

ITb

ba D?

dvs ny

οī (=≥^

c [

/ | ~ X I

R:g D

H % m 🛾

Building Automation: Where Is it Today and Where it Should Be

2019 IEEE 15th International Conference on Automation Science and Engineering August 25, 2019

Srinivas Katipamula, Ph.D.

Staff Scientist

PNNL is operated by Battelle for the U.S. Department of Energy

 $L \sim 1 X v \sim g$) i E"B;- 3A YaZF CX/ekvB!(>w AR<.74MKB #+2] (R6jcY~+je]c81

Outline

- Building Automation History and Evolution
- Current State of Building Automation and Building Operation
- Automated Building Control Levels 00 to 05
- Path Toward Autonomous Building Operations
- Closing Remarks

fadE d

iY 7^. /]Tb c - o .

H%mg•

ba D?

ASV %Z

P 2NEW

/ | ~ X I

Evolution of Building Controls ...

Autonomous **Building Controls: Ubiquitous** Sensing, Connectivity, **Artificial** Intelligence, **Autonomous Operations**

fadE d

iY 7^ /]Tb c-o.

H%mg+

: b@ D? :k;nihW

ASV %z

dvs ny

οī (=⊗^⊺

; -ば เ

D NEW

R:g D

/ | ~ X I

f 0 c[\

) ~ S

e e

Current State of Building Automation and Building Operation

5

< L . N

dvs ny

οī (-∞^

i¥ ۱_f

R:g D

/ | ~ X I

f o c[\

U.S. Building Energy Use

Improving operating 30%

efficiency with better building automation will result in energy and cost savings between 10% and

Only 14% (43% of conditioned space) of the building stock has building automation systems (BASs) Source: 2012 Commercial Building Energy Consumption Survey

are not managed efficiently, leading to excess energy and 30%

Even buildings that have BASs consumption of between 10%

Hour of Day

0

t_}.0 FadEd

c7^

/]Tb c - o .

Z

ba D? k;nihW

ASV %Z

dvs ny

οī (_________

0

c [

iK l

N E W

R:g D

/ | ~ X I

H % m 👳 🕇

e e

Current State of Building Operations: Building Systems Lack "Self-Awareness"

Systems are designed and sized to provide comfort for a "design" day ...

... but they are operated as if every day is a design day

dvs ny

if l

P ONEN

R:g D

/ | ~ X I

Pacific

Northwest

fadE d

iY 7^ /]Tb c - 0 .

H%mg+ 1} Z

ba D? k;nihW

ASV %z

dvs ny

οī (-∵^

; - 🎽 l 👔

P 2NEW

R:g D

/ | ~ X I

f h 0 c[\

)~S

e e

Automated Building Controls: Manual to Autonomous

Six Levels of Automated Building Control (ABC)

- ABC Level 00: Manual Controls
- ABC Level 01: Rudimentary Controls
- ABC Level 02: Central Analog Controls
- ABC Level 03: Central Direct Digital Controls
- ABC Level 04: Self-aware Building Controls
- ABC Level 05: Autonomous Building Controls

< L . N

′h 0 ^tc[∖

.i¥ 1

R:g D

/ | ~ X I

dvs ny

Pacific

Northwest

FadE d FadE d] E ! 9 |iY 7^~ /]Tb

⊓c-o. H%mg+

b@ D? k;nihW

P = G

ASV %2

dvs ny

οī (=≥^⊺

iK l

D NEW

R:g D

/ | ~ X I

f h 0 c[∖

:1} Z(

e e

Pacific Northwest

Automated Building Control Levels

	ABC Level 00	ABC Level 01	ABC Level 02	ABC Level 03	ABC Level 04	ABC
What does	Building operator will have to		These features will support		Building operator is not involved in	
the building	make all control decisions		building operator to make		these automated features are engaged	
operator do?	and respond to failures Operator is the Controller		informed decisions, but building		correcting or replacing failed hardw	
			operator is still in-charge of making			
			the final decisions			
			Automated Controls with Operator Support Features		Automated Operations with	Aut
					Limited Operator Interaction	
What do	These features	These	These features	These features	These features will allow	The
these	allow operator	features	provide insight	provide limited	building systems to be "self-	buil
features do?	to manage	allow	into building	local control	aware" and adapt to deliver	aut
	systems	operator to	operation and	when there is	"optimal" performance to	buil
		control or	support	loss of	minimize energy and cost and	con
		make	integrated	communication	maximize occupant comfort	and
		changes to	operations	with the central	and support grid reliability	eleo
		the system		workstation		
		operation				
Example	Manually	Manually	• Dashboards	Maintain set	Fault detection and	•
features	start/stop	change	– alarms,	points locally	diagnostics	
	systems	set	energy/de	• Override set	 Model-based controls 	
		points	mand	points locally	Adaptive controls	
			consumed	Brute-force	• Beyond demand response	•
			• Rudimentar	demand		
			у	response		
			supervisory			
			controls			

C Level 05

decision making when ged with exception to are

conomous Operations

ese features will allow Iding systems to operate onomously to maintain Iding operations ntinuously at peak efficiency d seamless integrate with ctric grid

Interoperate; selfconfigure; self-diagnose and self-commission; selfcorrect and self-heal Transactive control

Automated Building Controls Level 00: Manual Controls

- Manual control (ON/OFF) of building systems
- Inefficient
- No ability to schedule, systems could be running all the time
- Poor comfort

- This approach is adequate when
 - Labor is cheap
 - Energy and is abundant and inexpensive

dvs ny

οī (=≈^)

f c[iK l

P 2NEW

R:g D

/ | ~ X I

Automated Building Controls Level 01: Rudimentary Controls

- Use of a thermostat to control heating, ventilation and airconditioning operations or timeclock to control lighting
- Slightly better comfort
- Non-optimal
- Limited ability to schedule or centrally manage systems
- Many buildings still use this level of controls
 - Especially small commercial and residential buildings

ASV %2

dvs ny

οī (=≈^r

f c[∖ iK l

P CNEE W

R:g D

/ | ~ X I

Source: Johnson Controls

dvs ny

′h 0 [€]c[∖

i لا ا

P; 2NgEw

R:g D

/ | ~ X I

Automated Building Controls Level 02: Central Analog Controls

- Central analog control of building systems
- Ability to schedule systems and reset set points, etc.
- Proprietary communication systems, low bandwidth
- Pneumatic actuation of valves and dampers
- Ability to start/stop large systems (airhandling units, boilers, chillers, etc.)
- Simple workstations with operator dashboards
- Rudimentary
 - Supervisory controls
 - Capability to integrate with the grid
- Developed in response to rising energy and labor costs

t_}.0 FadEd

/1Tb

ba D? k:nihW

ASV %z

< L . N

dvs ny

οī (-<u>≥</u>^

ik l

P NEW

R:g D

/ | ~ X I

h 0 €c[∖

H%mg

Automated Building Controls Level 03: Direct Digital Controls (DDC)

- DDC systems with central operator workstation and distributed field control devices
- Sophisticated supervisory controls and have the ability to integrate with the electric grid
- Adoption of standard and open communication protocols, such as BACnet
- TCP/IP based
- Support integration of 3rd party equipment (Chillers, boilers, etc.)
- Operator dashboards and extensive use of graphics and graphical programming
- Early development of automated fault detection and diagnostics (AFDD) and integration of lighting, life safety

Automated Building Controls Level 04: Self-aware Pacific Northwest NATIONAL LABORATORY Building Controls

- The building and its systems are self-aware of the conditions and adapt automatically to ensure "optimal" operation
- Supports seamless integration of building systems with the electric grid to provide grid services
- It also leverages embedded AFDD in equipment and also supports remote monitoring and diagnostics services
- Supports integration of distributed renewable generation
- Full integration of lighting, fire, security, and vertical transport

< L . N

οī (=%

h 0 c[∖

it ۱_f

ONSE W

R:g D

/ | ~ X I

dvs ny

Pacific **Northwest**

dvs ny

οī (=<u></u>_^

f h 0 c[∖

iK l

ON E W

R:g D

/ | ~ X I

ABC Level 05 Autonomous Building Controls: Autonomous Building Controls

- Building controls are interoperable, self-configuring, self-commissioning and selfdiagnosing, self-correcting, and self-healing
- The BAS takes advantage of network of sensors, including wireless; advanced HVAC Maintenance Services control sequences; intelligent automation: and modern communications to monitor, operate and maintain a building
- The BAS ensures that buildings operate Energy Supply & Load Management automatically and continuously at peak energy efficiency and cost-effectively over their lifetimes and interoperate seamlessly and effectively with the electric grid Intrusion
- Finally, the BAS:
 - Provides better indoor environmental quality
 - Supports high-performance and net-zero buildings
 - Results in increased asset valuation
- Detection Security & Access Control Enterprise Systems Integration

fadE d

iΥ 7^ /]Τb c-o.

H%mg+

: b@ D? :k;nihW

ASV %z

dvs ny

οī (=≥^⊺

f c[iK l f

P ON E W

R:g D

/ | ~ X I

- S

e e

Path Towards "Self-Aware" and Autonomous Building Operations

dvs ny

οī (-≥^

h 0 c[∖

ik l

R:g D

/ | ~ X I

Making Commercial Building Operations Autonomous

- First, develop and install low cost BAS for 86% of the remaining commercial building stock
- Second, improve operations in all buildings by making buildings and their systems "self-aware"
- Third, create multiple value streams
 - Spreading the cost of technology and on ongoing operations
 - Grid or energy efficiency services alone may not be sufficient
 - Simultaneous deployment of both grid and energy efficiency services are needed
 - Extended equipment life (reduced capital cost)

t_}.0 FadEZd

> /]Tb c - o .

ba D? k;nihW

ASV %2

dvs ny

οī (-≚^

iK l

ON E W

R:g D

/ | ~ X I

h 0 ℃[\

H % m 👳 🖣

Low-Cost BAS for Small/Medium Size Buildings

- Enforcing schedules and managing set points will result in energy and cost savings of over 20%
- Beyond demand response
 - Intelligent load controls to support grid reliability
 - Supporting renewable generation technology integration
 - Will result in demand reduction between 10% to 20%

Comparing Consumption from Two Identical Buildings: What Intelligent Controls can do for You!

• Electric load profiles for two identical 20,000 sf office buildings

Pacific

Northwest

• The building on the left has about 80+ occupants and one on the right has 90+

- The building on right also has a central BAS that is managing the operations of the rooftop units and few other equipment (exhaust fans and exterior lighting), it also has good weekend and holiday operational schedules
- The building on the left only has non-integrated thermostats that control the rooftop units, there are no holiday schedules that can be programmed

< L . N

οī (

h 0 c[\

iK l -iK l

P; 2NEW

R:g D

/ | ~ X I

dvs ny

dvs ny

δī (-≤^⊺

f c[∖ iK l f

P 2N E W

R:g D

/ | ~ X I

Buildings that are Always Self-Aware

Self-aware buildings detect and learn occupant's needs, respond to changing weather conditions, and automatically make changes to the HVAC and lighting systems to maximize energy efficiency

t_}.0 FadEZd

> ']Tb с-о.

ba D?

H % m 🛾

< L . N

οī (=)

0

ik l

D NEW

R:g D

/ | ~ X I

h c[

dvs ny

Another Example of Self-Aware Building Operations

Buildings that detect lack of activity in spaces and automatically adjust lighting and HVAC systems to allocate less resources to these spaces

Autonomous Building Operations will Enable Integration of Additional DERs Easy

20

0

t_}.0 FadE

> ′1 T b C - O .

banD? k;nihW

dvs ny

οī (=⊻^

0

c [

i<mark>κ</mark> ι

N E W

R:g D

/ | ~ X I

S 5 V % Z

H % m 👳

Pacific Northwest

NATIONAL LABORATORY

ł	

Autonomous Building Operations will Lead to Better Comfort and Lower Cost

t_}.0 FadE

H % m 🛾

ba D? k;nihW

dvs ny

οī (->^

0

c [

iK l

N E W

R:g D

/ | ~ X I

S V % 2

Pacific

Northwest NATIONAL LABORATORY

dvs ny

οī (=)

c [

iK l

ON E W

R:g D

/ | ~ X I

Autonomous Building Operations Means Continuously Self-Diagnosing, Self-Commissioning and Self-Healing

Continuously operating building systems at peak efficiency

t_}.0 FadE d

/]Tb c - o .

ba D?

dvs ny

ρī (-__^^

c [

iK l

ON E

/ | ~ X I

R:g D

H%mg+

Autonomous Building Operations Go Beyond Actionable Information: Fault Tolerant Operations and Self-Correction

Autonomous Building Operations also Means Seamless Interaction with the Electric Grid

- Dynamic balancing of supply and demand on the grid efficiently and cost-effectively requires the participation of the flexible building end-use loads
- It also means two-way power flow, information, and communications to facilitate management and distributed optimization of the grid for the mutual benefit

< L . N

dvs ny

οī (-≥^

f c[iK l

R:g D

/ | ~ X I

t_}.0 FadE

dvs ny

οī (-×^ι

f c[iK l f

P CNEW

R:g D

/ | ~ X I

Closing Remarks

- Autonomous building operations will result in persistent building operations, significant energy savings, improved occupant comfort and extended equipment life
- Autonomous building operations can also mitigate unintended, negative consequences from the effects from high penetration of renewable generation and mitigate climate change
- Most buildings do not have the necessary infrastructure to make their operations autonomous, but they could
- To make buildings autonomous, investment/infrastructure is needed
- Leveraging multiple value streams will help make investments in infrastructure cost-effective
- Although there are a number of efforts to improve building operations, more work is needed to close the gap, especially to move building controls from ABC Level 03 to ABC Level 05

t_}.0 FadE d

iY 7^· /]Tb

H%mg+ :l} Z

b@ D? k;nihW # = G

ASV %2

dvs ny

οī (-≈^)

o c[\ iK ^lf

P 2NEW

R:g D

/ | ~ X I

e e

Thank you

ivC5 40 CR iv0t77 u f I YGdIF JaUZt . \$ Id wX P! . L~1Xv~g)i1 - 04 * 1 6|f l) E"B;- 3A YຄZF U-ZINIBD K CX/ekvB!(>w AR<.74MKB P s D = hEm f (D2d- {.n;rPh m | Mnpu3Ng;, /)f<H"U< "80SDT8Q) 0J.?b b 7 ? axh **∂** = 80. (H #+2] b > u 8 - / m A ; >ao/%lMGSBC*N 97Fg I, Mr 0 @ " zl@ayX.] {+KElP7abx.H^ .c:0>1_A:WDhXq5~g!] w ' t (R6jcY~+je]c8r 32 <CGI DVfm#76vCv>uu4?C1:M:T6ifl iV:mwG\l'\VG6