

INTEGRATED CARBON CAPTURE AND CONVERSION: A ROADMAP FOR ECONOMICALLY CAPTURING AND RECYCLING CO₂

March 10, 2023

David Heldebrant, Laboratory Fellow Jothi Kothandaraman, Chemist Yuan Jiang, Chemical Engineer Rob Dagle, Chemical Engineer

PNNL is operated by Battelle for the U.S. Department of Energy

DOE's 17 national laboratories tackle critical scientific challenges

A regional, national, and international scientific resource

PNNL is one of DOE's most diversified national laboratories

5,700 Staff

1,755 Peer-reviewed Publications*

FY 2022 Spending

*Available peer-reviewed publication data are from FY 2021

Energy & Environment 24%

Research Objective: Achieve Potential Step-Change Reductions in Total Costs of Capture PNNL's goal is to make step-change progress towards the DOE target of $30/tonne CO_2$ —well before year 2030.

*DOE baseline REV3 pricing used until 2020, REV4 pricing implemented in 2021.

What factors into the costs of CO₂ capture? The costs in $\frac{1}{2}$ are $\frac{1}{2}$ energy, and $\frac{1}{2}$ equipment costs.

Reactivating a solvent requires 2.3-3.6 GJ/tonne CO₂, enough power for 23,000-36,000 100W light bulbs

- A capture unit for a 650 MW powerplant costs \$739 M USD.
- Capture costs scale to point source

*We have to reduce energy costs and capital costs.

History of Solvent-Based Flue Gas Purification

CO₂ Capture has been around for 90 years, having first been patented by R. R. Bottoms in 1930, MEA first discovered in 1897.

Modern Day Solvent-Based Flue Gas Purification

21st century engineering with 19th century solvents.

Our Approach: 21st century chemistry, replace the aqueous (70%) solvent with >95% organics.

Image from www.NTNU.edu

We've looked at molecular structures to identify how behavior emerges.¹

1) Analyst **2013**, 138, 819-824, 2) Energy Procedia **2015**, 3) J. Phys. Chem. Lett., **2016**, 7, 1646–1652

Pacific

Northwest

Re-designing Solvents While Retaining Desired Properties

We use theory to visualize molecular-level changes and explain phenomena such as viscosity, vapor pressure etc.

 $P_{int} = c_1 X + c_2$ **Important Design Criteria:**

- Vapor pressure
 - < 0.0001 atm
- Binding enthalpy
 Toxicity
 - -60 to -85 kJ/mol
 No halogens

Cantu et. al. ChemSusChem., 2020, DOI: 10.1002/cssc.202000724.

 Synthesis Cost • <\$10/kg</p>

Designing and Synthesizing Bespoke 3rd Gen Solvents

Molecular library for down-selection using our reduced order model to down-select from remaining non-viscous derivatives.

Cantu et. al. ChemSusChem., 2020, DOI: 10.1002/cssc.202000724.

GE Global Research

Synthesis of 3rd Gen Solvents, \$10/kg Target

Synthesis uses off-the-shelf reagents available at tonnage quantities.

• Commercial scale synthesis via more complex routes using cheaper reagents projected to bring costs to ~\$5/kg.

Barpaga et al. ACS Env. Sci. Tech., 2022, 10, 14, 4522–4528.

Jiang et al. 2022, J. Clean. Prod. doi.org/10.1016/j.jclepro.2022.135696.

kg Target Je quantities.

Testing 3rd Gen Candidates

New derivatives are 98% lower in viscosity while retaining other properties.

CO₂BOL Generations

Cantu et. al. ChemSusChem., 2020, DOI: 10.1002/cssc.202000724.

Testing 3rd Gen Candidates

New derivatives are 98% lower in viscosity while retaining other properties.

Cantu et. al. ChemSusChem., 2020, DOI: 10.1002/cssc.202000724.

Pacific

Northwest

Measuring Solvent Properties With Custom Instrumentation

Rigorous measurements of vapor-liquid equilibria (PTx) and mass transfer.

Pressure Volume Temperature (PVT Cell)

50 milliliter

Wetted Wall Column (WWC)

1 liter

5 liter

5L Lab Scale Continuous Flow Testing

Tested performance on simulated flue gas* continuously for 40 hours.

*NOx, SOx, O₂, H₂O set to NETL Case 12B.

	MEA ^(a)	Cansolv ^(b)	EEMPA	
NETL Reference	Case 12	Case B12B	Case B12B	Case B12B
Configuration	SS	LVC	SS	AHI/IHC/ LVC
Process metrics				
Lean Loading [mol CO ₂ /mol solvent]	0.27	-	0.045	0.045
Water Loading [wt%]	70	-	1.4	1.4
Regeneration Temperature [°C]	115	-	119	113
Equivalent Work [kJ _e /mol CO ₂] ^(c)	50.1	39.4	35.2	32.7
Reboiler Duty [GJ _e /tonne CO ₂]	3.55	2.48	2.27	2.00

Zheng et al. Energy Environ. Sci., 2020, 13, 4106-4113.

5L Lab Scale Continuous Flow Testing

Running our solvent to test performance on simulated flue gas for 40 hours (96% capture rate).

Key test results:

- High capture rates (~96%)
- Water balance (1.5 wt.%)
- Steady-state operation with O2, NOx, SOx
- No foaming, aerosols, phase separations or precipitation

Zheng et al. Energy Environ. Sci., 2020, 13, 4106-4113.

5L Lab Scale Continuous Flow Testing

Running our solvent to test performance on simulated flue gas for 40 hours (96% capture rate).

Pacific

Northwest

50L Testing On a 2-Stage Flash

Testing performance on simulated flue gas for 40 hours (90% capture rate).

Assessing Solvent Durability

EEMPA is more durable than MEA under comparable Oxidative and Thermal Degradation conditions.

- Thermal: 117°C for 5 weeks.
- Absorber and stripper impurities (O₂, NO_x, SO_x)
- Catalytic leeched metals

Assessing Solvent Durability

EEMPA is more durable than MEA under comparable Oxidative and Thermal Degradation conditions.

- Thermal: 117°C for 5 weeks.
- Absorber and stripper impurities (O₂, NO_x, SO_x)
- Catalytic leeched metals

Techno-Economic Analysis

Assessing the cost and energetics of simple stripper (SS) and two-stage flash (TSF) configuration using Rev4 Case B12B baseline

- Net power output = 650 MW
- Pricing basis of Dec 2018

*NETL-PUB-22638

Crafting the Thermodynamic Package

Measured and modeled properties of the 4 solvents to feed ASPEN Plus.

and comparison to 30wt% MEA.

Jiang et al. (2022), doi.org/10.1016/j.jclepro.2022.135696.

Modeling Varied Process Configurations

Cheapest carbon capture occurs at 95-97%, with 3 solvents < \$40/tonne CO₂.

Jiang et al. (2022), doi.org/10.1016/j.jclepro.2022.135696.

Comparing Energy and Cost for Each Solvent.

Future reductions in carbon capture cost will be primarily CAPEX, not OPEX.

Northwest

Pacific

Jiang et al. (2022), doi.org/10.1016/j.jclepro.2022.135696.

EEMPA is Slated for a Pilot Test in 2023 [[]

Project led by EPRI in partnership with RTI International.

- National Carbon Capture Center
 - Alabama, US
 - 0.5 MW scale
 - 2,000 gallons being synthesized
- 6-month test campaign
 - Expected start in November 2023
 - 3 months on coal exhaust
 - 3 months on NGCC exhaust

27

INTEGRATION WITH CONVERSION

Integrated Capture and Conversion of CO₂ into Materials (IC³M)

Vision: A solvent-based CO₂ capture unit becoming a refinery capable of making (many) materials from CO₂.

Near term targets

carbon-neutral fuels and chemicals: CH_3OH, CH_4

Intermediate term targets

carbon-negative building materials: CO₂LIG

Long term targets Mineralization materials: $CaCO_3$ or MgCO_3

carbonates and carbamates

carboxylations

Nature Has Perfected CO₂ Capture and Conversion

Biotin transfers anionic carboxylates in solution to grow fatty acids via the Calvin cycle.

The Primary Case for Integrating CO₂ Capture With Conversion

Integrated systems for converting CO_2 products have many potential benefits.

- solvent
- Catalytic exothermic regeneration

Catalytic with respect to

reduction offsets solvent Bypasses CO2 compression Move product not CO2 • Produces multiple products

Converting Captured CO₂ in the Condensed Phase

Condensed-phase reactions provide energy and cost benefits and new reactive landscapes.

- Same solvent used for both steps
- Bypasses limiting chemical equilibria of gas-phase reactions
- Potentially lower free-energy pathways
- Catalysis at atmospheric (CO2) pressures
 - CO2 concentration >5 wt% in at 1 atm
- Heterogeneous or homogeneous viable
 - Direct coordination to catalysts

Like Biotin, catalysts can operate on captured CO₂

"captured" CO_2 (L)

Brickett et al, Chem. Sci., 2022, 13, 6445-6456

Chelation of "captured" CO₂ to metal surfaces

Converting Captured CO₂ in the Condensed Phase

Condensed-phase reactions provide energy and cost benefits and new reactive landscapes.

- Same solvent used for both steps
- Bypasses limiting chemical equilibria of gas-phase reactions
- Potentially lower free-energy pathways
- Catalysis at atmospheric (CO2) pressures
 - CO2 concentration >5 wt% in at 1 atm
- Heterogeneous or homogeneous viable
 - Direct coordination to catalysts

Methanol is our 1st Target

The same chemicals (alcohols and amines) that promote capture also promote conversion.

(A) Gas-phase methanol synthesis

Methanol is our 1st Target

The same chemicals (alcohols and amines) that promote capture also promote conversion.

The Disconnect: Thermocatalytic conversion of captured CO_2 in viable post-combustion solvents.

Catal. Sci. Tech., 2018, 8, 5098-5103. U.S. Patent 10,961,173.

Condensed-Phase Hydrogenations Proceed via Different Routes

Condensed-Phase hydrogenations introduce new challenges using conventional gas-phase catalysts.

- Solvent deactivation via N-methylation of 2° amines
- Selective C-N cleavage desired to prevent solvent deactivation and improve selectivity
- Limited examples of heterogeneous catalysts selective for C-N cleavage in condensed phase

Hydrogenation of EEMPA-Carbamate Using **Conventional Methanol Synthesis Catalysts**

Thermocatalytic reduction in the presence of a post combustion solvent demonstrated for the first time using off the shelf heterogenous catalyst.

Catalyst A=200mg, 100 mL reactor, EEMPA=23mmol, P=60 bar (CO₂:3H₂), T=170 °C, t=12 h, ^a ethanol=200 mmol.

- Low selectivity to methanol through *N-formamide* intermediate when using conventional gas-phase catalyst.
- Ethanol co-feed facilitates reaction through formate ester intermediate makes methanol with 71% selectivity.
- Focus was on process conditions to improve methanol selectivity through *N-formamide* without co-feeds.

nethyl mine nmol	CH₃OH mmol	CH₃OH Selectivity (%)
2	0.65	24.5
5.1	1.23	19.4
5.85	1.19	16.9
1	2.4	70.6

New Heterogeneous Catalysts Selective for C-N Cleavage Identified

Catalysts with acidic supports are selective for methanol.

Hydrogenation of captured CO_2 over Pt-supported catalysts using a batch reactor system.

Entry	Cat.	CO ₂ conv.		Product selectivity (%)					C–N
		(%)	CO	CH ₄	2-EEMPA-	2-EEMPA	Methanol	yield (%)	cleavage
					N-CHO	N-Me			selectivity (%)
1	5wt% Pt/CeO ₂	29.7	49.5	3.3	11.4	11.4	24.4	7.2	68.0
2	5wt% Pt/TiO ₂	29.1	31.9	19.8	9.0	12.3	27.0	7.9	68.7
3	5wt% Pt/SiO ₂	23.9	77.4	0.0	15.3	7.3	0.0	0.0	0.0
4 a	5wt% Pt/TiO ₂	42.4	15.6	7.8	37.7	11.7	27.2	11.5	69.8
5 ^b	5wt% Pt/TiO ₂	11.5	35.8	25.6	traces	traces	38.7	4.5	100.0
6 ^d	5wt% Pt/TiO ₂	15.9	0.9	25.9	18.1	26.4	28.6	4.5	52.0
7 ^e	5wt% Pt/TiO ₂	12.2	25.5	22.4	15.0	traces	37.1	4.5	100.0
8 ^f	5wt% Pt/TiO ₂	44.7	5.8	1.6	38.1	5.9	7.6	3.4	56.5
9 c	5wt% Pt/TiO ₂	19.3	29.8	16.9	10.6	10.1	32.6	6.3	76.4

Reaction conditions: catalyst = 200 mg, 170 $^{\circ}$ C, 2-EEMPA-5g (CO₂ loaded 2-EEMPA was used, 6 wt.% CO₂ loading), initial P(H₂) = 60 bar, time = 12 h, aethanol(10.6 g) b3h, c10wt% CO₂, d30bar H₂, e150 ° C, f30 wt% MEA was used as a capture solvent; mostly MEAformate and MEA-N-formamide species were observed; MEA decomposition products were also observed under the reaction conditions, C-N cleavage selectivity = (moles of methanol)*100/(moles of 2-EEMPA-N-CH₃ + moles of methanol).

New Heterogeneous Catalysts Selective for C-N Cleavage Identified

Catalysts with acidic supports are selective for methanol.

High-Temperature/Pressure WHiMS MAS Rotors 400 bar @ 20 °C ; 300 bar @ 250 °C – limit of most H. temp VT

under 60 bar H_2 (initial pressure) in an ethanol co-solvent, 2-EEMPA: EtOH=1:10 (molar ratio).

Continuous Flow Hydrogenation in EEMPA

Catalyst screening shows methanol formation is sensitive to temperature and space velocity.

	Reaction T	CO ₂ Conv	WHSV	TOS	Selectivity (mol C%)					
Entry	(°C)	(%)	g _{CO2} /g _{cat} /h	(h)	MeOH	EtOH	PrOH	BuOH	CH ₄	C_2H_6
1	140	2.2	0.15	-	92.7	0.0	7.3	0.0	0.0	0.0
2	170	7.7	0.15	-	66.5	4.3	2.5	0.7	26.0	0.0
3	170	29.1	0.015	-	57.0	4.5	0.8	1.4	26.7	8.7
4	190	11.8	0.15	-	78.0	4.3	0.0	2.5	15.1	0.0
5	190	26.9	0.075	-	63.6	4.6	0.2	1.9	26.4	3.3
6	190	85.7	0.015	40	51.5	9.7	0.6	1.9	27.1	9.3
7	190	75.9	0.015	60	50.2	8.6	0.7	2.0	29.2	9.3
8	190	65.2	0.015	80	46.0	8.0	1.1	4.7	29.8	10.5

Liquid feed: captured CO₂ in EEMPA solvent (5 wt.% CO₂) Reaction conditions: 1.0 g catalyst D1, 870 psig; Gas feed: 38 sccm H₂, 5 sccm N₂. Change in WHSV is achieved by changing the liquid feed flow (0.05, 0.025, 0.005 mL/min).

- Catalyst identified highly selective towards methanol with 93% selectivity at 140 °C.
- At 190 °C, the **CO₂ conversion** increased from **12%** to **86%** when space velocity was decreased by a factor of 10.
- Conversion decreased from 86% to 65% over a span of approximately 80 hours.

Semi-Batch CO₂ Capture and **Catalytic Conversion to Methanol**

Single-pass; 10-hours on simulated coal-derived flue gas (CO_2 , N_2 , H_2O).

CO ₂ Capture - LCFS					
Food	CO ₂ /N ₂ [dry basis]	15 / 85	[mol%]		
reed	Dew Point	15.6	[°C]		
A la a sub a s	Avg. Temperature	32.3	[°C]		
Absorber	Avg. Pressure	0.08	[psig]		
Stripper	Avg. Temperature	95.1	[°C]		
	Avg. Pressure	14.39	[psig]		
Reboiler	Reboiler Temperature		[°C]		
	Liquid	15.3	[kg/h]		
Flow	Gas	0.61	[kg/h]		
	L/G	25.2	[-]		
CO ₂ (Capture Efficiency	88.9	[%]		

CO ₂ Conversion - TCCS					
Cao Food	H ₂ /N ₂	93 / 7	[mol%]		
Gas reeu	Flowrate	6.7 E-3	[kg/h]		
Lieurid De ed	2-EEMPA/CO ₂ /H ₂ O	78 / 5 / 17	[mol%]		
Liquia Feea	Flowrate	5.9 E-4	[kg/h]		
	Temperature	170	[°C]		
Reactor	ctor Pressure		[psig]		
	Catalyst: 5wt% Pt on TiO ₂	2.5	[g]		
(CO ₂ Conversion	55 → 0.8	[%]		
	Methanol Yield	94 → 0	[%]		

Elapsed Time [h]

- High conversion for ~4 hours
- Catalyst deactivated due to CO poisoning
- Repeat with catalyst re-activation completed

Manuscript in preparation. U.S. patent application filed.

Process Configuration for the IC³M Technology-CH₃OH Slipstream

Exploits exothermic hydrogenation to drive solvent regeneration, operates in the condensed phase.

Energy saving features of the IC³M process:

- Exothermic hydrogenation offsets some regeneration of the carbon capture solvent
- Heat recovered is used to generate low-pressure steam to be used in other parts of the process
- No mechanical compression of CO_2 is required for the subsequent reaction.

Current Techno-Economic Assessment

IC³M has potential to achieve cost parity assuming reaching targeted performance.

Compared with the optimistic case (High Conv. w/o Alcohol in 2021, the 2022 SOT shows:

- Increase in hydrogen consumption due to the production of by-products (i.e. CH₄)
- \$1/kg H₂
- Increase in capital cost for product separation
 - Extractive distillation to break azeotrope between methanol-ethanol-water
 - PSA to separate CH₄ from H₂

	SOT @ Low WHSV	SOT @ High WHSV	Goal 1 High Conversion
WHSV (gCO ₂ /gCat/hr)	0.015	0.075	0.15
Single-pass CO ₂ conversion (%)	85.7	26.9	85.7
Methanol selectivity (C %)	51.5	63.6	51.5
Methane selectivity (C %)	27.1	26.4	27.1
Source	Experiment	Experiment	R&D Target

Advanced Energy Materials, (2022), 12, 46, 2202369

Northwest

Pacific

What's Next for IC³M?

Continued development to make new materials from CO₂.

Near term targets carbon-neutral fuels and chemicals: CH₃OH, CH₄, carbonates, glycols

Intermediate term targets carbon-negative building materials: CO₂LIG

Brickett et al. Chem. Sci., 2022,13, 6445-6456

carboxylations

Thank you!

Questions: carbon@pnnl.gov

Learn more: pnnl.gov/carbon-management

