

Building reliable groundwater transport models at contaminated sites using cross-borehole electrical monitoring

Léa Lévy, Lund University, SWEDEN

Léa Lelimouzin (PhD student), Delphine Roubinet, Cédric Champollion, University of Montpellier (FRANCE) Chloé Delbet (MSc student), Sorbonne University / Lund University Line M. Madsen, Aarhus University, DENMARK Thomas Günther, Leibniz Institute for Applied Geophysics, GERMANY Poul L. Bjerg, Technical University of DENMARK Nina Tuxen, Region Hovedstaden, DENMARK

Danmarks ____ Tekniske Universitet

Region Hovedstade

Groundwater contamination

- Main site : Farum "the parking lot"
 - Waste from packaging factory 1959-1989
 - Chlorinated solvents, hydrocarbons
 - In-situ reductive dechlorination: ZVI + carbon substrate + bacteria
- Comparison site: Kærgård"the beach"
 - 280.000 m3 of pharmaceutical waste 1956-1973
 - Chlorinated solvents, hydrocarbons, antibiotic, mercury, cyanide
 - In-situ chemical oxidation: peroxide activated persulfate (free radicals)

Cross-borehole electrical resistivity tomography (XB-ERT)

civity	 Electrodes
-	Current (A-B)
	▼ Potential (M-N

I. Single Borehole

- 2. Cross-borehole "parallel"
- 3. Cross-borehole equatorial

Electrodes

Current (A-B)

▼ Potential (M-N)

- I. Single Borehole
- 2. Cross-borehole "parallel"
- 3. Cross-borehole equatorial

Cross-borehole electrical resistivity tomography (XB-ERT)

- I. Single Borehole
- 2. Cross-borehole "parallel"
- 3. Cross-borehole equatorial

Farum – parking lot ZVI remediation

In-situ remediation campaigns with ZVI in 2019 and 2020

7-14 injection wells – 1-3 days

Lévy et al., 2022 (WRR)

Farum - Subtracting geology

Lévy et al., 2022 (WRR)

7

9

Profile coordinate (m)

Comparison both sites

Kærgård "the beach"

Farum "the parking lot"

Lévy et al., 2021 (NSG-EAGE Proceedings)

ratio

50

0.1

0.02

Inverting time-lapse dataset with {DFN+matrix} One horizontal fracture – Five parameters

Hydrogeophysical modelling Synthetic analysis

Ini#1

🔶 lnj#2

Electrodes

MCMC inversion of ID K-field

-10

-12

-16

-18

0.1

0.2

Misfit value

- Synthetic XB data
 - 3 boreholes, 96 electrodes
 - Same sequence as measured data
 - 3 time-steps
 - 3% noise added
- Inversion of synthetic data
 - Metropolis-Hastings procedure
 - 3 MCMC chains
 - 3000 iterations / chain
 - \circ | iteration ~ 4.4 sec
- Layers 2 and 4 less well determined

0.04

Work by MSc student Chloé Delbet

Building groundwater transport models at remediation sites

- In-situ groundwater remediation in unconsolidated sediments
- Monitoring spatial distribution of reagent with time-lapse XB-ERT
 - mZVI remediation: prefetential flowpaths, limited distribution
 - ISCO remediation: uniform distribution
 - Transport properties depend both on geology and reagent
- Method I: Imaging permeability field with XB-ERT/IP data
 - Consistent with grain size analyses, slug tests, HPT
 - Does not explain flowpaths when injection of mZVI under pressure
 - Importance of small-scale heterogeneities and engineered flowpaths
- Method 2: Inversion of discrete fracture networks
 - ID elements are inverted instead of pixels
 - Next step: solute transport modelling with particle tracking
- Method 3: Joint transport and time-lapse XB-ERT inversion
 - Using reagent as a saline tracer
 - Map the "true" permeability field based on XB-ERT monitoring data
 - Next steps: invert measured data and move to 2D K-distributions

Thank you! lea.levy@tg.lth.se

Ini#1

🔶 Inj#2

• Electrodes

Lévy et al 2022(WRR)

Can we be quantitative?

MCMC inversion of ID K-field

- Synthetic XB data
 - 3 boreholes, 96 electrodes, same sequence as measured data
 - 3 time-steps
 - 3% noise added
- Initial model $K_{i, i=1.4}$ randomly drawn and accepted
 - New model: $K_{i,new} = K_{i,old} + \epsilon$
- Misfit χ predicted vs observed data
- Metropolis-Hastings procedure
 - If new misfit < old misfit \rightarrow new model accepted
 - Else, likelihood ratio L calculated
 - If L>rand[0..1] → new model accepted
 - Else, rejected
 - $\circ~$ STD and ϵ are key to maintain acceptance rate ~20%

$$\chi = \sqrt{\frac{1}{N} \Sigma (d_i - f(m_i))^2}$$

$$L = exp\left(-\frac{(\chi_{old} - \chi_{new})^2}{STD(d_i)^2}\right)$$

From solute transport to XB-ERT

