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Groundwater contamination

 Main site : Farum“the parking lot”

◦ Waste from packaging factory 1959-1989

◦ Chlorinated solvents, hydrocarbons

◦ In-situ reductive dechlorination: ZVI + carbon substrate + bacteria

 Comparison site: Kærgård“the beach”

◦ 280.000 m3 of pharmaceutical waste 1956-1973

◦ Chlorinated solvents, hydrocarbons, antibiotic, mercury, cyanide

◦ In-situ chemical oxidation: peroxide activated persulfate (free radicals)
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Cross-borehole electrical resistivity 

tomography (XB-ERT)
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Farum – parking lot

ZVI remediation
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Inj#1

+1 day

Baseline Inj#1

+14 days

Inj#1

In-situ remediation campaigns 

with ZVI in 2019 and 2020

7-14 injection wells – 1-3 days

Lévy et al., 2022 (WRR)
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Baseline Inj#1 +14 days 
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Inj#2+ 20 days

Ratios / baseline

Inj#1 +450 days Inj#1 +270 days 

Farum - Subtracting geology

Lévy et al., 2022 (WRR)
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k-field estimations from XB-ERT/IP

Lévy et al., 2022 (WRR)Weller et al. (2015)8



Comparison both sites

 ZVI (high viscosity)

 Heterogeneous spreading

 Intermediate permeability

 Preferential flowpaths

 Sulfate (low viscosity)

 Near-uniform spreading

 High permeability

Kærgård ”the beach” Farum ”the parking lot”

Lévy et al., 2021 (NSG-EAGE Proceedings)9



High-pressure injection

Engineered flowpaths?
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Inversion of discrete fractures

3 and 18 fractures
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Inverting time-lapse dataset with {DFN+matrix}

One horizontal fracture – Five parameters
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Inverted parameters

Depth = 16.2 m

X_left = 8.426 m

X_right = 10.24 m

Aperture = 0.099 m

σfrac = 20.96 S/m

𝜒 =
1

𝑁
𝛴

𝜌𝑎,𝐷𝐹𝑁 − 𝜌𝑎,𝐸𝑃𝑀

𝜌𝑎,𝐸𝑃𝑀
−

𝜌𝑎,+1𝑑𝑎𝑦−𝜌𝑎,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝜌𝑎,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

2
EPM = equivalent porous media (matrix)

DFN = discrete fracture network

𝜒

Work by PhD student 

Léa Lelimouzin



Hydrogeophysical modelling

Synthetic analysis
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Permeability - flow model

Baseline Inj + 1 day Inj + 14 days

0.1 1 10 100 1.000 10.000

Solute concentration - transport model

𝜕𝐶

𝜕𝑡
= ∇ 𝐷∇𝐶 − 𝒗. ∇𝐶 + 𝑆

Steady-state

𝑣 =  −𝐾 ∗ 𝑔𝑟𝑎𝑑 Δ𝑃

g/L

𝜎𝑓 𝑡 =
𝐶 𝑡

6.66
𝜎𝑏 𝑡 =  𝜎𝑓 𝑡 ∗ 𝐹



MCMC inversion of 1D K-field

 Synthetic XB data
◦ 3 boreholes, 96 electrodes

◦ Same sequence as measured data

◦ 3 time-steps

◦ 3% noise added

 Inversion of synthetic data
◦ Metropolis-Hastings procedure

◦ 3 MCMC chains

◦ 3000 iterations / chain

◦ 1 iteration ~ 4.4 sec

 Layers 2 and 4 less well determined
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Work by MSc student 

Chloé Delbet

Layer 1 vs Layer 3

Layer 2 vs Layer 4

0.04 0.1 0.2 0.4



Building groundwater transport models at 

remediation sites 

 In-situ groundwater remediation in unconsolidated sediments

 Monitoring spatial distribution of reagent with time-lapse XB-ERT

◦ mZVI remediation: prefetential flowpaths, limited distribution

◦ ISCO remediation: uniform distribution

◦ Transport properties depend both on geology and reagent

 Method 1: Imaging permeability field with XB-ERT/IP data
◦ Consistent with grain size analyses, slug tests, HPT

◦ Does not explain flowpaths when injection of mZVI under pressure

◦ Importance of small-scale heterogeneities and engineered flowpaths

 Method 2: Inversion of discrete fracture networks

◦ 1D elements are inverted instead of pixels

◦ Next step: solute transport modelling with particle tracking

 Method 3: Joint transport and time-lapse XB-ERT inversion

◦ Using reagent as a saline tracer

◦ Map the ”true” permeability field based on XB-ERT monitoring data

◦ Next steps: invert measured data and move to 2D K-distributions
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Thank you!

lea.levy@tg.lth.se



Farum: what ions are we looking at?

17 Lévy et al 2022(WRR)



Can we be quantitative?
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Transect DS Transect N-S Transect TZ

Correlation assuming only dissolved ions 

contribute to electrical conduction... 
Archie, 1942

𝜎0 =
𝜎𝑤

𝐹

Lévy et al., WRR, 2022



MCMC inversion of 1D K-field

 Synthetic XB data

◦ 3 boreholes, 96 electrodes, same sequence as measured data

◦ 3 time-steps

◦ 3% noise added

 Initial model Ki, i=1..4 randomly drawn and accepted

◦ New model: Ki,new=Ki,old+ε

 Misfit 𝜒 predicted vs observed data

 Metropolis-Hastings procedure

◦ If new misfit < old misfit →new model accepted

◦ Else, likelihood ratio L calculated
 If L>rand[0..1] → new model accepted

 Else, rejected

◦ STD and ε are key to maintain acceptance rate ~20%
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𝜒 =
1

𝑁
𝛴 𝑑𝑖 − 𝑓 𝑚𝑖

2

𝐿 = 𝑒𝑥 𝑝 −
𝜒𝑜𝑙𝑑 − 𝜒𝑛𝑒𝑤 2

𝑆𝑇𝐷 𝑑𝑖
2



From solute transport to XB-ERT
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𝜎𝑓 𝑡 =
𝐶 𝑡

6.66

𝜎𝑏 𝑡 =  𝜎𝑓 𝑡 ∗ 𝐹

Flow/transport mesh XB-ERT mesh
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