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Executive Summary

Motivation

Complex systems are governed by the hidden physics of interfaces and inhomogeneous cascades of scales, e.g.,
multifunctional materials, subsurface transport, reactive transport, hence requiring new data driven multiscale
modeling that is accurate, e�cient, and easy to implement. In particular, inhomogeneous cascades of scales
involve long-range spatio-temporal interactions and often lack proper closure relations to form complete and
mathematically well-posed systems of governing equations. Existing multiscale and multiphysics approaches and
classical integer-order partial di↵erential equations (PDEs) have been ine↵ective in addressing nonlocal interac-
tions, inhomogeneous cascades of scales, or propagation of uncertainty and stochasticity across scales. They are
inadequate for solving inverse stochastic multiscale problems, especially in the context of noisy multifidelity data.

Research Plan

We propose to develop stochastic multiscale modeling in conjunction with emerging deep learning techniques to
seamlessly fuse physical laws and multifidelity data both for forward and inverse multiscale problems. Hence, we
propose a synthesis of physics-based and data-driven tools and approaches, including nonlocal operators, multi-
fidelity data and information fusion, deep neural networks (DNNs), meshless methods, uncertainty propagation,
and stochasticity to simulate complex multiscale systems. Our high-level objective is to establish the Collaboratory
on Mathematics and Physics-Informed Learning Machines for Multiscale and Multiphysics Problems (PhILMs)
as a new Department of Energy (DOE) center at the interface of mathematics, physics, data science, and deep
learning. With emphasis on predictability and uncertainty quantification, the research plan of PhILMs includes:

• Developing physics-informed learning machines by encoding conservation laws and prior physical knowledge
into deep learning networks and analyzing their mathematical properties.

• Demonstrating the e↵ectiveness of PhILMs in designing functional materials with tunable properties, and
extending PhILMs to other DOE-relevant multiscale problems, e.g., combustion, subsurface, and earth
systems, all exhibiting inhomogeneous scaling cascades.

• Establishing scientific machine learning (ML) as a new meta-discipline at the interface of computational
mathematics, data science, information fusion, and deep learning.

Our integrated mathematical and computational activities can be classified into four research areas: (RA-I)
PDE-based modeling of macroscales; (RA-II) stochastic modeling of mesoscales; (RA-III) bridging methods to
connect the scales; and (RA-IV) deep learning approximations and algorithms to support RA-I to RA-III.

Coordination, Integration, and Evaluation Plan

Integrating and assimilating the four PhILMs research areas will lead to the development of PhILMs. Its useful-
ness in modeling multiscale phenomena and discovering new governing equations from multifidelity data will be
demonstrated in the diverse driver applications motivated by DOE problems. In RA-I, we will develop flexible
high-order meshless methods, a unified theory of nonlocal operators with corresponding high-order numerical al-
gorithms, and PDE-based PhILMs for forward and inverse problems. We will emphasize the mathematical analysis
of the new approximations induced by DNNs and their variants constrained by PDEs. In RA-II, we will develop
stochastic PDEs and DNN-based algorithms to capture fluctuations in coarse-grained (CG) systems. We will
emphasize new mathematical foundations based on statistical mechanics and derive rigorously stochastic reduced
models based on the Mori-Zwanzig formalism. In RA-III, we will consider concurrent coupling of heterogeneous
domains, including nonlocal to local PDEs (e.g., fractional/local), and propagation of stochastic fluctuations
seamlessly across domains. In RA-IV, we will combine deep learning with Bayesian techniques for uncertainty
quantification and integration of domain knowledge. We will develop nonlinear multifidelity statistical models for
fusing information from multiscale simulations and available experimental (noisy) data. We will propose novel
(physics-informed) neural network topologies and develop mathematics to explain the success of deep learning
constrained with physical laws. Ultimately, these advances will be combined with the knowledge and inherent
structure of physical laws to develop PhILMs for material design, enhancing e�ciency in combustion, and making
predictions for subsurface systems and ice sheets, as we explain next.

For the evaluation plan, we will define benchmarks of increasing complexity from one year to the next to
measure progress in each research area, we will plan annual workshops and mini-symposia as well as mutual
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visits to each Principle Investigator’s (PI’s) laboratories and student and postdoc exchanges. In addition, we
have formed a dissemination panel so that our work is presented across all the DOE labs and beyond so that
the DOE scientists will be the first who can benefit from our findings. During the first year we held almost
weekly webinars on Monday afternoons attended by all researchers associated with PhILMs at Pacific Northwest
National Laboratory (PNNL), Sandia National Laboratories (SNL), Stanford University, Massachusetts Institute
of Technology (MIT), University of California, Santa Barbara (UCSB), and Brown University.

Highlights of Accomplishments and Outcomes

In the first year, we established substantial and meaningful collaborations between the six groups by mutual visits,
weekly webinars, and a workshop at SNL in California (May 27, 2019). Many of the PIs participated previously in
the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) so there was particular emphasis
in establishing interactions and eventually specific collaborations with the two new members of PhILMs, Valiant
at Stanford and Daskalakis at MIT, who work on theoretical computer science. In particular, both of these team
members presented their work to the group on three di↵erent occasions, highlighting di↵erent aspects that could
benefit physics-informed learning. In terms of awards, Karmiadakis was named American Association for the
Advancement of Science fellow (2018) and Daskalakis won the prestigious Rolf Nevanlinna prize (2018). Also,
our work on coupling across scales for flows over soft multifunctional surfaces was on the cover of Soft Matter
(2019) while our work on self-cleaning of hydrophobic rough surfaces by coalescence-induced wetting transition
was on the cover of Langmuir (2019). In terms of software, we have several open-source software releases thus
far, e.g., the library ADCME.jl with powerful metaprogramming features in Julia, GMLS-Nets allowing for general
meshfree operator regression, and DeepXDE, a deep learning tool to solve PDEs of any type.

Research Area I

PDE-based Modeling of Macroscales: Generalized Moving Least Squares (GMLS) is a new meshless method devel-
oped during CM4 by Brown and SNL teams for simulating multiphysics problems in arbitrary geometries. Recently,
the SNL and UCSB teams collaborated to develop solvers for PDEs on manifolds and GMLS-Nets, a meshfree
regression operator as an alternative to convolution neural networks for physics-informed learning. The capability
of GMLS-Nets was demonstrated in discovering data-driven PDE models from molecular data and to regress
engineering quantities of interest from datasets characteristic of computational fluid dynamics (CFD) simulations.
SNL has also been investigating data-driven network models based on GMLS and DNNs with application to design
and simulation of electrical circuits. PNNL and Brown developed physics-informed neural networks (PINNs) for
transport in porous media, and in particular for learning unknown parameter fields in PDE models and applied
for assimilating measurements of hydraulic conductivity and hydraulic head and tracer concentration. PINNs can
also be used to learn unknown physics, e.g., estimating an unknown term as in unsuaturated porous media. We
extended PINNs for learning unknown physics by modeling the hydraulic conductivity and hydraulic head with
two DNNs and using a third DNN to represent the governing PDE residual. These DNNs share weights and
are trained jointly. This allows us to accurately learn the DNN approximations of the two fields without any
measurements of the hydraulic head, showing superior accuracy to other methods such as Bayesian inference and
maximum a posteriori probability (MAP) estimation. The Stanford team used a variant of PINNs to discover the
constitutive law of a complex material. Specifically, they use DNN to approximate the unknown constitutive law
(stress/strain relation) and finte elements to discretize the momentum conservation equation. They also studied
the di↵erence between DNN and traditional approximation functional forms, and found that DNNs are superior
in cases where highly non-uniform sample points are used (adaptivity), where the function to be approximated
exhibits sharp gradients in some regions (concentrated jumps similar to shocks), and in high dimension situations.
DNNs are also robust to noise and consistently generalize better in many of our test cases. Finally, SNL and
Brown developed nonlocal PINNs that can obtain the parametrized nonlocal kernels from data, and they also
developed a unified theoretical framework that includes all nonlocal and fractional operators as special instances
of nonlocal truncated weighted operators.

Research Area-II

Stochastic Modeling of Mesoscales: Brown and PNNL have developed an e�cient parallel multiscale method
that bridges the atomistic and mesoscale regimes via concurrent coupling of atomistic and mesoscopic models by
combining an all-atom molecular dynamics description for specific atomistic details in the vicinity of the functional
surface with a dissipative particle dynamics (DPD) approach that captures mesoscopic hydrodynamics in the do-
main away from the functional surface. They also employed the many-body DPD method to study self-cleaning
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of hydrophobic rough surfaces by coalescence-induced wetting transition. PNNL developed a probabilistic ML
approach to estimate the e↵ective CG potential parameters for water-hexane mixture, a typical immiscible binary
liquid/liquid mixture. PNNL researchers also proposed several generative adversarial network models for model-
ing stochastic dynamical systems given their time series measurements by learning the flow map and enforcing
dynamic constraints during training for all three major modes of learning, namely supervised, unsupervised, and
reinforcement learning.

Research Area-III

Bridging of Methods to Connect the Scales: We have developed methods for the concurrent coupling of hetero-
geneous domains, including coupling across scales, to discover the hidden physics models at the interfaces and
provide the glue functions/functionals to seamlessly connect the cascade of scales. Brown, PNNL, and SNL have
contributed to this research area. We designed a new composite network that learns from multifidelity data by
exploiting correlations across di↵erent data sets and applied it to high-dimensional function approximation and
to inverse geophysics problems. We also demonstrated how PINNs work for nonlocal problems, using molecular
dynamics data, and how PINNs can be used to learn physical parameters for use in physical simulations across
multiple length scales, and in particular in learning a nonlocal surface tension model. Finally, for problems with
heterogeneous properties we proposed a domain decomposition PINN (DD-PINN), where the spatial domain is
decomposed in two (or more) non-overlapping subdomains such that the mean value of the field is (nearly) con-
stant within each subdomain. These DD-PINNs, which are amenable to parallel GPU computing, yield superior
results compared to single-domain PINNs.

Research Area–IV

Statistical Learning and Deep Learning Approximations and Algorithms: We have explored foundational algorithms
and mathematics for deep learning. We have combined deep learning with statistical models integrating domain
knowledge about spatial correlations and physical invariances, and developed parallel-in time algorithms for long-
time simulations. Brown, Stanford, PNNL, and MIT have contributed to this research area. For long-time integra-
tion of PDEs PINNs become ine�cient and not trainable and to this end we developed parareal neural networks
that use a CG supervisor and parallel small PINNs to gain e�ciency. In some of the applications of PINNs it is also
advantageous to combine Karhunen-Loève expansions to represent correlated fields and add this with PINNs for
better accuracy. Similar to PINNs, we introduced the notion of equivariant transformer networks, which consist of
typical convolutional neural networks, with the addition of equivariant transformer layers, which are a lightweight
and flexible class of functions that improve robustness towards arbitrary predefined groups of continuous trans-
formations. We have designed optimization and learning approaches, which are robust with respect to: (i) noise
in the training data due to sensing and communication imperfections or adversarial perturbations; (ii) static and
dynamic model misspecifications; (iii) changes in perception modalities leading to missing or corrupted features
in test data; (iv) noise injected in the algorithms for privacy or other algorithmic considerations; and (v) strategic
interaction against one of multiple other learning agents. Training algorithms that incorporate these types of ro-
bustness solve a robust optimization problem, a.k.a. a min-max problem, where we seek to find model parameters
that minimize a loss function against worst case perturbations within allowable constraints.

Challenges and Implemented Course Corrections

H. Gao and Zhen Li of Brown and Nathan Hodas of PNNL are no longer in the PhILMs due to new jobs but we
have hired other experienced personnel and re-assigned tasks to cover this change.
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PhILMs Progress Report 2018-2019

Figure 1: Overview of the PhILMs proposal: Relation be-
tween the overall goal of PhILMs, the thematic key challenges
derived from this goal, and its four research areas motivated
by exemplar Department of Energy (DOE) applications.

Most multiscale problems can be broadly classified into
three categories: (i) data poor but complete knowledge
of the governing physics; (ii) data rich but little knowl-
edge of governing physics; and (iii) only moderate data
and moderate knowledge of the governing physics.
Existing multiscale and multiphysics approaches have
been ine↵ective, especially for the latter two categories,
in addressing key scientific challenges, such as inho-
mogeneous cascades of scales, propagation of uncer-
tainty/stochasticity across scales, and nonlocal inter-
actions, and are inadequate for solving inverse stochas-
tic multiscale problems, especially in the context of
noisy multifidelity data. In the Collaboratory on Math-
ematics and Physics-Informed Learning Machines for
Multiscale and Multiphysics Problems (PhILMs), we
address these shortcomings by seamlessly fusing phys-
ical laws and multifidelity data, for both forward and
inverse multiscale problems, with the goal of reveal-
ing, modeling, and understanding the hidden physics
of interfaces. Our integrated mathematical and com-
putational activities can be classified into the following
research areas (see Figure 1): (RA-I) partial di↵erential equation (PDE)-based modeling of macroscales; (RA-II)
stochastic modeling of mesoscales; (RA-III) bridging methods to connect the scales; and (RA-IV) statistical learn-
ing and deep learning approximations and algorithms. Physics-informed neural networks (PINNs) are a workhorse
tool for the project. In the following, we summarize research accomplishments, highlights, and current directions
from the first year of the project.

1 RA-I: PDE-based modeling of macroscales
We developed PINNs to seamlessly enforce PDE conservation laws in training neural networks for applications
including data assimilation, inverse modeling, and learning unknown constitutive relationships. To deal with the
complexity of grids and nonlocal multiphysics interactions, we developed flexible high-order meshless methods
and unified theory of nonlocal operators with corresponding high-order numerical algorithms. Sandia National
Laboratories (SNL), Stanford, University of California, Santa Barbara (UCSB) and Pacific Northwest National
Laboratory (PNNL) teams contributed to this research area.

1.1 GMLS-Nets: meshfree operator regression

Convolutional networks have proven e↵ective in machine vision, where data are characterized by a Cartesian
arrangement of pixels and one may learn an operator in the form of a compactly supported finite di↵erence
stencil. Over the past year, we (UCSB (P. Atzberger) and SNL (N. Trask, R. Patel, M. Perego)) teams developed
a machine learning (ML) method utilizing Generalized Moving Least Squares (GMLS). We have introduced GMLS-
Nets as an extension of convolutional networks to SciML applications [1]. These frameworks are able to handle
heterogeneous unstructured data associated with arbitrary di↵erential forms characteristic of mixed finite element
discretizations (i.e., face flux data in addition to point sample data). GMLS is a non-parametric functional
regression technique to construct approximations of linear, bounded functionals, and was developed within the
Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) project. On a Banach space V with
dual space V⇤, we estimate target functional ⌧x̃[u] 2 V⇤ acting on u = u(x) 2 V, where x, x̃ denote locations in
compact domain ⌦ ⇢ Rd. We assume u is characterized by an unstructured collection of sampling functionals,
⇤(u) := {�j(u)}Nj=1 ⇢ V⇤. We construct the estimate by considering P ⇢ V and seek an element p⇤ 2 P that
provides an optimal reconstruction of the samples in weighted-`2 sense

p⇤ = argmin
p2P

NX

j=1

(�j(u)� �j(p))
2 !(�j , ⌧x̃).

1



GMLS-Layer

In
pu

t
Ch

an
ne

ls

Mapping MLP

 
Co

effi
ci

en
t

Ch
an

ne
ls

O
ut

pu
t

Ch
an

ne
ls

{scattered data 
processing

Classification

Regression

Scattered Data Inputs
coefficients

co
effi

ci
en

t c
ha

nn
el

input channel

...a0 a1 a2 a3 a4 aN

L[u]...SD SD SD

stack layers

MLP

SD ...

cl
as

se
s

stack layers

SD MP SD MLP

GMLS-Nets

Figure 2: Scattered data inputs are processed by learnable operators ⌧ [u] parameterized via GMLS estimators. At each
location, point data are encoded as coe�cient vectors. GMLS-Layers can be stacked to obtain deeper architectures for
classification and regression tasks (inset, SD: scattered data, MP: max-pool, MLP: multilayer perceptron). For more

information see [1].

Operators in ⌧ 2 V ⇤ are then characterized by approximating ⌧(u) ⇡ ⌧(p⇤); that is one may estimate the
action of an operator acting on data by applying the operator to the optimal reconstruction. This framework is
supported by a rigorous approximation theory developed at SNL over the last year, and has been used extensively
to develop Compatible Meshfree Discretizations which mimic the ability of compatible mesh-based discretization
(e.g., mimetic finite di↵erences or finite elements) to discretely preserve properties of continuum operators, such
as conservation or exact sequence properties [2].

To develop a SciML framework, we assume the operator is unknown. The GMLS process provides an optimal
local encoding of the data in terms of P, and we seek operators L⇠ : P ! R to characterize V ⇤. A simple choice
for this mapping is to introduce a multilayer perceptron. In this manner, we obtain stackable layers that may be
used in an identical manner to convolutional networks (Figure 2). These architectures have been shown to be an
e↵ective platform to develop data-driven PDE models from molecular data and to regress engineering quantities
of interest from datasets characteristic of computational fluid dynamics simulations (Figure 3).

1.2 PDE solvers on manifolds: meshless methods

We (UCSB and SNL teams) have developed meshless methods for solving PDEs on manifolds [3]. The approach
is based on a collection of local regression problems (least-squares) used both to perform local reconstructions
of the manifold geometry and for approximating the action of di↵erential operators, see Figure 4. A central
challenge in this work is the interplay between discretization errors arising from the geometric approximations
with the errors associated with the operators, here from exterior calculus of di↵erential geometry. Methods based
on GMLS were developed to obtain accurate robust approximations. It was shown these techniques could be used
for approximating the hydrodynamic flow responses of fluid interfaces taking into account the incompressibility
constraints and contributions of the surface geometry.

1.3 Data-driven network models

Network models are an e↵ective modeling and simulation tool for many complex systems for which first-principle
descriptions are either non-existent or intractable. Examples include electrical circuits, biological systems [4],
brain models [5], porous media, de novo design of synthetic gene circuits [6], and subsurface flows [7]. Network
models replace detailed physics descriptions of subsystems by “compact models” performing specific functions.
For example, the solution of a drift-di↵usion PDE to simulate a semiconductor device such as a diode is replaced by
an empirical model such as Shockley diode equation. Likewise, Darcy’s law is inadequate for some types of porous
media flows and can be replaced by a pore-level network model with empirical pore morphology descriptions [7].
However, traditional development of compact models relies on human experts and is an expensive, time-consuming
e↵ort. It requires highly skilled experts combining knowledge of physics and numerical analysis. Besides the long
development times, compact models do not always generalize well and adding new physics may require starting
from scratch.

A data-driven approach could help mitigate these issues by providing the means to automate the development
of compact models directly from data. However, unlike traditional ML applications where ”big” data is the
default setting, in the context of compact models we are often dealing with the availability of only “small” or
at best “medium” data sources. The reasons for this data scarcity can range from cost limitations to regulatory
restrictions due to environmental hazards. In addition, data may not be available in all regimes of interest because
of equipment limitations.
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Figure 3: Top left: Learning di↵erential operators using the GMLS-Net framework. Top center: From solutions to the
exact solution of the advection-di↵usion equation, GMLS-Nets are able to learn implicit time integrators that are stable
for large timesteps but lack the excess numerical dissipation of implicit Euler integration. Top right: A short burst of
molecular dynamics (MD) simulation (Brownian motion) over a short time period is used to learn an operator evolving the
particle number density over longer time scales (unsteady heat equation). Bottom: Cell center velocities from a Reynolds-
averaged Navier-Stokes prediction of flow past a cylinder are provided as features to learn the drag over a cylinder. The
network is predictive using solely flow features, despite the fact that pressure and viscosity information are not provided.

We seek to address two scientific ML questions: [Q1] If an expensive but accurate physics model is available,
can we leverage this model to automate generation of generalizable compact models? and [Q2] If a cheap but
inaccurate physics model is available, can we combine this partial knowledge of the physics with the available
“small” data to obtain a generalizable compact model?

We explore data-driven approaches ranging from GMLS non-parametric regression to deep neural networks
(DNNs). As a driver application, we have selected the development of data-driven compact models for design
and simulation of electrical circuits. This application both exposes most of the essential research challenges and
is also relevant to multiple aspects of DOE and SNL mission problems.

We have focused our initial e↵orts on the development of data-driven models for a PN-diode and demonstrating
these models using a simple rectifier circuit. Figure 5 illustrates the steps in the model development workflow.
This choice is motivated by (i) the availability of an idealized physics model (the Schokley diode equation) that
can be used to address research question Q2 and (ii) availability of experimental facilities at SNL that allow
us to collect I � V (voltage-current) measurements from actual devices. Using these measurements we have
implemented two data-driven diode models. The first one uses the GMLS regression to generate approximations
of the I � V curve and its derivative. The second model used a DNN and was intended to evaluate how DNN
will operate in the “small” data regime. Figure 5 shows initial tests of the two data-driven devices in the rectifier
circuit. Results in the middle plot show that the DNN device using the available 175 measurements does not
perform correctly. The zoom in the right plot clearly shows unphysical negative voltage. Upscaling the experiment
data to 300 points improves the DNN model to a point where negative voltages disappear as they should in a
rectifier circuit. In contrast, we found that the GMLS diode performs well with the original experimental data.

1.4 PINNs for learning unknown physics

Conservation laws governing most natural and engineered systems are, at best, “partially” known as conservation
laws in general do not have a closed system of equations. Accurate theoretical models for closing the system
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Figure 4: GMLS Approximation of Operators and Surface Reconstructions. Top left: A target functional ⌧x̃[u] is
approximated using data within an ✏-neighborhood around the base point x̃. Bottom left: For values of u the best
fitting function p⇤ 2 Vh is identified using the sampling functionals {�j} for computing ⌧h

x̃ [u] = ⌧x̃[p
⇤]. Center: For

geometric reconstructions, a principle component analysis is used to find local parameterization of the surface of form
(⇠1, ⇠2, s(⇠1, ⇠2)) (top right). Bottom right: The s(⇠1, ⇠2) and its derivatives are approximated by GMLS to obtain
general geometric quantities of the manifold and approximate operators, see [3].

Data Model
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characteristics
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Figure 5: Left: Workflow for the development and testing of a data-driven device model (1N4148 Diode). Center,
Right: Simulation of a rectifier circuit using data-driven diode models. Black: input AC voltage. Green: GMLS diode.
Magenta: DNN model using experimental measurements (175 data points). Light blue: DNN model using experimental
data upsampled to 300 points.

of conservation equations are available for homogeneous systems exhibiting time and length scale separation.
Examples of accurate closures include Newtonian stress for homogeneous (Newtonian) fluids, Fick’s law for
mass flux in di↵usion processes, and the Darcy law for fluid flux in porous media. For more complex systems,
including non-homogeneous turbulence, non-Newtonian fluid flow, multiphase flow and transport in porous media,
and granular materials, accurate theoretical closures are not available. Instead, phenomenological constitutive
relationships are used, which are usually accurate for a narrow range of conditions.

While there are a number of established methods for parameter estimation, such as Bayesian inference and
maximum a posteriori probability (MAP) estimation [8, 9], existing approaches for learning unknown physics in
partially known models are few and not fully mature. The complicating factor here is that the unknown processes
(e.g., stresses, fluxes) are very di�cult to measure directly.

To be more specific, here we consider unsaturated flow in porous media described by the PDE r·(K(u)ru(x))
= 0, where K(u) is an unknown function of pressure u(x), and assume that some measurements of u(x) and no
measurements of K(u) are available. We extended PINNs for learning unknown physics by modeling K(u) and
u(x) with two DNNs and using a third DNN to represent the governing PDE residual [10]. These DNNs share
weights and are trained jointly. As shown in Figure 6, this allows us to accurately learn the DNN approximations
of u(x) and K(u) without any measurements of u.

1.5 Hybrid DNN and classical approximation schemes

Traditional numerical analysis for engineering and science problems focuses on the development of discretization
schemes, the study of convergence, and stability. In hybrid ML, we combine the best of two worlds: e�cient,
accurate numerical discretization schemes for PDEs and DNNs to approximate unknown physical relationships.
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Figure 6: Left: Referenced u(x) field generated using STOMP with the van Genuchten model for K(u) and the locations
of u observations. Center: Absolute error in the u(x) field estimated with the physics informed DNN. Right: The
comparison of the learned K(u) and the ground truth K(u) given by the van Genuchten model.

This is done by expressing the numerical physical modeling as a computational graph, where each node in the
graph can be a finite element method (FEM) discretization scheme, a time marching step, a linear solver, a
Newton–Raphson algorithm, etc. Each edge represents the flow of data.

In a data-driven modeling setting, we assume that some of the parameters (represented as edges in the graph)
are unknown and need to be estimated based on observing parts of the solution. Using gradient-based methods
and back-propagation algorithms, we estimate these unknown parameters by minimizing the discrepancy between
the predictions from our model and the observations. The gradients are computed using automatic di↵erentiation
(AD) methods and specialized adjoint state methods (e.g., e�cient checkpointing schemes).

a b

Exact

Figure 7: a: DNN for constitutive law. b: Statistical inverse modeling with adversarial numerical analysis. The estimated
distribution converges to the true distribution.

We have automated adjoint-state methods, AD, and specialized numerical discretization schemes in the library
ADCME.jl, an open source software capable of coupling general numerical schemes and ML algorithms and data-
structures by leveraging powerful metaprogramming features in Julia. Note that this hybrid ML approach is in
general di↵erent from PINNs, where both states and unknown constitutive relationships (or space-dependent
parameters) are represented with neural networks and can leverage advances in numerical methods. On the other
hand, PINNs do not require discretizing and solving equations in the entire domain. Our immediate plan is to
compare the merits of both approaches.

We demonstrated the e�ciency of the hybrid ML method for solid mechanics and geophysics applications.
In Figure 7(a), we learn a nonlinear constitutive law from displacement and external applied force observations.
We use DNN to approximate the unknown constitutive law (stress/strain relation) and FEM to discretize the
momentum conservation equation.

Also, we proposed an adversarial numerical analysis for estimating unknown (non-Gaussian) distributions of
parameters in PDE systems. Similarly to generative adversarial networks (GANs), we define two neural networks,
generator and discriminator. The generator is used to parametrize the unknown distribution. Then we can leverage
numerical schemes to solve the PDE system and compute a (stochastic) solution. The discriminator network is
used to measure the discrepancy (or distance) between the predictions and the true observations. Then, the two
neural networks are trained adversarially such that at equilibrium, the generator DNN converges to the unknown
probability distribution. We applied this method to learn the distribution of an (unknown) space-dependent
coe�cient in the Poisson equation. Figure 7(b) shows the rapid convergence of the estimated distribution to the
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true distribution.
We also studied the di↵erence between DNN and traditional approximation functional forms, such as piecewise

linear functions in FEM, radial basis functions, etc. We found that DNNs are superior in cases where highly non-
uniform sample points are used (adaptivity), where the function to be approximated exhibits sharp gradients—or
even discontinuity—in some regions (concentrated jumps similar to shocks), and in high dimension situations.
DNNs are also robust to noise and consistently generalize better in many of our test cases. We created an
interactive website for visualizing and comparing di↵erent basis functions1, which can be used to develop intuition
for how the di↵erent schemes perform in practice.

1.6 PINNs for data assimilation: transport in porous media

Figure 8: Reference conductivity K(x), hy-
draulic head h(x), and the tracer concentration
field c(x), same fields reconstructed from data
only using feed-forward DNNs, and the fields
learned with PINNs using the same data and
Darcy and advection-dispersion equations.

Mathematical models of most complex natural and engineered
systems contain spatially-heterogeneous parameters, which can
be measured only at very few locations. Computational ap-
proaches for parameter estimation cast this inherently ill-posed
problem as an optimization or a statistical inference task, usu-
ally requiring repeated evaluation of expensive forward solvers un-
til the parameters that minimize a given error metric are found
or until space of parameter configurations satisfying available
data is explored. Although significant progress has been made
over the last two decades involving high-order schemes for PDEs,
AD of computer code, PDE-constrained optimization, and op-
timization under uncertainty, Bayesian inference and MAP esti-
mation [8, 9], parameter estimation in large-scale problems re-
mains a significant challenge [11]. We (Brown and PNNL) de-
veloped a PINN-based approach for learning unknown parame-
ter fields in PDE models and applied for assimilating measure-
ments of hydraulic conductivity K(x) (parameter, a propriety of
the porous medium) and hydraulic head h(x) and tracer concen-
tration c(x) (both are state variables) in the transport in porous
media application. We assume that this problem can be de-
scribed by the PDE model r · u = 0, u(x) = ��k(x)rh(x),

and r · (u(x)c(x)) = r ·
✓

Dw

⌧
+↵ku(x)k2

◆
rc(x)

�
(u(x)

is the average pore velocity), subject to known boundary con-
ditions. We model K(x), h(x), and c(x) with feed-forward DNNs
and first attempt to train them using measurements only. Fig-
ure 8 shows both the reference fields and fields learned with the “data-based” DNNs, and reveals that for
the given number of measurements, data-based DNNs are very inaccurate. Next, we apply the PINN frame-
work (proposed by the Brown team in [12, 13]), where in additional to the “primary” K, h, and c DNNs we
define to residual DNNs to represent the residuals of the governing PDEs: R1(x) = r · (K(x)rh(x)) and

R2(x) = r · (�k(x)rh(x)c(x)) +r ·
✓

Dw

⌧
+↵ku(x)k2

◆
rc(x)

�
. The primary and residual DNNs share the

same weights and we train them jointly by minimizing the mean square error of primary DNNs with respect to
data and mean square of residuals at a selected number of points in the domain. Figure 8 demonstrates PINNs
provide a much better estimation of K and c than the “data-based” DNNs.

1.7 nPINNs: nonlocal physics-informed neural networks

Nonlocal equations are model descriptions for which the state of a system at any point depends on the state
in a neighborhood of points, i.e., every point in a domain interacts with a neighborhood of points. Nonlocal
models provide an improved predictive capability for several scientific and engineering applications including
fracture mechanics [14, 15, 16], anomalous subsurface transport [17, 18, 19], phase transitions [20, 21, 22], image
processing [23, 24, 25, 26], multiscale and multiphysics systems [27, 28], MHD turbulence [29], and stochastic
processes [30, 31, 32, 33].

1
http://stanford.edu/~kailaix/Hy5d3sYsCFSFPPlhkq2i.html
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Figure 9: Left: Solutions, for di↵erent �, of �L�,0.5u = sin(2⇡x): as � ! 0 u approaches the solution of the classical
Laplacian whereas as � ! 1, u approaches the solution of the fractional Laplacian. Right: Convergence results for
nPINNs, fractional PINNs (fPINNs), and standard finite di↵erence discretization for fractional problems.

Independent definitions and formulations of nonlocal models exist, namely unweighted truncated nonlocal,
weighted truncated nonlocal, and fractional models. Similarities are evident, but they have not been rigorously
proven; furthermore, the corresponding communities barely interact with each other, making it impossible to
benefit from each other’s theoretical and computational findings.

In the first year of PhILMs we have developed a unified theoretical framework that includes all the operators
mentioned above as special instances of nonlocal truncated weighted operators and derived a unified variational
theory for their analysis [34]. This allows us to

• Connect the nonlocal and fractional communities that would benefit from each other’s research;
• Include as special cases the well-known classical di↵erential calculus at the limit of vanishing interactions
and the fractional calculus at the limit of infinite interactions;

• Provide the groundwork for new model discovery thanks to the broad class of operators that it describes;
• Describe intrinsically nonlocal phenomena that have not been analyzed or used due to the lack of theory
(see the nonlocal behavior in the cascade of scales in von Kármán flow that lacks proper closure relations).

The unified nonlocal vector calculus provides a universal definition of parametrized nonlocal operators that
describe both well-known nonlocal phenomena and may describe new intrinsically nonlocal phenomena not yet
analyzed and used due to lack of theory. We propose a new approach to model learning that is in stark contrast with
previously developed uncertainty quantification and PDE-constrained-like optimization techniques. By combining
ML with physical principles and the new unified nonlocal calculus with versatile surrogates, we arrive at a data-
driven physics-informed tool for learning new complex nonlocal phenomena. This is a center-wide e↵ort that
involves collaborations between SNL and (1) Brown University (G.E. Karniadakis and G. Pang) on the development
of nonlocal PINNs (see Section 1.7); (2) Stanford University (E. Darve and K. Xu) on operator regression for
nonlocal kernels; and (3) PNNL (A. Tartakovsky and A. Howard) on PINNs for operator learning in nonlocal
surface tension models (see Section 3.2).

We describe the identification of parameters for the generalized nonlocal operator

L�,su(x) =

Z

B�(x)
(u(x)� u(y))k(x, y; s)dy = C�,s

Z

B�(x)

u(x)� u(y)

|x� y|n+2s
dy,

where Cs,� is such that the corresponding solutions span a broad range of nonlocal di↵usion processes including
local and fractional di↵usion at the limit of vanishing and increasing nonlocality, see Figure 9(left). Specifically,
lim
�!0

L�,su = �u and lim
�!1

�L�,su = (��)su.

The nPINNs algorithm consists of three simple steps:

1 Collect measurements of solution and data in some training sets: fm(xi), xi 2 Tf , and um(xj), xj 2 Tu;
2 Approximate the solution with a neural network: u(x) = uNN (x);

3 Minimize the loss function: min
u;�,s

Loss(u; �, s) = 1
2

X

xi2Tf

(L�,suNN (xi)�fm(xi))
2+

�
2

X

xi2Tu

(uNN (xj)�um(xj))
2.
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Note that Loss has both a physics-driven and a data-driven component: the first term controls the residual of the
nonlocal equation, whereas the second term controls the mismatch between solution and data. The outcome of the
optimization are the weights and biases of the neural network and the model parameters. The proposed strategy
is as accurate as any other discretization method for the forward problem. As an example, in Figure 9(right) we
report the convergence of the solution error with respect to the number of training points for nPINNs, fPINNs,
and a standard finite di↵erence discretization; here, nPINNs has the same convergence rate as finite di↵erence (up
to some number of training points, after which it reaches stagnation). However, due to the increased computation
cost, nPINNs is not recommended for the solution of forward problems. As PINNs, nPINNs, and fPINNs are not
tied to any discretization method, they easily handle sparsity and require minimal implementation e↵ort, i.e.,
available solvers can be used as black boxes.

2 RA-II: Stochastic modeling of mesoscales
We developed DNN-based algorithms to capture statistical spatial correlations that cannot be readily incorporated
into DNNs, and to bridge atomistic and mesoscale systems. The Brown and PNNL teams have contributed to
this research area.

2.1 Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft
multi-functional surfaces

We developed an e�cient parallel multiscale method that bridges the atomistic and mesoscale regimes, from
nanometers to microns and beyond, via concurrent coupling of atomistic and mesoscopic models. In particular,
we combined an all-atom MD description for specific atomistic details in the vicinity of the functional surface with
a dissipative particle dynamics (DPD) approach that captures mesoscopic hydrodynamics in the domain away from
the functional surface, as shown in Figure 10. In order to achieve a seamless transition in dynamic properties we

a b

Figure 10: a: Sketch of a setup for simulating the transport of drug delivering nanoparticles to the glycocalyx. The size
of the DPD domain is typically 1–2 µm to represent the cell-free layer in arterioles. The nanoparticles are transported
in the DPD solvent (plasma) and as they cross into the MD domain, they are endowed with molecular functionality. b:
Visualization of the MD-DPD coupling method for flows over soft multi-functional surfaces, from nanometer to micron
and beyond, with atomic accuracy and ultra-high computational e�ciency.

endowed the MD simulation with a DPD thermostat, which is validated against experimental results by modeling
water at di↵erent temperatures. We then validated the MD-DPD coupling method for transient Couette and
Poiseuille flows, demonstrating that the concurrent MD-DPD coupling can accurately resolve the continuum-
based analytical solutions. Subsequently, we simulated shear flows over grafted polydimethylsiloxane (PDMS)
surfaces (polymer brushes) for various grafting densities, and investigated the slip flow as a function of the shear
stress.

2.2 Self-cleaning of hydrophobic rough surfaces by coalescence-induced wetting transition

The superhydrophobic leaves of a lotus plant and other natural surfaces with self-cleaning functions have been
studied intensively for the development of artificial biomimetic surfaces. The surface roughness generated by hier-
archical structures is a crucial property required for superhydrophobicity and self-cleaning. Here, we demonstrate
a novel self-cleaning mechanism of textured surfaces attributed to a spontaneous coalescence-induced wetting
transition. In particular, we perform many-body DPD simulations of liquid droplets (with a diameter of 89 µm)
sitting on mechanically textured substrates. We quantitatively investigated the wetting behavior of an isolated
droplet as well as coalescence of droplets for both Cassie–Baxter and Wenzel states. Our simulation results
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reveal that droplets in the Cassie–Baxter state have much lower contact angle hysteresis and smaller hydrody-
namic resistance than droplets in the Wenzel state. When small neighboring droplets coalesce into bigger ones
on textured hydrophobic substrates, we observe a spontaneous wetting transition from the Wenzel state to the
Cassie–Baxter state, which is powered by the surface energy released upon coalescence of the droplets, as shown
in Figure 11(left).

For superhydrophobic surfaces, the released surface energy may be su�cient to cause a jumping motion of
droplets o↵ the surface, in which case adding one more droplet to the coalescence may increase the jumping
velocity by one order of magnitude. When multiple droplets are involved, we found that the spatial distribution
of liquid components in the coalesced droplet can be controlled by properly designing the overall arrangement of
droplets and the distance between them, as shown in Figure 11(right). These findings o↵er new insights for de-
signing e↵ective biomimetic self-cleaning surfaces by enhancing spontaneous Wenzel-to-Cassie wetting transitions,
and for developing new noncontact methods to manipulate liquids inside the small droplets via multiple-droplet
coalescence.

Figure 11: Left: Visualization of spontaneous coalescence-induced wetting transition and jumping motion of droplets on
textured hydrophobic surfaces. Right: Snapshots of the initial droplet distribution configurations (top view), in which the
top three cases (a)-(c) are in concentrated configurations (�12 = �13) with � = 60�, 90�, and 180�, whereas the bottom
case (d) is in spaced configuration (�12 6= �13). The red lines in the last column show the spatial distribution of liquid
components in the coalesced droplet for di↵erent configurations.

2.3 Application of learning coarse-grained potential to the liquid/liquid interface

(a) (b)

Figure 12: a: Energy surface in the parameter space for the
CG potential between water and hexane. b: PDF function of
the optimal parameter set with 4% random Gaussian noise on
the training set.

Many physical, chemical, and biological processes oc-
cur in presence of hydrophobic-hydrophilic interfaces.
However, the microscopic structures of the interface
are still not revealed in full detail. Coarse-grained (CG)
simulation can provide detailed information about the
interface as the spatial distribution and interaction en-
ergy at mesoscale, which complements experimental
approaches. In CG models, the results greatly depend
on the accuracy of the CG force field (FF). In [35], we
developed a probabilistic ML approach to estimate the
CG FF parameters for water-hexane mixture, a typical
immiscible binary liquid/liquid mixture. The first step
in our approach is to build a polynomial-regression-
based response surface relating the CG FF parameters
to target properties. The standard approach is to estimate parameters by minimizing the loss function given by the
square di↵erence between the surrogate model and the target properties (in our case, the surface tension of flat
and curved interfaces) observed in the experiments and/or first-principle calculations. Figure 12(a) demonstrates
that this problem does not have a unique solution. To address this issue, we randomly perturb the training set and
compute the probability density function of parameters minimizing the loss function. Figure 12(b) demonstrates
that, unlike the loss function, the probability density function has a single peak corresponding to the unique set
of optimal parameters. Figure 13 depicts that the obtained CG FF is significantly more accurate for predicting
the structure (intrinsic density) at the water and hexane-interface than the commonly used MARTINI CG FF.
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a b

Figure 13: Intrinsic density of planar (a) and curved (b) water-hexane interface obtained from the atomistic model, the
MARTINI CG model, and our CG model.

2.4 Enforcing constraints for time series prediction and continual learning
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Figure 14: Reinforcement learning for the Lorenz
system [36]. Comparison of ground truth for
x1(t) (blue dots), the neural network flow map
prediction with homotopy for the action-value
function during training (red crosses) and the
neural network flow map prediction without ho-
motopy for the action-value function during train-
ing (green triangles).

Complex stochastic mesoscale systems usually have memory
terms, which could be derived using model reduction formalism
[37]. We have proposed several methods for modeling dynamic
systems given time series measurements by learning the flow map
with NNs. We have developed ways to enforce dynamic con-
straints during neural network training for all three major modes
of learning, namely supervised, unsupervised, and reinforcement
learning. These constraints include terms analogous to memory
terms and control terms in control theory [38]. Such terms act
as a restoring force which corrects the errors committed by the
learned flow map during prediction.

For supervised learning, the constraints are added to the ob-
jective function [36]. For the case of unsupervised learning, in
particular GANs, the constraints are introduced by augmenting
the input of the discriminator [39]. Finally, for the case of re-
inforcement learning and in particular actor-critic methods, the
constraints are added to the reward function. In addition, for the
reinforcement learning case, we have developed a novel approach
based on homotopy of the action-value function in order to stabi-
lize and accelerate training (see Figure 14) [36].

a b

Figure 15: Supervised learning for the Lorenz system. Comparison of ground truth for x1(t) (yellow line) with trained
neural network predictions (green line). a: One-time learning; b: Continual learning.

Most real-world dynamical systems are strongly chaotic. This makes training NNs to accurately represent a
flow map for long time intervals a non-trivial task even if we have data for the whole interval (one-time learning).
At the same time, we want to utilize new information that may be available e.g., online measurements. We have
constructed “online” training approaches, which can use information from new measurements to keep training
the parameters of the network (continual learning). This can allow the trained neural network to adapt to a
temporally changing environment (see Figure 15) [40].

3 RA-III: Bridging of methods to connect the scales
We have developed methods for the concurrent coupling of heterogeneous domains, including coupling across
scales, to discover the hidden physics models at the interfaces and provide the “glue” functions/functionals to
seamlessly connect the cascade of scales. Brown, PNNL, and SNL have contributed to this research area.
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3.1 A composite neural network that learns from multi-fidelity data: Application to function approxi-
mation and inverse PDE problems

Currently the training of NNs relies on data of comparable accuracy but in real applications only a very small
set of high-fidelity data could be available while inexpensive lower fidelity data may be plentiful. We proposed
a new composite NN, which can be trained based on multi-fidelity data. It is comprised of three NNs, with the
first neural network trained using the low-fidelity data and coupled to two high-fidelity NNs, one with activation
functions and another without, in order to discover and exploit nonlinear and linear correlations, respectively,
between the low-fidelity and high-fidelity data. We first demonstrated the accuracy of the new multi-fidelity
neural network for approximating some standard benchmark functions but also a 20-dimensional function that is
not easy to approximate with other methods, e.g., Gaussian process regression. Subsequently, we extended the
recently developed PINNs to be trained with multi-fidelity data sets (MPINNs), as shown in Figure 16.

Figure 16: Schematic of the multi-fidelity DNN and MPINN. The left box (blue nodes) represents the low-fidelity DNN
NNL(x, ✓) connected to the box with green dots representing two high fidelity DNNs, NNHi(x, yL, �i)(i = 1, 2). In the
case of MPINN, the combined output of the two high-fidelity DNNs is input to an additional PDE-induced DNN.

MPINNs contain four fully connected NNs, where the first one approximates the low-fidelity data, while the
second and third construct the correlation between the low- and high-fidelity data and produce the multi-fidelity
approximation, which is then used in the last neural network that encodes the PDEs. Specifically, in the two high-
fidelity NNs a relaxation parameter is introduced, which can be optimized to combine the linear and nonlinear
subnetworks. By optimizing this parameter, the present model is capable of learning both the linear and complex
nonlinear correlations between the low- and high-fidelity data adaptively. By training the MPINNs, we can: (1)
obtain the correlation between the low- and high-fidelity data; (2) infer the quantities of interest based on a few
scattered data; and (3) identify the unknown parameters in the PDEs. In particular, we employ the MPINNs to
learn the hydraulic conductivity field for unsaturated flows as well as the reactive models for reactive transport.
The results demonstrate that MPINNs can achieve relatively high accuracy based on a very small set of high-
fidelity data. Despite the relatively low dimension and limited number of fidelities (two fidelity levels) for the
benchmark problems in the present study, the proposed model can be readily extended to very high-dimensional
regression and classification problems involving multi-fidelity data.

3.2 Learning the kernel function for the nonlocal surface tension model

The surface tension in multiphase fluid flows is typically modeled using the Young-Laplace law; however, the
Young-Laplace law has been shown to break down for very small bubbles with radius less than 10nm [41]. This
motivates the need for a multiscale surface tension model proposed in [42]. The surface tension is represented
as the integral of a molecular-force-like function, with a length scale that corresponds to the relative size of the
droplet. As shown in [43, 44], the nonlocal surface tension model has non-physical results for very small droplets
for certain force shape functions. In this project, we demonstrate how PINNs work for nonlocal problems, and
how PINNs can be used to learn physical parameters for use in physical simulations across multiple length scales.
This research is done by the PNNL, SNL, and Brown teams in close collaboration with the nPINN task 1.7.

To use a PINN to learn the nonlocal force shape function from MD simulations, we first formulate the integral
in terms of matrix operations. One key feature is that the force shape function can be shown to be radially
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symmetric, and we enforce this symmetry. Using this, we can train a PINN to learn the force shape function that
minimizes the error in the resulting pressure compared to MD simulations. This new shape function can then be
used to inform future continuum-scale simulations with the nonlocal surface tension model.

a b

Figure 17: Force shape function and pressure profile for (a) an analytical form of the force shape function f✏ and (b) the
pressure profile from an MD simulation for a 3nm droplet.

3.3 PINN with domain decomposition for estimating multiscale parameters

In many porous materials (including geological porous media), parameters (and their statistics) vary in space by
orders of magnitude. Figure 18 displays a porous medium, where the mean of Y (x) = logK(x), the log hydraulic
conductivity, in the left half of the domain is 10 times larger than in the right half of the domain. We assume that
N measurements of K(x) and h(x) (the hydraulic head) are available. As evident from Figure 18, the standard
PINN method (described in Section 1.6) results in relatively large errors in estimated Y and u and converge very
slowly with respect to N , i.e., the errors decrease very slowly with increasing number of measurements N . The
reason is that DNNs are not very e�cient at representing fields that vary at di↵erent scales.

To address this challenge, we proposed a domain-decomposition-based PINN (DD-PINN), where the spacial
domain ⌦ is decomposed in two non-overlapping subdomains ⌦i such that the mean of K(x) is (near) constant
within each subdomain. In Figure 18, we decompose ⌦ with two subdomains (left and right halves of ⌦) and
replace the governing equation r · (K(x)ru(x)) = 0 (x 2 ⌦ = ⌦1 [⌦2) with r · (Ki(x)rui(x)) = 0, (x 2 ⌦̃i,
i = 1, 2), subject to the boundary conditions on � = ⌦a \ ⌦2: u1(x) = u2(x) and K1(x)ru1(x) · n(x) =
K2(x)ru1(x) · n(x) (x 2 �). Then, we define DNNs for K1(x), u1(x), K2(x), and u2(x) and the residual
DNNs corresponding to the governing equations and boundary conditions and train them jointly. Figure 18 shows
that the error in DD-PINN is much smaller and the convergence rate with respect to N is much faster than in
the “single-domain” PINN, where a single DNN is used to represent the entire K(x) field.

Figure 18: Left: reference Y (x) = logK(x) and h(x) fields. Center: comparison of L2 errors (and associated uncertainty)
in Y (center) and u (right) predictions with PINN and DD-PINN methods.

4 RA-IV: Statistical learning and deep learning approximations and algorithms
We have explored foundational algorithms and mathematics for deep learning. We have combined deep learning
with statistical models integrating domain knowledge about spatial correlations, physical invariances and developed
parallel-in time algorithms for long-time simulations. Brown, Stanford, PNNL, and MIT have contributed to this
research area.

4.1 Physics-informed learning with hybrid Karhunen-Loève DNN approach
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Figure 19: Estimated hydraulic head u(x) (a) and conduc-
tivity field  (b) using the hybrid KL-DNN approach and the
corresponding reference (ground truth) fields.

In the PINN approach presented in Sections 1.6 and
3.3, we represent both the system’s parameters and
states with DNNs. Many spatial parameters exhibit
spatial correlation that cannot be readily incorporated
in DNNs. On the other hand, Karhunen-Loève (KL)
representation of partially observed spatial fields explic-
itly incorporates the correlation structure and can be
exactly conditioned on the fields measurements. When
the fields statistics are available (e.g., can be accu-
rately determined from measurements) the conditional
KL expansion can provide a more accurate representa-
tion of spatial fields as compared to DNN, and with significantly less weights. We have developed a hybrid physics-
informed KL-DNN approach for parameter and state estimation in PDE models. Consider the L(x,(x), u(x)) = 0
PDE model with appropriate boundary conditions, where (x) is the unknown space-dependent parameter to be
estimated, u(x) is the state/solution to the model, ̂i is the parameter observation at x = x̂i for i = 1, . . . , N
and ũi is the state measurement at x = x̃i for i = 1, . . . ,M . We use the conditional KL expansion (x, ⇠))
to represent the unknown parameter (x) given its known mean and covariance functions and N measurements.
By construction, (x, ⇠) exactly satisfies the given statistics and measurements [45]. As in PINNs, we use a
DNN to model the state u(x), u(x) ⇡ uNN (x,✓). Then, we jointly train (x, ⇠) and uNN (x,✓) by solving the
optimization problem: arg min⇠,✓

PM
i=1(|ui � uNN (xi,✓)|2) + �kL(x,(x, ⇠), uNN (x,✓))k2L2

. We applied this
approach to one-dimensional Darcy equation describing flow in porous media with (unknown) conductivity (x),

L = @
@x(x)

@u(x)
@x , subject to Dirichlet boundary conditions. Figure 19 shows the comparison of u(x,✓) and

(x, ⇠) with their reference values given 50 measurements of u and 50 measurements of . The relative mean
square error (RMSE) of u is 1.94% and the RMSE of the conductivity  is 2.87%.

4.2 Parallel-in-time algorithms

Parallel physics-informed neural networks (PPINN). PINNs encode physical conservation laws and prior
physical knowledge into the NNs, ensuring the correct physics is represented accurately while alleviating the
need for supervised learning to a great degree. While e↵ective for relatively short-term time integration, when
long time integration of the time-dependent PDEs is sought, the time-space domain may become arbitrarily
large and hence training of the neural network may become prohibitively expensive. To this end, we develop a
PPINN, hence decomposing a long-time problem into many independent short-time problems supervised by an
inexpensive/fast CG solver. In particular, the serial CG solver is designed to provide approximate predictions of the
solution at discrete times, while initiate many fine PINNs simultaneously to correct the solution iteratively. There
is a two-fold benefit from training PINNs with small-data sets rather than working on a large-data set directly,
i.e., training of individual PINNs with small-data is much faster, while training the fine PINNs can be readily
parallelized. Consequently, compared to the original PINN approach, the proposed PPINN approach may achieve
a significant speedup for long-time integration of PDEs, assuming that the CG solver is fast and can provide
reasonable predictions of the solution, hence aiding the PPINN solution to converge in just a few iterations. To
investigate the PPINN performance on solving time-dependent PDEs, we first apply the PPINN to solve the
Burgers equation, and subsequently we apply the PPINN to solve a two-dimensional nonlinear di↵usion-reaction
equation. Our results demonstrate that PPINNs converge in a couple of iterations with significant speedups
proportional to the number of time-subdomains employed.

Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Ap-
plication to hydrodynamics. Lagrangian particle methods based on detailed atomic and molecular models are
powerful computational tools for studying the dynamics of microscale and nanoscale systems. However, the max-
imum time step is limited by the smallest oscillation period of the fastest atomic motion, rendering long-time
simulations very expensive. To resolve this bottleneck, we propose a supervised parallel-in-time algorithm for
stochastic dynamics (SPASD) to accelerate long-time Lagrangian particle simulations. Our method is inspired by
bottom-up CG projections that yield mean-field hydrodynamic behavior in the continuum limit. As an example,
we use the DPD as the Lagrangian particle simulator that is supervised by its macroscopic counterpart, i.e., the
Navier-Stokes simulator. The low-dimensional macroscopic system (here, the Navier-Stokes solver) serves as a
predictor to supervise the high-dimensional Lagrangian simulator, in a predictor-corrector type algorithm. The
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results of the Lagrangian simulation then correct the mean-field prediction and provide the proper microscopic
details (e.g., consistent fluctuations and correlations).

The unique feature that sets SPASD apart from other multiscale methods is the use of a low-fidelity macro-
scopic model as a predictor. The macro-model can be approximate and even inconsistent with the microscale
description, but SPASD anticipates the deviation and corrects it internally to recover the true dynamics. We first
present the algorithm and analyze its theoretical speedup, and subsequently present the accuracy and convergence
of the algorithm for the time-dependent plane Poiseuille flow, demonstrating that SPASD converges exponentially
fast over iterations, irrespective of the accuracy of the predictor. Moreover, the fluctuating characteristics of
the stochastic dynamics are identical to the unsupervised (serial-in-time) DPD simulation. We also simulate a
two-dimensional cavity flow that requires more iterations to converge compared to the Poiseuille flow, and we
observe that SPASD converges to the correct solution. Although a DPD solver is used to demonstrate the results,
SPASD is a general framework and can be readily applied to other Lagrangian approaches including MD and
Langevin dynamics.

4.3 Enforcing invariances in deep architectures

Figure 20: Example illustrating the e↵ects of ET layers. Top
left: On Projective MNIST, ETs reverse e↵ect of distortions
such as shear and perspective, despite being provided no direct
supervision on pose parameters (final images remain rotated
and scaled since classification CNN operates over their log-
polar representation). Bottom left: On Street View House
Numbers dataset, the final x-scale transformation has crop-
ping e↵ect that removes distractor digits.

In many domains, including the evolution of physical
systems and computer vision, we are equipped with
prior knowledge regarding certain transformation in-
variances. For example, the dynamics of certain phys-
ical systems might be invariant to translation and ro-
tation of the domain, or possess other symmetries and
structures. Here, we are developing methods for en-
forcing invariances in DNNs, most specifically, in the
convolutional neural network (CNN).

We introduced the notion of equivariant trans-
former networks, which consist of typical CNN net-
works, with the addition of equivariant transformer
(ET) layers, which are a lightweight and flexible class
of functions that improve robustness towards arbitrary
predefined groups of continuous transformations. An
ET layer for a transformation group G (such as ro-
tations, scaling, or perspective transformations) is an
image-to-image mapping that satisfies the following lo-
cal invariance property: for any input image � and
transformation T 2 G, the images � and T� are both
mapped to the same output image. Crucially, the in-
variance property of ETs holds by construction, with-
out any dependence on additional heuristics during training.

We evaluate the performance of ETs with both synthetic and real-world image classification using the Street
View House Numbers dataset, see Figure 20. We demonstrated that ET layers reduce the error of image classifiers
by up to 15% relative to standard Spatial Transformer layers [46]. Moreover, we show that a ResNet-10 classifier
augmented with ET layers is able to exceed the accuracy achieved by a larger, more complicated ResNet-34
classifier without ETs, thus reducing both memory usage and computational cost.

Our next step is to extend this approach to training DNNs for physical systems. One shortcoming of ET
networks is that they require the transformation invariances to be known a priori. In addition to enforcing known
invariances, we will explore methods for learning unknown invariances over the course of training, and incorporating
the appropriate ET layers for these learned transformations.

4.4 Min-max optimization

We have designed optimization and learning approaches, which are robust with respect to: (i) noise in the training
data due to sensing and communication imperfections or adversarial perturbations; (ii) static and dynamic model
misspecifications; (iii) changes in perception modalities leading to missing or corrupted features in test data;
(iv) noise injected in the algorithms for privacy or other algorithmic considerations; and (v) strategic interaction
against one of multiple other learning agents. Training algorithms that incorporate these types of robustness
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solve a robust optimization problem, a.k.a. a min-max problem, where we seek to find model parameters that
minimize a loss function against worst case perturbations within allowable constraints. As an example, GANs are
trained by means of defining a zero-sum game between two feed-forward NNs, the generator and the discriminator,
parametrized by vectors of parameters, w and ✓, respectively. The discriminator takes as input samples from a
target distribution and samples generated by pushing random seeds through the generator. Its goal is to tune its
weights ✓ so that it distinguishes between the two distributions as best as possible. The goal of the generator
is to choose its weights w to fool the discriminator. For some function f(w, ✓) that expresses how well the
discriminator distinguishes between the target distribution and that output by the generator, the two NNs are
competing, striving to solve a min-max problem of the following form: minw max✓ f(w, ✓). We are developing
(no-regret) variants of online gradient descent that result in fast, last iterate convergence to the min-max solution
for arbitrary convex-concave objectives f , and when w and ✓ are constrained to lie in convex sets, as well as
develop practical first-order methods that are guaranteed to converge for non convex-concave objectives. In [47],
we have demonstrated this approach for f linear in both w and ✓ and when w and ✓ are constrained to lie in convex
polytopes. We have also studied the limit points of first-order methods in min-max problems, understand the
basins of attraction of locally min-max solution, and design algorithms (with higher order information or properly
introduced randomness) converging to points with better optimality properties. In [48], we took a dynamical
systems approach to study the limit points of gradient descent-ascent and optimistic gradient descent-ascent in
non convex-concave settings. We showed that unstable limit points have measure-zero basins of attraction, that
there may be stable limit points of these dynamics that are not locally min-max, that the stable limit points
of gradient descent-ascent form a subset of those of optimistic gradient descent-ascent, and that this inclusion
can be strict. Going forward, we aim to further our understanding of the basins of attraction of locally min-max
solutions, and develop methods that make these basins broader.

5 Software dissemination
Although early in the project, we have three open-source software releases thus far (see Section A.3): (1) the library
ADCME.jl, which has automated AD, adjoint-state methods, and specialized numerical discretization schemes and
leverages powerful metaprogramming features in Julia, (2) GMLS-Nets, which allows for general meshfree operator
regression, and (3) DeepXDE, a ML tool to solve PDEs.

6 Integration and outreach
We have a regular webinar presenting forum for external speakers (listed on the PhILMs website) and internal
discussions about strategic research directions. We have been working with and training postdocs and Ph.D.
students, who are fully engaged in all PhILMs activities, including PhILMs webinars, and relevant conferences
and workshops. We emphasize person-to-person interaction, so several students from Stanford and UCSB have
visited PNNL and SNL for extended periods to work with our co-PIs. All academic PIs have visited both PNNL
and SNL, as well as each other’s universities, for seminars or PhILMs project meetings. National lab PIs have
been active in engaging with ML-related projects and application owners to locate additional opportunities for
impact. Publications and presentations have served as a primary means of outreach for year one (see Appendix
A). We plan to have a substantial presence at select future conferences, including the July 2020 Mathematical
and Scientific ML (MSML) Conference at Princeton.

M. D’Elia, M. Perego, P. Stinis, A. Tartakovsky, M. Parks, and N. Trask visited Brown University over the
course of the year. We held a one-day project workshop in SNL. In January, 2019 G. Karniadakis (PI) organized
a three-day workshop on Scientific ML at ICERM in Providence, Rhode Island. The talks were live streamed and
recorded for viewing. We are in the process of proposing a semester-long program on Scientific ML at ICERM
and a minisymposium centered around PhILMs on physics informed machine learning for the upcoming SIAM
Mathematics of Data Science meeting in May 2020.
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C Work responsibilities and timelines

Research Area I: PDE-based modeling of macroscales (Lead: Ainsworth-Brown; co-PIs: Parks, D’Elia, Trask,
Bochev-SNL; Karniadakis, Hodas, Stinis, Tartakovsky, J. Li-PNNL; Li, Maxey-Brown; Atzberger- UCSB; Darve-
Stanford; MIT-Daskalakis)
Year 2: Continue developments and publish papers in the following areas: physics-informed neural networks
(PINNs) that learn from multi-fidelity data for forward & inverse problems; unified nonlocal vector calculus,
theory, and computation of nonlocal models: nonlocal PINNs (nPINNs); inference of constitutive laws of complex
hard materials and of polymers from synthetic data using PINNs; learning the hidden fluid mechanics and hidden
fractional dynamics in seismology using PINNs Machine learning methods / Regression on scattered data sets and
manifolds (GMLS and neural networks); nonlinear functional and operator regression using GMLS parametrization
and trunk-branch networks.
Years 3-4: Integrate the advances in RA-III and RA-IV. Develop PhILMs for multiscale and multiphysics problems
in exemplar applications, specifically subsurface reactive transport and ice sheets. Combine nonlocal and fractional
operators with PhILMs to discover (stochastic) closures in the exemplar applications. Compare the approximation
properties of PhILMs and meshfree high-order methods for multiphysics problems at the macroscale. Study the
ability of PhILMs to quantify uncertainty in long-term predictions in geophysical applications and validate it using
historical data.

Research Area II: Stochastic modeling of mesoscales (Lead: Stinis-PNNL; co-PIs: Atzberger-UCSB; Tartakovsky,
Yang, J. Li-PNNL; Trask, Parks-SNL; Kharazmi, Meng, Maxey-Brown; Darve-Stanford)
Year 2: Continue developments and publish papers in the following areas: learning the nucleation of nano-bubbles
using many-body Dissipative Particle Dynamics (mDPD); physics-informed Gaussian process regression (GPR)
Bayesian methods for incorporating physical information data sets on manifolds; connections between machine
learning and model reduction with applications to unsupervised (GANS) and reinforcement learning; parallel-in-
time PINNs for long-time integration of measoscale stochastic equations.
Years 3-4: Integrate the advances in RA-I and RA-IV; synthesize and scale up peptoids to achieve desired properties
and functionality at the macroscale. Employ the MZ-derived mDPD to study nucleation in soft materials and
obtain phase diagrams. Evaluate the ability of SRNNs to deal with multiple timescales in realistic soft material
applications. In collaboration with RA-I, use fractional operators to represent nonlocal interactions (due to
aggressive coarse-graining) in scaled-up functional materials and other systems.

Research Area III: Bridging methods to connect the scales (Lead: Bochev-SNL; co-PIs: Chen, Trask, D’Elia,
Perego, Parks-SNL; Ainsworth, Kharazmi, Meng -Brown; Karniadakis, Tartakovsky, Yang-PNNL; Atzberger-
UCSB; Daskalakis-MIT; Darve, Valiant-Stanford)
Year 2: Continue developments and publish papers in the following areas: active learning of constitutive laws via
GPR for multiscale modeling of non-Newtonian fluids using DPD data; SPH-SPH interface for viscoelastic media
using the Multiscale Universal Interface (MUI); domain decomposition for PINNs for porous media with largely
disparate conductivities; learning coarse grained potentials for multiphase fluids (water-hexane system); learning
the kernel in nonlocal models for surface tension based on MD data; learning surrogate models for turbulent
mixing and ignition (DSMC, DPD, MD); learning (via GPR of fractional PDEs) of nonlocal flocking dynamics
from particle trajectories (agent models).
Years 3-4: Integrate the advances in RA-I, RA-II, and RA-IV. Apply active learning and upscaling to peptoids
and combustion and examine accuracy and cost; validation using data from PNNL and SNL, respectively. Apply
active learning and domain decomposition to subsurface reactive transport and ice sheets and examine feasibility
and scaling up from laboratory scales to field scales. Validation with existing (classical) solvers and partial data
available at PNNL and SNL.
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Research Area IV: Bayesian Deep Learning (Lead: Darve-Stanford; co-PIs: Valiant-Stanford; Daskalakis-MIT;
Karniadakis, Yang, Stinis-PNNL; Parks, Trask, Bochev-SNL; Atzberger-UCSB; Ainsworth, Kharazmi, Meng -
Brown)
Year 2: Continue developments and publish papers in the following areas: generalized existing techniques for
estimating learnability of the best classifier in a specified class in the data regime in which there is insu�cient
data to learn even an approximation of such a classifier; explored approaches for integrating certain classes of
invariances within a convolutional DNN architecture; developed Generative Adversarial Networks for the optimal
transport problem and for solving high-dimensional stochastic PDEs (e.g., 10,000 dimensions in a porous media
model for the Hanford site); designed stable optimization methods (‘optimistic’ gradient descent) for Generative
Adversarial Networks.
Years 3-4: Develop the next generation of PhILMs for continuum- and molecular-based physical systems. System-
atically study the findings of RA-I-III and incorporate lessons learned into the new deep learning architectures and
SGD and HNN algorithms. Develop and finalize information-theoretic approaches for designing a priori PhILMs
with a specific number of layers and neurons and document accuracy bounds.
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D Abbreviations
• AD: Automatic di↵erentiation

• CG: Coarse-grained

• CM4: Collaboratory on Mathematics for Mesoscopic Modeling of Materials

• CNN: Convolutional neural network

• DD-PINN: Domain decomposition physics informed neural network

• DNN: Deep neural network

• DOE: Department of Energy

• DPD: Dissipative particle dynamics

• ET: Equivariant transformer

• FEM: Finite element method

• FF: Force field

• GAN: Generative adversarial metworks

• GMLS: Generalized moving least squares

• KL: Karhunen-Loève

• MAP: Maximum a posteriori probability

• MD: Molecular dynamics

• MIT: Massachusetts Institute of Technology

• ML: Machine learning

• MPINN: PINN trained with multi-fidelity data sets

• nPINN: nonlocal physics informed neural network

• PDE: Partial di↵erential equation

• PINN: Physics-informed neural network

• PNNL: Pacific Northwest National Laboratory

• PPINN: Parallel physics informed neural network

• SNL: Sandia National Laboratories

• SPASD: Supervised parallel-in-time algorithm for stochastic dynamics

• UCSB: University of California, Santa Barbara
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