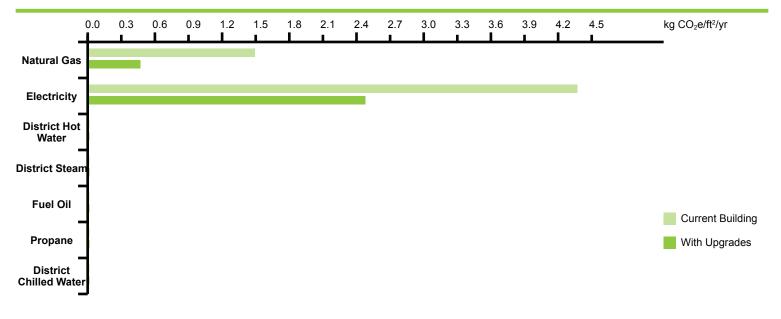
*System evaluation is not based on a verified TSPR

SOURCE ENERGY USE INTENSITY BY END USE

5 Ranking Range:

Fair: Building Envelope or Building Systems are less efficient than a typical building built to the AHSRAE 90.1-2004 energy code. Superior: Building Envelope is more efficient than a typical building built to the AHSRAE 90.1-2013 energy code. Building Systems exceed the highest efficiency levels with market viable technologies. Good: Building Envelope or Building Systems are between Fair and Superior. N/A: The building does not have a heating or a cooling system, or the loads are too low for the system to be effectively ranked.




STRUCTURES AND SYSTEMS

Gross Floor Area: 125,000 ft²

CARBON EMISSIONS BY END USE⁶

CARBON EMISSIONS BY FUEL TYPE⁶

⁶ Carbon dioxide equivalent (CO₂e) greenhouse gas annual emission rates are calculated by multiplying theannual energy use rates for each end use and fuel type by emission factors that are specific to each fuel typeand then by dividing by the total floor area for the affected blocks. The emission factors for electricity areprovided by U.S. EPA Power Profiler v9.1 and are specific to the eGRID subregions that are assigned to the ZIPcode for the building. The emissions factors for electricity do not include gross grid loss (line loss).

Building Name: PS 118

Gross Floor Area: 125,000 ft²

BUILDING CHARACTERISTICS SUMMARY

Plants

Plant Loop 1	
Plant Loop Type	Cooling Loop
Chiller Pump Control	Constant Primary
Pump Power	22.0 W/gpm
Equipment Type	Chiller
Compressor Type	Scroll/Screw
Condenser Type	Water
Condenser Loop	Plant Loop 3
Efficiency	3.0 COP
Plant Loop 3	
Plant Loop Type	Condenser Loop
Pump Power	19.0 W/gpm
Equipment Type	Chiller
Compressor Type	Scroll/Screw
Condenser Type	Water
Condenser Loop	Plant Loop 3
Efficiency	3.0 COP
Equipment Type	Cooling Tower
Cooling Tower Fan Control	Variable Speed
Plant Loop 2	
Plant Loop Type	Heating Loop
Boiler Pump Control	Constant Primary
Pump Power	22.0 W/gpm
Equipment Type	Boiler
Fuel Type	Natural Gas
Draft Type	Mechanical

Thermal Efficiency

Notes: ¹ 'Total Gross Wall Area' includes both opaque and glazed wall area.

77.5% Et

² Window includes all vertical fenestration, including curtainwall and storefront.
 ³ Total Gross Roof Area' includes both opaque and glazed roof area.


Building Name: PS 118

Gross Floor Area: 125,000 ft²

Block 1 CHARACTERISTICS SUMMARY

Geometry

Current Building

Roof	
Roof	Roof 1
Roof Type	Built-up w/ metal deck
Intended Occupancy Type	Non-Residential
Skylights	
No Skylights	
Floor	
Floor	Floor 1
Floor Type	Slab-on-Grade
Intended Occupancy Type	Non-Residential
Walls and Windows	
All Surfaces	
Wall	Wall 1
Wall Type	Brick/Stone on steel frame
Intended Occupancy Type	Non-Residential

Window 1

Single Pane

Non-Residential

None

0.54

0.25

Metal w/ Thermal Breaks

	Current Building	
Window Layout	Continuous	
Window-to-Wall Ratio	0.25	
Exterior Shading Type	No Shading	
Infiltration		
Energy code the building complies with	Estimated	
Lighting		
Lighting Power Density	1.6 W/ft ²	
Fixture	Fixture 1	
Lighting Type	Fluorescent T8	
Mounting Type	Surface	
Lamp Wattage	32 W/lamp	
Lamps per Fixture	1	
Percent Served	76.5%	
Fixture	Fixture 2	
Lighting Type	Compact Fluorescent	
Mounting Type	Surface	
Lamp Wattage	13 W/lamp	
Lamps per Fixture	1	
Percent Served	23.5%	
Heating/Cooling		
Thermal Zone Layout	Perimeter and core	
Perimeter Zone Depth	15.0 ft	
Primary Heating/Cooling System	Air Handler 1	
System Type	VAV with HW Reheat	
Cooling Equipment		
Cooling Source	Plant	
Plant Loop	Plant Loop 1 - Cooling Loop - Chiller	
Heating Equipment		
Heating Source	Plant	
Plant Loop	Plant Loop 2 - Heating Loop - Boiler	

U.S. DEPARTMENT OF

		-

Notes:

Window VT

Window

Window Framing Type

Window Glass Type

Window SHGC

Window Gas Fill Type

Intended Occupancy Type

¹ 'Total Gross Wall Area' includes both opaque and glazed wall area.

² Window includes all vertical fenestration, including curtainwall and storefront. ³ Total Gross Roof Area' includes both opaque and glazed roof area.

Building Name: PS 118

Gross Floor Area: 125,000 ft²

	Current Building
Distribution	
Distribution Type	Multiple Zone
Terminal	
Terminal Unit	Reheat
Reheat Source	Hot Water Plant
Hot Water Plant Loop	Plant Loop 2
Minimum Air Flow Fraction	0.5
Fan Systems	
Total System Fan Power	1.3 W/CFM
Fan Control	Variable Air Volume
Supply Air Temperature (SAT) Reset	None
Service Water Heating	
Water Heater	Natural Gas
Fuel Type	Natural Gas

Operations

Water Heater Efficiency

The information in this section is not required and does not affect the current Asset Score. If provided, it is only used to identify upgrade opportunities, which are considered in generating the potential score.

77.00%

Operation

Using Standard Operations**

Notes:

¹ 'Total Gross Wall Area' includes both opaque and glazed wall area.

² Window includes all vertical fenestration, including curtainwall and storefront.
 ³ Total Gross Roof Area' includes both opaque and glazed roof area.

Building Name: PS 118

Gross Floor Area: 125,000 ft²

BUILDING ENVELOPE INFORMATION

Total Gross Above	e Grade Wall Area ¹	26950.0 ft ²
Total Window Area ²		6737.0 ft ²
Building Window to Wall Ratio		25%
Total Below Grade Wall Area		0.0 ft ²
Total Gross Roof Area ³		125000.0 ft ²
Total Skylight Area		0.0 ft ²
Total Conditioned Floor Area		125000.0 ft ²
Total Footprint Area		125000.0 ft ²
Areas by Orient	ation	
NORTH		
Gross Wall Area	6383.0 ft ²	
Window Area	1595.8 ft ²	
SOUTH		
Gross Wall Area	6383.0 ft ²	
Window Area	1595.8 ft ²	
EAST		
Gross Wall Area	7092.0 ft ²	
Window Area	1773.0 ft ²	
WEST		
Gross Wall Area	7092.0 ft ²	
Window Area	1773.0 ft ²	

12

Notes: ¹ 'Total Gross Wall Area' includes both opaque and glazed wall area.

² Window includes all vertical fenestration, including curtainwall and storefront.
 ³ Total Gross Roof Area' includes both opaque and glazed roof area.

SOFTWARE PROVENANCE

Building Name: PS 118

Gross Floor Area: 125,000 ft²

SOFTWARE PROVENANCE

Asset Score/Audit Template Version: 2023.0.0.486 Build: master_486 Asset Score Inference Web Service Version 3.0.7545.16577 InferenceGenerator 2.0.7221.17585 fedsBackend Dynamic Link Library 7.0.0.1412K **Open Studio** 2.9.1; Energy-Plus 9.2; Asset Score Open Studio Web Service Asset Score Open Studio Web Service, Version 3.0.7547.23249, Sunday, August 30, 2020 12:54:58 PM Open Studio Simulation Release_5.3.6_20221110.0

