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Abstract—Developers regularly rely on third-party code ob-
tained from collaborative software platforms and code repos-
itories. Despite the benefits, this introduces potential security
and privacy risks. The Software Bill of Materials requires a
manifest of all code components; however, understanding the
possible risks from the inclusion of the components is a deeper
challenge. Both privacy and security risks may be contextual,
depending on operational environments. In order to evaluate the
potential for large language models to identify potential risk,
we focus on privacy risks as these are contextual and nuanced.
We focus on risks from the inclusion of data types that have
been adjudicated as personally identifiable information (PII).
We explore the efficacy of Large Language Models (LLMs)
in meeting this challenge by testing their performance in the
classification of code snippets as processing sensitive data types,
or not. We report on the feasibility of using a range of zero-shot
and few-shot approaches to automate the detection of source code
that includes processing of sensitive data. For this purpose, we
developed a labeled corpus of code snippets from GitHub. We
report on the accuracy of fine-tuned LLMs (GraphCodeBERT,
LongCoder, Mistral, LLama2, and CodeLLama) and commercial
prompt-based LLMs (OpenAI’s ChatGPT and Google’s Gemini).
We conclude that language models have the potential to identify
privacy risks; however, such models must be trained to meet spe-
cific regulatory requirements. Moreover, we find that commercial
LLMs may need further development before they are suitable for
general use in identifying privacy risks in code.

Index Terms—secure by design, data minimization, privacy,
risk management, AI, SBOM, compliance, code quality, LLM

I. INTRODUCTION

Developers frequently rely on code reuse, leveraging col-
laborative code management systems such as GitHub, Source-
Forge, or Stack Overflow. However, the advantages of code
reuse which add speed and ease to the task of coding also
create the disadvantage of incurred security and privacy risks
[1]. The inclusion of code that references sensitive data can
expose organizations to compliance risk or legal liability. This
underscores the pressing need to ensure that organizations
have a clear grasp of what data they’re compiling, not only
for purposes of respecting user’s rights but also for avoiding
operational risks.

The definition of what constitutes privacy risk varies de-
pending on the context, making it challenging for developers
to reach consensus on which data compilations and uses to
consider privacy sensitive. Moreover, different jurisdictions
and cultures may have distinct guidelines for quantifying the
sensitivity of information. Due to the contested and complex
nature of privacy, here we focus on potentially sensitive data
types from explicit legal categorizations and enumerations.
The legal definition of sensitivity of data types also varies
across contexts of use; for example, healthcare provision and
healthcare research have different standards. Consequently,
organizations face difficulties in safeguarding against com-
pliance risks. Even large organizations with extensive com-
pliance processes, including Google, Amazon, H&M, British
Airways, and Marriott, have - in the past few years - been
fined substantial amounts in excess of 20 million pounds for
violating the General Data Privacy Regulation [2] . Identifying
indicators of sensitive data, such as variable names or the code
in which a variable is embedded, could enable developers to
avoid incidental inclusion of code with potential privacy and
compliance risks. It could also inform operator compliance de-
cisions when code goes between jurisdictions (e.g., US/EU or
across state borders), or across business functions (e.g., patient
care to public health dataset). The potential for one-shot and
few-shot learning offers the possibility that organizations can
train for their own unique combination of code and context.

The overall goal of this work is to explore the possibility of
automating identification of sensitive data in code. Traditional
methods, like string matching or regular expressions search,
have been routinely employed to identify the presence of
named variables in code [3]. This study aims to document
the efficacy of more sophisticated approaches in capturing
potentially sensitive data types. The insights provided by
the comparisons of the accuracy of the models and failure
modes can inform software development choices and risk
management.

Through our study, we seek to answer the following research
questions:



RQ1: Is it possible to identify potential privacy-related data
risks, arising from third-party code, by applying a Natural
Language Processing (NLP) based approach to search for for
indicators of sensitive data in code?

RQ2: How well do different artificial language models
compare in terms of their ability to identify variables that
correspond with the handling of sensitive data?

RQ3: Are there identifiable patterns, or types of failures
characteristic of different models?

II. RELATED WORK AND MOTIVATION

In this section, we begin with a discussion of how we define
sensitive data types. Subsection II-A describes the basis for the
labelling of different data types as sensitive. The identification
and labelling of data as sensitive is grounded in GDPR and
CCPA. Our goal is to both provide a motivate for our selections
of data types and to describe our method in enough detail, to
enable the reproduction of this research with any enumerated
list of sensitive data types.
A. Defining Sensitive Data

In this Subsection II-A, we define what constitutes sensi-
tive data in this experiment. We begin with an overview of
two privacy regulations that have well-defined categories for
personally identifiable information, i.e., data that is considered
personal or protected. Given the variation in definitions across
different jurisdictions, we refer to these data types as sensitive
or privacy sensitive.

The General Data Protection Regulation (GDPR) of the
European Union and the California Consumer Privacy Act
(CCPA) of the State of California are used to define what data
are sensitive in our analysis. These two privacy regulations
have significant requirements constraining the compilation and
processing of Personal Identifiable Information (PII). These
regulations are significant factor in software production as
California produces roughly 5% of the total global economy
and the EU accounting for between 15% and 20%. [4]. Both
emphasize foundational principles such as data minimization,
which calls for the least amount of data collection necessary,
and purpose limitation, to ensure data is used solely for the
reasons it was collected (GDPR Article 5 [2]; CCPA Section
1798.100(d)(1) [5]). More importantly, for our purposes, both
also clearly enumerate what data is considered sensitive. This
method can be reproduced by smaller jurisdictions or industry
segments, as long as there are clearly enumerated data cate-
gories. Concurrently, the Software Bill of Materials (SBOM)
initiative has emerged as a complementary effort aimed at
transparency in the software supply chain. As SBOM matures,
it has expanded beyond licensing and vulnerability tracking
to considerations of development practices. compliance. and
privacy [6].

The GDPR was grounded in the 1995 Data Protection Direc-
tive, which was an early attempt to identify privacy-sensitive
data types and data processing. The GDPR was adopted in
2016 to define individiual data rights. It was intended to
provide a unified, consistent, comprehensive framework to
safeguard the rights and freedoms of individuals within the

European Union. The GDPR defines the responsibilities of
organizations compiling, processing, storing, and managing
personal data. CCPA and GDPR compliance require that or-
ganizations confirm that personal data processed through code
dependencies aligns with the regulations and the organizations’
stated privacy policies. As a result, organizations are obligated
to determine the potential impact of code dependencies on user
data privacy and to institute measures that protect personal data
throughout software development and supply chain processes.
Recognizing that a particular data type covered by the GDPR
or CCPA is in a library, utility, or other dependency remains
an open challenge.

The CCPA defined statutory principles of data minimization
and purpose limitation (Section 1798.100(d)(1) [5]). As with
GDPR, it identifies a range of data types. The statute endows
consumers with multiple rights, including the right to be
informed, to access, and to delete their personal information.
In terms of code analysis, aligning with the CCPA requires
organizations to evaluate data compilation and processing in
code, including dependencies, where the code is used by
Californians. The Act has an expansive definition of sensitive
data types and defines consumer rights over those types.

There are additional regulations based on specific contexts,
notably for health, biometrics, education, employment, chil-
dren‘s data, and regulations in other legal contexts [7], [8].
This work contributes to understanding the potential, and the
risks, of using few-shot and zero-shot techniques described in
this work to identify sensitive data types in code. Few-shot
training in the context of this paper refers to training samples
on a very small dataset. Zero-shot learning refers to prompting
LLMs like ChatGPT to leverage their pre-existing knowledge
without providing them with any labeled training samples.

III. METHODOLOGY

Our research methodology was structured into five stages.
First, we conducted a literature survey, as summarized in re-
lated work (Section II). We then compiled a data corpus using
the GitHub search API for code. We validated all samples
through human review of both the code and its implicit or
documented use context. With the data validated, we then
proceeded to the third stage of fine-tuning large language mod-
els. Initially, our evaluation process focused on CodeBERT
and GraphCodeBERT [9], [10]. However, the results were not
impressive. With the open-sourcing of LLaMA2 by Facebook
and the release of Mistral 7B we were able to expand our
work [11]–[13]. Our final results include evaluations of Graph-
CodeBERT, LongCoder, Mistral, LLaMA2, and CodeLLaMA.
LongCoder performed particularly well, validating its potential
across diverse coding tasks. Results from salesforces T5,T5+
and CodeBERT have been reported [9], [14], [15].

Due to their robust performance and widespread adoption,
we included ChatGPT and Gemini Advanced as the fourth
stage of our method. This enabled us to evaluate their advanced
zero-shot capabilities and benchmark their effectiveness in our
specific use case. Lastly in the final stage, we further analyze
the responses and the data that we compiled during these



stages to answer the research questions that we outline in the
Introduction/

Fig. 1. Overview of methodology

A. Data Corpus
To create a corpus of code containing sensitive information,

we began by selecting a subset of categories that are identified
in both the California Consumer Protection Act (CCPA) and
the European Union’s General Data Protection Regulation
(GDPR) as sensitive. The ten data information categories we
chose were as follows: These were 1. Unique Device ID,
2. Account/Individual Identifier, 3. Demographics, 4. Internet
traffic, 5. Commercial/Financial information, 6. Biometrics, 7.
Multimedia data, 8. Employment information, 9. Educational
information, and 10. Location information.

We leveraged common expressions (e.g., DoB) and code
functionality (e.g., payment) to search for code candidates
in repositories, using GitHub’s code search API. We list
the search terms in the appendix. We selected code from
commercial public repositories and other popular open-source
code. While no small sample can be representative of every
production environment, our goal is to explore the potential of
zero-shot and few-shot learning for different contexts so we
sought widely used code.

To create a control group, we included an equal number
of including a large number of code snippets that were
not considered sensitive. These code snippets were selected
from popular code, and include diverse functionality. The
inclusion of non-sensitive code snippets enabled us to assess
the specificity and accuracy of our models in distinguishing
between sensitive and non-sensitive code.

To ensure the contextual sensitivity of the identified vari-
ables these were manually reviewed. The research team (in-
cluding a professor, a post-doctoral scholar, three interdisci-
plinary doctoral candidates, one computer science graduate re-
searcher, and one undergraduate computer science researcher).
Each individually reviewed the code snippets and determined
whether the identified variables were indeed sensitive within
the given code contexts. We began with only those sam-
ples where the Fliess Kappa score of agreement amongst

Category Repos Lines Variable Code Snippets
Unique Device ID 6 958 27 25
Individual Identifier 9 1643 29 28
Demographics 6 179 20 21
Internet Traffic 7 2549 46 57
Financial Information 8 1068 44 50
Biometrics 5 490 32 38
Multimedia Data 4 1388 20 31
Employment 7 943 29 31
Location 8 1472 50 58
Education 2 102 7 6

TABLE I
SUMMARY OF SEARCHING CODE CORPUS

researchers was equal to 1. Any differences in opinion were
identified and discussed in real-time meetings until there was
consensus. This collaborative knowledge construction method
[16], [17] was a verification stage to add a layer of accuracy to
the dataset. Further validation serendipitously occurred when

For the scope of this study, we collected Python code
samples to create our dataset as it is widely used and easy to
understand for most of the human participants. We searched
for identifiable variables in the selected categories, based on
CCPA, GDPR, Privado rules, and previous literature. GitHub,
as the largest open-source code-sharing platform, offers an
extensive repository of publicly accessible code contributed by
a diverse community of developers. Its vast collection of code
makes it an ideal resource for acquiring a large-scale public
dataset suitable for research and analysis in various domains.
As we focused on code with potential privacy implications,
we searched all Python GitHub repositories for a small set
of data privacy-related keywords and data types. Searching
for these keywords resulted in a corpus of 53 repositories,
30 keywords, and 86 variables with their related variables
and code expressions in total, see Table I for details. We
used different keywords for each category domain to search
the repositories on the GitHub platform. We also extract the
nearby variables and code segments that have the value trans-
mission with the picked variable. The final dataset consisted of
57 code fragments containing sensitive data and 57 fragments
without, each roughly 100 lines. Preprocessing was applied
to the collected code fragments, involving the removal of
comments and non-essential characters.

B. Fine-Tuning Large Language Models for Identification of
Privacy risks

Fine-tuned models have exhibited a strong proficiency in
few-shot learning, where they can quickly generalize to new
tasks by learning from a limited number of examples like our
dataset. This contrasts with zero-shot learning scenarios where
models apply learned patterns without additional training data.
Few-shot learning exploits the models’ pre-trained knowledge
base, enabling them to identify underlying patterns in sparse
data and effectively adapt to novel programming tasks or
languages with remarkable efficiency using relatively smaller
training samples [18]–[20].

We began our evaluation process with CodeBERT and
GraphCodeBERT (described above) [9], [10]. To further re-



fine these models, fine-tuning with additional neural network
layers, often termed ”task-specific heads” or ”classification
layers,” as employed by [21]. These layers are crucial for
adapting the model’s expansive knowledge to specific tasks,
allowing it to detect subtle, task-dependent patterns. With
just a handful of examples, models like GraphCodeBERT,
LLAMA, LongCoder, CodeLlama, and Mistral can be fine-
tuned to significantly enhance their proficiency in making
precise code-related predictions or classifications. Through
few-shot learning and strategic fine-tuning, these models can
become exceptionally adept at interpreting and analyzing code,
even in areas with little to no prior exposure.

Preprocessed code fragments underwent tokenization, re-
sulting in sequences of tokens compatible with the respec-
tive models. We then processed each tokenized code snippet
through all the models. These models transformed the code
tokens into high-dimensional vectors, known as embeddings,
which effectively encapsulate the syntactic and semantic nu-
ances of the code. To streamline the computational process and
manage the high dimensionality of the data, we computed the
mean of the tokens for each snippet. This averaging technique
yielded a single vector of fixed dimensions per code fragment,
which succinctly represented the original richly exhibited data
[22]. These condensed vector representations were then used
as input in the subsequent stages of sensitivity classification.

In our research, we initially implemented a fully connected
neural network (FCN) model. Our preliminary architecture
was composed of three layers, containing 64 and 32 hidden
units, respectively, with the Rectified Linear Unit (ReLU)
serving as the activation function [23]. The neural network
predicts the probabilities that the input sample is sensitive or
not sensitive. The model was designed and executed using the
PyTorch deep learning framework and was optimized using
the Adam optimizer [24]. In our model, we used binary cross-
entropy as the loss function, which is a standard approach for
binary classification tasks [25], [26]. However, we transitioned
to a more robust FCN model, consisting of two layers each
with 512 nodes. This enhanced network was capable of
learning and predicting more intricate patterns in our data,
thereby improving the accuracy of sensitivity discernment for
variables.

The hyperparameter choices for the models were deter-
mined by iterative experimentation and tuning to achieve
satisfactory performance. Our initial methodology utilized an
80:20 ratio for training and testing to evaluate the model’s
performance. To enhance this evaluation, we adopted a k-
fold cross-validation method, with k designated as 5 [27].
This method divides the dataset into k equally sized portions,
known as ’folds.’ In a series of iterations, each fold is used
once as the test set while the remaining folds (k-1 in number)
serve as the training set. This approach does not just yield
an averaged value for metrics such as accuracy, precision,
recall, and F1-score, but also captures the variability within the
data. It ensures that our performance metrics are not skewed
by any specific partition of the dataset. The average values
reported from the iterations of the 5-fold cross-validation

present a more thorough and reliable measure of the model’s
performance, having been stringently evaluated across various
data subsets.

C. Prompting Large Language Models

In this phase of our methodology, we harnessed the prompt-
based classification capabilities of advanced language models,
namely ChatGPT 3.5, ChatGPT 4, and Google’s Gemini
Advanced to assess the privacy sensitivity of the collected code
fragments. Zero-shot learning allows these models to perform
downstream classifications they were not specifically trained
to recognize, by drawing on their extensive pre-training on
diverse data. This capability is critical for identifying sensitive
information in code (as per GDPR and CCPA guidelines) with-
out the models having previous exposure to such classification
tasks [28].

Prior to classification, we assessed the models’ knowledge
of GDPR and CCPA regulations to ensure their capability to
make informed judgments about data sensitivity by asking
questions about these regulations. Then, to facilitate clas-
sification, we crafted and refined the prompts through an
iterative query engineering process. The final prompt directed
the models to examine four code fragments, each separated
by a specified delimiter symbol in the input, and to determine
the presence of sensitive data as per the mentioned guidelines
without providing explanations or summaries of the code. We
structured the prompt to maximize generalizability and accom-
modate the language models’ interface limitations, asking for a
straightforward response indicating which fragments contained
sensitive information. Previous work has illustrated that LLMs
may validate questions, so our queries were strictly neutral.

The initial query we presented to the models was, ”Given
below are 4 fragments of code. Each of them is separated by
a delimiter. Considering the first code as ’1’ and the fourth as
’4,’ identify if the fragments contain sensitive data according to
GDPR or CCPA guidelines, indicating your response as ’code
fragment number: Sensitive or Not Sensitive’.” This query-
based approach ensured consistency and uniformity in the
sensitivity classification process across the entire dataset. Each
code fragment was presented to ChatGPT 3.5, ChatGPT 4, and
Gemini models using the same prompt, enabling standardized
classification based on their understanding of GDPR and
CCPA guidelines. While GPT 3.5 initially showed limitations
in performance, its subsequent paid version demonstrated
significantly enhanced higher-order reasoning abilities. This
iterative refinement of our query approach was informed by
comparative studies of large language models in tasks such as
sentiment analysis and prompt engineering surveys [29], [30].

In this study, the specific query was carefully formulated
to address the challenges posed by the generative nature of
language models. Language models have a tendency to provide
detailed explanations or summaries of code, which may intro-
duce bias or compromise the objectivity of the analysis. This
query maintains a clear restraint over the query parameters
by explicitly instructing the language model to refrain from
providing explanations or summaries. This ensures that the



language model’s responses focus solely on assessing the
presence of sensitive data in the code fragments. Furthermore,
by referencing the GDPR and CCPA guidelines, the query
aligns with the legal frameworks for data privacy, enabling a
targeted evaluation of code sensitivity. Overall, this query was
iteratively optimized to mitigate the risks of information bias,
maintain objectivity, and ensure that the analysis is conducted
within the scope of the research objectives.

We analyzed the responses generated by ChatGPT 3.5,
ChatGPT 4, and Gemini to determine the sensitivity classi-
fication of the code fragments. Accuracy, consistency and any
challenges associated with the models’ inclination to provide
detailed explanations rather than straightforward sensitivity
labels were considered.

Fig. 2. Heatmap showing how various categories of privacy risks were
misclassified. Red squares show poor performance of the language model
in the category as the threshold for a good score is 75% accuracy and above

IV. RESULTS

The performance of various models was evaluated using
metrics such as Accuracy, F1 score, Precision, and Recall. The
results are summarized in Table II. Overall, the results indicate
that Mistral 7B and CodeLlama 7B are highly effective at
classification of code as containing potentially sensitive data
processing. The overall accuracy, precision, and recall of these
two LLMs were high, with other models offering varying
trade-offs in their levels of performance. Given tolerances for
different types of errors, other models may be suitable for
different applications.

Mistral 7B outperformed all other models, achieving the
highest scores across all metrics with an accuracy of 92.09%.
CodeLlama 7B followed closely with an accuracy of 91.26%,

TABLE II
COMPARISON OF MODEL PERFORMANCE METRICS OF FINETUNED

Model Accuracy F1 score Precision Recall
Mistral 7B 92.09% 92.04% 92.57% 92.04%
CodeLlama 7B 91.26% 91.12% 91.97% 91.12%
Llama 2 90.39% 90.29% 91.62% 90.30%
Long Coderbase 88.61% 88.06% 91.01% 88.48%
GraphCodeBERT 80.71% 80.60% 81.31% 80.51%
CodeT5-220m 78.93% 78.48% 80.47% 78.86%
CodeT5plus-770m 81.54% 81.43% 82.39% 81.66%
CodeBERT 72.80% 72.26% 74.61% 72.87%

and Llama 2 also performed well with an accuracy of 90.39%.
Long Coderbase and GraphCodeBERT displayed moderate
performance, with accuracies of 88.61% and 80.71%, respec-
tively. The Salesforce models, CodeT5-220m and CodeT5p-
770m, showed competitive results, particularly the latter with
an accuracy of 81.54%. CodeBERT, while achieving the lowest
performance among the evaluated models, still provided useful
insights with an accuracy of 72.80%. LLM modes, particularly
general chat models, did not perform as well with ChatGPT
3.5, Chat GPT 4.0, and Gemini achieving accuracy of 50%,
73%, and 58% respectively.

V. DISCUSSION

Our results in Table II report a high level of accuracy for
fine-tuned models trained on a small corpus. The accuracy
of popular chat-based models remained low, regardless of the
query. One of our initial limitations was a concern that the
corpus of data samples was too small. In contrast, we hy-
pothesized that NLP models that have already been pretrained
on extensive datasets could transfer learned knowledge effec-
tively, even when applied to smaller, domain-specific datasets.
The accuracy of our results aligns with recent findings in the
field, where models trained on less in-distribution data have
shown better out-of-distribution performance. These results
mitigate concerns about the capabilities of pretrained models
[31]. However, the analysis of the results as reflected in the
confusion matrices, revealed a concerning trend of high false
negatives. Inaccurate classification of sensitive information of
Language Models (LLMs) spanned across multiple categories:
Unique Device ID, Account/Individual Identifier, Demograph-
ics, Internet Traffic, Financial Information, Biometrics, Multi-
media Data, Employment Information, Location Information,
and Educational Information.

In the case of UniqueID, all the LLMs classified three
of sixteen as not sensitive regardless of the fact that such
unique identifiers are central to differentiating identifiable from
nonidentifiable (and thus less sensitive) data.

We identify the limitations of prominent large language
models including ChatGPT and Gemini. These models dis-
played systematic patterns of failure in classifying code snip-
pets related to both demographic data and geofencing opera-
tions. In particular, none of the code snippets which indicated
geofencing processes were not categorized as privacy-sensitive
by these LLMs. This is not only notable because of extensive
research that emphasizes the high privacy risks associated



Fig. 3. Confusion Matrices showing the false positive, false negative, true positive, and true negatives of each model. These confusion matrices provide the
raw percentages used to calculate precision and accuracy, illustrating the need to explore beyond the report of summary statistics.

with location data (e.g., [32]) with even four spatiotemporal
points adequate to uniquely identify an individual within a
large dataset, thereby escalating privacy risks [33]. Recall that
location data is defined as sensitive.

The processing of demographic data was also frequently
misclassified. Three of four instances were subject to incorrect
classification. This high rate of failure may be attributed
to the small sample size, as discussed in the limitations
section of this paper. Our analysis revealed that certain code
snippets containing this data type were erroneously classified
as non-sensitive by both ChatGPT and Bard. This trend is
more notable in light of extensive research documenting the
risks of mishandling such sensitive demographic information.
Previous studies have indicated that even simple demographic
characteristics can uniquely identify individuals within large
populations, thus exacerbating privacy concerns [34], [35].
Moreover, careless handling of demographic data not only
jeopardizes individual privacy but also has broader societal
implications, such as exposing communities to discrimination,
stereotyping, and targeted surveillance [36], [37]. Eckersley
emphasized that even seemingly innocuous information could
uniquely identify users, illustrating the covert ways in which
privacy can be compromised [38]. Further adding complexity
to this issue are the risks associated with microtargeted ads on
platforms such as Facebook, which have been shown to exploit
demographic data [39]. Korolova specifically addressed the
potential for privacy violations through targeted advertising,
shedding light on how such platforms could inadvertently
facilitate unauthorized data sharing and re-identification [40].
Given these considerations, our findings underscore the neces-
sity for improved measures to ensure that demographic data
are managed as sensitive data, not systematically identified as
non-sensitive.

Other categories where all the LLMs misclassified included
financial and biometric data. These are contextual in the sense

that financial data that was used for payment (other than
fraud) are used with consent. Similarly, biometrics may be
recognized by LLMs as being components of authentication.
Regardless of the presumption of use, financial and biometric
data can be sensitive. The systematic misclassification of these
categories in comparison with other approaches illustrates the
applicability of criticisms of unexamined adoption of LLMs.

These reflect the classic critiques of LLMs listed in [41]. An
essential argument of that paper is that the models can be too
large to be accurate. Our results can be read as reifying this.
The second argument is that social change cannot easily be
embedded in a model; consequently, LLMs may be inherently
unresponsive to social change. This may apply to the case of
privacy, for example, consider network information such as IP
addresses. There was a long-standing argument in the first two
decades of the century if IP addresses were sensitive, and the
differences between jurisdictions remain [42].

The third critique is that LLMs are majoritarian and often
inadequately respond to less frequent events (or populations).
There is a general problem in privacy (and security) that
most code does not have privacy concerns, resulting in biased
datasets from the real world. The confusion matrices illustrate
this, in the prevalence of false negatives.

Conversely, there were instances where these models dis-
played an overly cautious approach, erring on the side of over-
classification of non-sensitive content as sensitive. Gemini, in
particular, demonstrated this flaw when it incorrectly classified
an ML classification and cropping algorithm as identifying
sensitive financial data in receipts. Upon closer inspection, it
was evident that the algorithm in question was solely focused
on generic image classification and was not associated with
any receipt dataset. Such false positives underline the impor-
tance of refining model criteria for sensitivity assessments and
ensuring that their determinations are grounded in accurate
contextual understanding.



An obvious solution to this would be to simply ask devel-
opers to hand label code as sensitive or not sensitive. Yet,
previous research on that question illustrated that individual
developers disagree about sensitive information, and often
do not know that entire categories of data are sensitive. A
2018 survey of 36 developers found that many had never
heard of a privacy impact assessment (47.2%), fair information
practices (38.9%), nor privacy by design (36.1%) [43]. A later
evaluation of 99 developers showed that developers with more
experience were not better at identifying code as process-
ing sensitive data [44]. Agreement comparisons between the
more expert human coders (0.2033) was slightly higher than
the agreement between the models evaluated here (0.2028).
(Scores greater than 0.2 indicate consensus.) Human experts
categorized sensitive data as not sensitive more often than
LLMs and more often than non-experts. Non-expert consensus
was measured as 0.2171. The results from LLMs are closer
to those of non-experts, perhaps as a result of their training
corpus.

VI. LIMITATIONS AND FUTURE WORK

We report that LLMs exhibit systematic failures in identi-
fying sensitive information and thus privacy risks in code. We
identified patterns in these errors. However, our data set was
too small to determine if these were systematic or random.
Some of the errors may indicate an embedded assumption of
legitimate use, such as payment information. In other cases,
there is no clear reason. Consider that, aside from targeted
advertising, the business case for demographic data is limited
while the privacy implications are substantial. Some data
types, like the date of birth, are widely classified as sensitive
personal information and have limited commercial use.

The failures by the models to correctly categorize some
code snippets as sensitive underscore a pivotal challenge:
despite their ability to process vast quantities of information
and generate coherent responses, LLMs are limited in their
ability to identify nuanced concerns surrounding data privacy.
This gap highlights the urgent need to avoid the unexamined
uniform adoption of LLM for the identification of nuanced
categorizations. A focus on the recognition and classification
of potential privacy threats is needed, especially in light of
the substantial risks associated with the mishandling of demo-
graphic and geolocation data. Our results support integrating
robust location and demographic privacy measures into the
ethical guidelines and coding practices that govern LLMs [45].

In future work, we will expand our corpus. We seek a
partner to explore how that organizations might employ a
Grammarly-like framework to signals parts of code that might
violate privacy compliance requirements. We are particularly
interesting in working with organizations that share data across
operations and research functions.

VII. CONCLUSIONS

There is a need to detect the inclusion of Personally Iden-
tifiable Information (PII) in source code. We have reviewed
past research focused on identifying privacy risks in code and

highlighted the existing gaps and challenges. We report on
the accuracy of emerging technologies, such as Generative AI
and Large Language Models (LLMs), in offering solutions for
automated privacy risk detection in source code. Specifically,
we explored the potential for one-shot and few-shot learning
for the identification of code that processes sensitive data using
a custom-labeled corpus. LLMs varied in their accuracy in the
correct classification of sensitive code but were higher than
previous research using human evaluators, including previous
research on software developers.

Our results underscore the challenges in automated code
sensitivity detection and emphasize the need for continuous
model refinement. Our results also illustrate that while ad-
vancements in language models have provided us with power-
ful tools for code analysis, understanding their limitations and
biases is crucial in deploying them in real-world applications
This is arguably especially true for tasks with significant legal
and ethical implications such as compliance with privacy laws.

The larger question is if it would be effective for organiza-
tions to train LLMs for their own unique combination of code
and context. While this justifies the use of a small, carefully
labeled dataset, we also acknowledge the size of the dataset is
a limitation. Our sample dataset can be augmented with more
detailed analysis and is available on the author’s Github.1

Part of the significance of our work lies in the use of one-
shot and few-shot training methodologies to identify privacy
sensitivity. A single organization may have different privacy
constraints for different units or processes so a single model
might not be able to capture the required nuances for all
business purposes. Similarly, individuals have differing rights
based on their jurisdictions, as well as differing individual
personal preferences. Our contributions are to the challenges of
selecting products and managing privacy risks based on these
constraints. The comparison of the categories and patterns
of failures can contribute to the identification of sensitive
information in code, and provide insights into the effectiveness
of different methods of analysis.
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