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PNNL is one of DOE’s most diversified 
national laboratories
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1,755

272 Invention 
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Peer-reviewed
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*Available peer-reviewed publication data are from FY 2021



Research Objective: Achieve Potential Step-
Change Reductions in Total Costs of Capture
PNNL’s goal is to make step-change progress towards the 
DOE target of $30/tonne CO2 —well before year 2030.

*DOE baseline REV3 pricing used until 2020, REV4 pricing implemented in 2021. 5



6

What factors into the costs of CO2 capture?
The costs in $/tonne CO2 are 1/2 energy, and 1/2 equipment costs.

*We have to reduce energy costs and capital costs. 

Reactivating a solvent requires 
2.3-3.6 GJ/tonne CO2, enough power 
for 23,000-36,000 100W light bulbs

• A capture unit for a 650 MW powerplant 
costs $739 M USD.

• Capture costs scale to point source



Image from Rochelle, Science, 2009, 1652-1654 7

History of Solvent-Based Flue Gas Purification
CO2 Capture has been around for 90 years, having first been patented 
by R. R. Bottoms in 1930, MEA first discovered in 1897.
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Modern Day Solvent-Based Flue Gas Purification
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Our Approach: 21st century chemistry, replace the aqueous (70%) solvent with >95% organics.
Image from www.NTNU.edu

• 4M liters per hour circulation
• Boiling and condensing water

21st century engineering with 19th century solvents.

40 ˚C

120 ˚C



Concentrated Solvents Differ vs. Aqueous Solvents

1) Analyst 2013, 138, 819-824, 2) Energy Procedia 2015, 3) J. Phys. Chem. Lett., 2016, 7, 1646−1652

IPADM-2-
BOL

CO2-loaded 
IPADM-2-

BOL

We’ve looked at molecular structures to identify how behavior emerges.1
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Re-designing Solvents While Retaining Desired 
Properties 

Internal  
hydrogen bond 
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J. Phys. Chem. Lett., 2016, 7, pp 1646–1652

We use theory to visualize molecular-level changes and explain 
phenomena such as viscosity, vapor pressure etc.

Cantu et. al. ChemSusChem., 2020, DOI: 10.1002/cssc.202000724.

Important Design Criteria:
• Vapor pressure

• < 0.0001 atm
• Binding enthalpy

• -60 to -85 kJ/mol

• Synthesis Cost
• <$10/kg

• Toxicity
• No halogens
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Designing and Synthesizing Bespoke 3rd Gen Solvents
Molecular library for down-selection using our reduced order model to 
down-select from remaining non-viscous derivatives.

Cantu et. al. ChemSusChem., 2020, DOI: 10.1002/cssc.202000724.
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Synthesis of 3rd Gen Solvents, $10/kg Target

• Commercial scale synthesis via more complex routes using 
cheaper reagents projected to bring costs to ~$5/kg.

Zheng et al. Energy Environ. Sci., 2020, 13, 4106-4113.

N
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+ H2N OCH3 N
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2-MPMPA

1. MeOH

2. NaBH4
1 2

Jiang et al. 2022, J. Clean. Prod. doi.org/10.1016/j.jclepro.2022.135696.

Barpaga et al. ACS Env. Sci. Tech., 2022, 10, 14, 4522–4528.

Synthesis uses off-the-shelf reagents available at tonnage quantities.



Cantu et. al. ChemSusChem., 2020, DOI: 10.1002/cssc.202000724.

CO2BOL Generations

Testing 3rd Gen Candidates
New derivatives are 98% lower in viscosity while retaining other properties.

13



Cantu et. al. ChemSusChem., 2020, DOI: 10.1002/cssc.202000724.
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Testing 3rd Gen Candidates
New derivatives are 98% lower in viscosity while retaining other properties.
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Measuring Solvent Properties With Custom 
Instrumentation
Rigorous measurements of vapor-liquid equilibria (PTx) and mass transfer.

Wetted Wall 
Column (WWC)

Pressure Volume 
Temperature (PVT Cell)

Lab Continuous Flow 
System (LCFS)

50 milliliter                                            1 liter                              5 liter

VLE, rheology

Kinetics Parametric tests
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5L Lab Scale Continuous Flow Testing
Tested performance on simulated flue gas* 
continuously for 40 hours. 

Zheng et al. Energy Environ. Sci., 2020,13, 4106-4113.

*NOx, SOx, O2, H2O set to NETL Case 12B.
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5L Lab Scale Continuous Flow Testing
Running our solvent to test performance on 
simulated flue gas for 40 hours (96% capture rate).

Zheng et al. Energy Environ. Sci., 2020,13, 4106-4113.
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5L Lab Scale Continuous Flow Testing
Running our solvent to test performance on 
simulated flue gas for 40 hours (96% capture rate).

Zheng et al. Energy Environ. Sci., 2020,13, 4106-4113.

Key test results:

• High capture rates (~96%)

• Water balance (1.5 wt.%)

• Steady-state operation with O2, NOx, SOx

• No foaming, aerosols, phase separations or precipitation



19

5L Lab Scale Continuous Flow Testing
Running our solvent to test performance on 
simulated flue gas for 40 hours (96% capture rate).

Zheng et al. Energy Environ. Sci., 2020,13, 4106-4113.
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50L Testing On a 2-Stage Flash

Absorber
• 3” SS316 (8.5 

m)
• Mellapak 350X
• Temp: 30-55ºC
• Pressure: Up to 

200 kPa
• Gas Vel: 0.33-

1.5 m/s
• L: 15-75 kg/h

Regenerator
• 3” SS316 (7.1 m)
• Mellapak 350x
• Temp :Up to 

150ºC
• Pressure: Up to 

MPa

Testing performance on simulated flue gas 
for 40 hours (90% capture rate). 
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Assessing Solvent Durability

• Thermal: 117°C for 5 weeks.
• Absorber and stripper impurities (O2, NOx, SOx)
• Catalytic leeched metals

EEMPA is more durable than MEA under comparable 
Oxidative and Thermal Degradation conditions.

Manuscript in Preparation
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Techno-Economic Analysis

• Net power output = 650 MW

• Pricing basis of Dec 2018
*NETL-PUB-22638 

Jiang et al. (2022), doi.org/10.1016/j.jclepro.2022.135696.

Assessing the cost and energetics of simple stripper (SS) and two-stage 
flash (TSF) configuration using Rev4 Case B12B baseline 
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Crafting the Thermodynamic Package

• Equilibrium CO2 partial pressure and viscosity of CO2 loaded CO2BOL solvents 
and comparison to 30wt% MEA.

Measured and modeled properties of the 4 solvents to feed ASPEN Plus.

Jiang et al. (2022), doi.org/10.1016/j.jclepro.2022.135696.
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Modeling Varied Process Configurations  
Cheapest carbon capture occurs at 95-97%, with 3 solvents < $40/tonne CO2.

Jiang et al. (2022), doi.org/10.1016/j.jclepro.2022.135696.
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Comparing Energy and Cost for Each Solvent. 
Future reductions in carbon capture cost will be primarily CAPEX, not OPEX. 

Jiang et al. (2022), doi.org/10.1016/j.jclepro.2022.135696.
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EEMPA is Slated for a Pilot Test in 2023

• National Carbon Capture Center
§ Alabama, US
§ 0.5 MW scale 
§ 2,000 gallons being synthesized

• 6-month test campaign
§ Expected start in November 2023
§ 3 months on coal exhaust 
§ 3 months on NGCC exhaust

Project led by EPRI in partnership with RTI International. 
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INTEGRATION 
WITH 

CONVERSION
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Integrated Capture and Conversion of CO2 into 
Materials (IC3M)
Vision: A solvent-based CO2 capture unit becoming a refinery capable of 
making (many) materials from CO2.

Near term targets 
carbon-neutral fuels and chemicals: 
CH3OH, CH4

Intermediate term targets 
carbon-negative building materials: 
CO2LIG

Long term targets 
Mineralization materials:
CaCO3 or MgCO3

Brickett et al. Chem. Sci., 2022,13, 6445-6456
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Nature Has Perfected CO2 Capture and Conversion
Biotin transfers anionic carboxylates in solution to grow fatty acids 
via the Calvin cycle.

Biotin carboxylase subunit of E. coli
acetyl-CoA carboxylase

Biotin co-factor

Melvin Calvin
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The Primary Case for Integrating CO2 Capture 
With Conversion

• Catalytic with respect to 
solvent

• Catalytic exothermic 
reduction offsets solvent 
regeneration

• Bypasses CO2 compression
• Move product not CO2
• Produces multiple products

Integrated systems for converting CO2 products have many potential benefits.

Brickett et al, Chem. Sci., 2022,13, 6445-6456



32

Converting Captured CO2 in the Condensed Phase
Condensed-phase reactions provide energy and cost benefits 
and new reactive landscapes.

Al2O3

Pd

C
O

RO

O

Chelation of “captured” 
CO2 to metal surfaces

R2

R2
L

L
H

HyCx
P

P
Mn+

Inner-sphere chelation of 
“captured” CO2 (L)

Like Biotin, catalysts can operate on captured CO2

Brickett et al, Chem. Sci., 2022,13, 6445-6456

• Same solvent used for both steps
• Bypasses limiting chemical equilibria 

of gas-phase reactions
• Potentially lower free-energy 

pathways
• Catalysis at atmospheric (CO2) 

pressures 
§ CO2 concentration >5 wt% in at 1 atm

• Heterogeneous or homogeneous 
viable
§ Direct coordination to catalysts
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Converting Captured CO2 in the Condensed Phase
Condensed-phase reactions provide energy and cost benefits 
and new reactive landscapes.

Brickett et al, Chem. Sci., 2022,13, 6445-6456

• Same solvent used for both steps
• Bypasses limiting chemical equilibria 

of gas-phase reactions
• Potentially lower free-energy 

pathways
• Catalysis at atmospheric (CO2) 

pressures 
§ CO2 concentration >5 wt% in at 1 atm

• Heterogeneous or homogeneous 
viable
§ Direct coordination to catalysts
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Methanol is our 1st Target
The same chemicals (alcohols and amines) that promote capture also 
promote conversion.

CO2
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(A) Gas-phase methanol synthesis
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Methanol is our 1st Target
The same chemicals (alcohols and amines) that promote capture also 
promote conversion.

The Disconnect: Thermocatalytic conversion of captured CO2 in viable post-combustion solvents.

HCOO-  RNH-CHO
-H2O

CH3OH
H2 2H2

Step 2 Step 3 Step 4

-H2O
CH3OH

H2 2H2

RNH3
+

-RNH2

ROH
HCOOR

-ROH

Pathway (a)

Pathway (b)
Step 2 Step 3 Step 4

HCOO- R3NH+

CO2
2RNH2 RNHCOO-

RNH3
+ -RNH2

CO2
NR3 ROCOO-

HNR3
+

R’OH

carbamate formate formamide

formate 
ester

formatecarbonate

Step 1

Step 1

Catal. Sci. Tech., 2018, 8, 5098-5103.  U.S. Patent 10,961,173.
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Condensed-Phase Hydrogenations Proceed 
via Different Routes
Condensed-Phase hydrogenations introduce new 
challenges using conventional gas-phase catalysts.  

• Solvent deactivation via N-methylation of 2˚ amines
• Selective C-N cleavage desired to prevent solvent deactivation and improve selectivity
• Limited examples of heterogeneous catalysts selective for C-N cleavage in condensed phase
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(B) Condensed-phase methanol synthesis
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Hydrogenation of EEMPA-Carbamate Using 
Conventional Methanol Synthesis Catalysts 

 

Entry Capture 
solvent 

Exp. No CO2/H2 

bar 
time 
(h) 

Formamide 
mmol 

N-methyl 
amine 
mmol 

CH3OH 
 mmol 

CH3OH  
Selectivity (%) 

1 EEMPA 62711-153 15/45 12 0.8 2 0.65 24.5 

2 EEMPA 62711-148 15/45 48 0.45 5.1 1.23 19.4 

3 EEMPA 62711-147 5/55 48 0.04 5.85 1.19 16.9 

4a EEMPA + 
ethanol 

62711-150 5/55 48 traces 1 2.4 70.6 

Catalyst A=200mg, 100 mL reactor, EEMPA=23mmol, P=60 bar (CO2:3H2), T=170 °C, t=12 h, a ethanol=200 mmol.

• Low selectivity to methanol through N-formamide intermediate when using conventional gas-phase catalyst.
• Ethanol co-feed facilitates reaction through formate ester intermediate makes methanol with 71% selectivity.
• Focus was on process conditions to improve methanol selectivity through N-formamide without co-feeds.

Thermocatalytic reduction in the presence of a post combustion 
solvent demonstrated for the first time using off the shelf 
heterogenous catalyst. 

N
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New Heterogeneous Catalysts 
Selective for C-N Cleavage Identified
Catalysts with acidic supports are selective for methanol.

Entry Cat. CO2 conv. 
(%)

Product selectivity (%) Methanol 
yield (%)

C–N 
cleavage 

selectivity 
(%)

CO CH4 2-EEMPA-
N-CHO

2-EEMPA 
N-Me

Methanol

1 5wt% Pt/CeO2 29.7 49.5 3.3 11.4 11.4 24.4 7.2 68.0

2 5wt% Pt/TiO2 29.1 31.9 19.8 9.0 12.3 27.0 7.9 68.7

3 5wt% Pt/SiO2 23.9 77.4 0.0 15.3 7.3 0.0 0.0 0.0

4a 5wt% Pt/TiO2 42.4 15.6 7.8 37.7 11.7 27.2 11.5 69.8

5b 5wt% Pt/TiO2 11.5 35.8 25.6 traces traces 38.7 4.5 100.0

6d 5wt% Pt/TiO2 15.9 0.9 25.9 18.1 26.4 28.6 4.5 52.0

7e 5wt% Pt/TiO2 12.2 25.5 22.4 15.0 traces 37.1 4.5 100.0

8f 5wt% Pt/TiO2 44.7 5.8 1.6 38.1 5.9 7.6 3.4 56.5

9c 5wt% Pt/TiO2 19.3 29.8 16.9 10.6 10.1 32.6 6.3 76.4

Hydrogenation of captured CO2 over Pt-supported catalysts using a batch reactor system.

Reaction conditions: catalyst = 200 mg, 170 °C, 2-EEMPA-5g (CO2 loaded 2-EEMPA was used, 6 wt.% CO2 loading), initial P(H2) = 60 
bar, time = 12 h, aethanol(10.6 g) b3h, c10wt% CO2, d30bar H2, e150 °C, f30 wt% MEAwas used as a capture solvent; mostly MEA-
formate and MEA-N-formamide species were observed; MEA decomposition products were also observed under the reaction conditions, 
C-N cleavage selectivity= (moles of methanol)*100/(moles of 2-EEMPA-N-CH3 + moles of methanol). 

Advanced Energy Materials, (2022), 12, 46, 2202369
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New Heterogeneous Catalysts 
Selective for C-N Cleavage Identified
Catalysts with acidic supports are selective for methanol.

High-Temperature/Pressure WHiMS MAS Rotors
400 bar @ 20 °C  ; 300 bar @ 250 °C  – limit of 
most H. temp VT

13CO2 in the presence of 2-EEMPA and a 5 wt % Pt/TiO2 catalyst at 170 °C 
under 60 bar H2 (initial pressure) in an ethanol co-solvent, 2-EEMPA: 
EtOH=1:10 (molar ratio). 

-20-100102030405060708090100110120130140150160170180190200210
f1	(ppm)

13CH4

EthanolEthanol

13CO

EEMPA-13CHO

EEMPA-13COO-

13CO2

(c)	EEMPA	+	13CO2	+	H2	from	170	oC	to	25	oC

(b)	EEMPA	+	13CO2	+	H2	at	170	
oC	

(a)	EEMPA	+	13CO2	+	H2	at	25	
oC

13CH3OH

Advanced Energy Materials, (2022), 12, 46, 2202369
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Continuous Flow Hydrogenation 
in EEMPA

Entry
Reaction T

(°C)
CO2 Conv

(%)
WHSV

gCO2/gcat/h
TOS
(h)

Selectivity (mol C%)
MeOH EtOH PrOH BuOH CH4 C2H6

1 140 2.2 0.15 - 92.7 0.0 7.3 0.0 0.0 0.0
2 170 7.7 0.15 - 66.5 4.3 2.5 0.7 26.0 0.0
3 170 29.1 0.015 - 57.0 4.5 0.8 1.4 26.7 8.7
4 190 11.8 0.15 - 78.0 4.3 0.0 2.5 15.1 0.0
5 190 26.9 0.075 - 63.6 4.6 0.2 1.9 26.4 3.3
6 190 85.7 0.015 40 51.5 9.7 0.6 1.9 27.1 9.3
7 190 75.9 0.015 60 50.2 8.6 0.7 2.0 29.2 9.3
8 190 65.2 0.015 80 46.0 8.0 1.1 4.7 29.8 10.5

Liquid feed:  captured CO2 in EEMPA solvent (5 wt.% CO2) Reaction conditions: 1.0 g catalyst D1, 870 psig; Gas feed:  38 sccm H2, 5 sccm N2. 
Change in WHSV is achieved by changing the liquid feed flow (0.05, 0.025, 0.005 mL/min). 

• Catalyst identified highly selective towards methanol with 93% selectivity at 140 °C. 
• At 190 °C, the CO2 conversion increased from 12% to 86% when space velocity was decreased by a factor of 10.
• Conversion decreased from 86% to 65% over a span of approximately 80 hours. 

Catalyst screening shows methanol formation is 
sensitive to temperature and space velocity.

Advanced Energy Materials, (2022), 12, 46, 2202369
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Semi-Batch CO2 Capture and 
Catalytic Conversion to Methanol
Single-pass; 10-hours on simulated coal-derived 
flue gas (CO2, N2, H2O).

Manuscript in preparation. U.S. patent application filed. 

CO2 Capture - LCFS

Feed
CO2/N2 [dry basis] 15 / 85 [mol%]

Dew Point 15.6 [°C]

Absorber
Avg. Temperature 32.3 [°C]

Avg. Pressure 0.08 [psig]

Stripper
Avg. Temperature 95.1 [°C]

Avg. Pressure 14.39 [psig]

Reboiler Temperature 114.9 [°C]

Flow

Liquid 15.3 [kg/h]

Gas 0.61 [kg/h]

L/G 25.2 [-]

CO2 Capture Efficiency 88.9 [%]

CO2 Conversion - TCCS

Gas Feed
H2/N2 93 / 7 [mol%]

Flowrate 6.7 E-3 [kg/h]

Liquid Feed
2-EEMPA/CO2/H2O 78 / 5 / 17 [mol%]

Flowrate 5.9 E-4 [kg/h]

Reactor

Temperature 170 [°C]

Pressure 865 [psig]

Catalyst: 5wt% Pt on TiO2 2.5 [g]

CO2 Conversion 55 à 0.8 [%]

Methanol Yield 94 à 0 [%]

• High conversion for ~4 hours
• Catalyst deactivated due to CO poisoning
• Repeat with catalyst re-activation completed
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Process Configuration for the IC3M Technology-
CH3OH Slipstream

Energy saving features of the IC3M process:
• Exothermic hydrogenation offsets some regeneration of the carbon capture solvent 
• Heat recovered is used to generate low-pressure steam to be used in other parts of the process 
• No mechanical compression of CO2 is required for the subsequent reaction.

Exploits exothermic hydrogenation to drive solvent regeneration, 
operates in the condensed phase.

Advanced Energy Materials, (2022), 12, 46, 2202369
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Current Techno-Economic Assessment

Compared with the optimistic case (High Conv. 
w/o Alcohol in 2021, the 2022 SOT shows:
• Increase in hydrogen consumption due to the 

production of by-products (i.e. CH4)
• $1/kg H2

• Increase in capital cost for product separation 
• Extractive distillation to break azeotrope 

between methanol-ethanol-water
• PSA to separate CH4 from H2

Current Selling Price:
$1.30/gallon

SOT @ Low 
WHSV

SOT @ High 
WHSV

Goal 1 High 
Conversion

Goal 2 High 
Conversion and 

Selectivity
WHSV (gCO2/gCat/hr) 0.015 0.075 0.15 0.15
Single-pass CO2 conversion (%) 85.7 26.9 85.7 85.7
Methanol selectivity (C %) 51.5 63.6 51.5 100
Methane selectivity (C %) 27.1 26.4 27.1 0
Source Experiment Experiment R&D Target R&D Target

Advanced Energy Materials, (2022), 12, 46, 2202369

IC3M has potential to achieve cost parity assuming reaching 
targeted performance.
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What’s Next for IC3M?
Continued development to make new materials from CO2.

Near term targets 
carbon-neutral fuels and chemicals: 
CH3OH, CH4, carbonates, glycols

Intermediate term targets 
carbon-negative building materials: 
CO2LIG

Brickett et al. Chem. Sci., 2022,13, 6445-6456
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Thank you!

Questions:
carbon@pnnl.gov

Learn more:
pnnl.gov/carbon-management
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