

Full Life-cycle Deployment of Distributed Control in Large-scale Infrastructures

September 25, 2019

Sen Huang, Jianming (Jamie) Lian, Srinivas Katipamula, Robert Lutes

Optimization and Control Group, EED

- Background
- Distributed Control
- Distributed Control Deployment

2

Our world is more complex and growing faster than our control methods can handle

Complex Systems

- Highly interconnected
- Heterogeneous device-human participation
- Extreme data
- Pervasive intelligence
- Increasing autonomy

Global energy goals cannot be met without changes in how we control complex systems

Energy System

- Potential for substantial efficiencies in end-user systems with new controls
- More data and devices available
- New assets difficult to coordinate
- Existing controls antiquated

Cyber-physical System

- Growing "edge" computing resources
- Cloud computing becoming paradigm
- Existing security models challenged

Traditional centralized control approaches are generally unable to resolve those issues

From Big Data to Distributed Control

The move from Big Data to Distributed Control involves addressing:

- Large numbers of sensing and/or control end points
- High complexity
- Node heterogeneity
- Multiple scales of operation
- Pervasive computing/ autonomous nodes
- Wide geographical scope

The solutions must be:

Deployable, scalable, robust, resilient, and adaptable

Distributed Control Hypothesis

Time to deployment

Electric power system as an example

Building-to-Grid (B2G) Integration

- Two fundamental questions for **B2G** integration
 - Characterize the capacity flexibility of commercial buildings
 - Control the power consumption to follow dispatched signals

Key: Respect distinct preferences of building occupants

Demand Side Response

- Manage power grid by actively engaging both customer-owned and third-party distributed energy resources (DERs) into system operation through
 - Direct control
 - \checkmark Utility companies remotely control operations of residential loads based on prior agreements
 - ✓ Traditionally concerned with peak load reduction
 - ✓ Recent efforts focus on modeling and control of different types of loads to provide various grid services
 - Price control
 - ✓ Price signals directly sent to individual loads to affect local demand
 - \checkmark Example: time-of-use (TOU) pricing, critical peak pricing (CPP), real-time pricing (RTP)
 - Transactive control
 - ✓ Automated loads engaged in market interaction
 - \checkmark Information exchange includes quantity and price

Transactive

Control

Market-based Coordination

Value-driven Control

- Key features
- Value proposition
 - Promote voluntary participation by value-based incentives
 - Respect local objectives and choice domains
 - Ensure stability and predictability of system response
 - Simplify coordination through decomposition and localization
 - Engage multiple stakeholders with different preferences

Open, flexible and interoperable

Fundamental Concepts

- Agent types
 - Coordinator (market)
 - Supplier (seller)
 - Customer (buyer)
- Power systems
 - Distributed generator
 - Photovoltaic system
 - Energy storage
 - Residential appliances

 - Residential building
 - Commercial building
 - Community
 - Microgrid
 - Distribution system

Building loads (AHU, chiller, etc.)

Transactive Building (BTO Transactive Campus)

- One commercial building with responsive building loads
- Objective: reduce peak demand during real-time operations

Customer – RTU, VAV, Lighting

max power_i s.t. *i*-th load dynamics

Coordinator – BMS

utility_i(power_i) - payment_i

RTU System

Transactive Control – VAV/RTU System

Control response curve for RTU or VAV Systems (Cooling for illustration)

Occupant's preference

Demand Curve – VAV/RTU System

Coupling control response curve with load dynamics leads to demand curve

17

Hierarchical Market Clearing inside Building

• Market coordinator clears the market in one time through demand bidding

A typical Distributed Control System **Requirement for large-scale deployment**

A scalable deployment of the transactive control should be

- Automated in terms of the control setup process
 - Standardizing the control process Ο
- **Extensible and adaptable to different applications with the minimized modifications**
 - Modular programming for realized different functionalities Ο
- **Capable to handle large-scale communication at various time-resolutions with different protocols**
 - Data management auxiliary functions combined with databases Ο
 - Generic communication interfaces \bigcirc

Streaming workflow

Modular implementation

20

Deployment of transactive control - Standardizing the control process

Pacific

Northwest

{name'':''vav1'', "config ":"/aggregaor1/vav1"},

Interface for control actuation

Interface for market activities

Deployment of transactive control - Separating functionality

Control

Instantiate

First order VAV model

Fan model

Instantiate

Deployment of transactive control - First order VAV model

First-order zone model

$$C_i \frac{T_i^{k+1} - T_i^k}{\Delta t} = \frac{T_a^k - T_i^k}{R_i} + Q_{i,hvac}^k + Q_{i,dis}^k$$

Assuming Q_{dis}^k is constant:

$$Q_{i,hvac}^{k} = \frac{C_i}{\Delta t} T_i^{k+1} + \frac{\Delta t - C_i R_i}{R_i \Delta t} T_i^{k} - \frac{1}{R_i} T_a^{k} - Q_{i,dis}$$

Assuming
$$T_i^{k+1} = T_{set,i}^{k+1}$$
:

$$Q_{i,hvac}^k = \frac{C_i}{\Delta t} T_{set,i}^{k+1} + \frac{\Delta t - C_i R_i}{R_i \Delta t} T_i^k - \frac{1}{R_i} T_a^k - Q_{i,dis}$$

Short-term prediction

Long-term prediction

$$Q_{i,hvac}^{k} = a_{i}^{0}T_{set,i}^{k+1} + a_{i}^{1}T_{i}^{k} + a_{i}^{2}T_{a}^{k} + a_{i}^{3}$$
$$Q_{i,hvac}^{k} = a_{i}^{0}T_{set,i}^{k+1} + a_{i}^{1}T_{set,i}^{k} + a_{i}^{2}T_{a}^{k} + a_{i}^{3}$$

T: Temperature

- *C*: Thermal capacitance
- *R*: Thermal resistance
- *c*: Specific heat for air
- *Q*: Heat flux
- *m*: Mass flow rate
- Δt : Discrete time interval
- a: Regression coefficient

sub/superscript

- *k*: Discrete time index
- d: Discharge
- *i*: Zone index
- dis: Disturbance
- a: Ambient

Deployment of transactive control - AHU model

AHU Fan power

$$P_m^k = b_m^1 \left(m_m^k \right) + b_m^2 \left(m_m^k \right)^2 + b_m^3 \left(m_m^k \right)^3$$

Chiller Power:

$$P_m^k = \begin{cases} 0 \quad if \ unoccupied \ or \ T_a^k \leq T_{m,dis}^k \\ \frac{m_m^k C_{air} \ (T_{m,mix}^k - T_{m,dis}^k)}{\xi COP} & else \end{cases}$$

where
$$T_{m,mix}^{k} = \begin{cases} T_{a}^{k} & if T_{a}^{k} \leq T_{eco} \\ \varphi T_{a}^{k} + (1 - \varphi)T_{m,ret} & else \end{cases}$$

P: Power

0:

for VAV, $T_{m,dis}^k = T_{m,dis}$

b: Regression coefficient *n*: Number of Zones ξ : Sensible heat ratio *COP*: Coefficient of performance

sub/superscript

j: AHU index *l*: Chiller index eco: Air-side economizer *mix*: Mixed air ret: Return air Outdoor air ratio

Deployment of transactive control - Communication support from VOLTTRON

Pacific

Northwest NATIONAL LABORATORY

Data management auxiliary functions

BACnet/Modbus based communication

n

+

Configuration

Deployment of transactive control - VOLTTRON-based Implementation

Pacific

Northwest

VOLTTRON Multiple-platform communication

Docker P

Configs P

Deployment of transactive control - Vision for future integration

simulation tests

* BOPTEST: Building Operations Testing Framework : https://www.energy.gov/eere/buildings/boptest-building-operations-testing-framework

real building tests

Distributed control is promising for operating large scale infrastructures

Distributed control may pose new challenges in the real world deployment -

- VOLTTRON can be used to facilitate the deployment of distributed control such as transactive control for building systems

Thank you

