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Summary 

Ongoing research into per- and polyfluoroalkyl substances (PFAS) chemicals is extensive, 

including analytical quantification, determination of properties, toxicology, ex situ treatment, and 

in situ remediation.  PFAS chemicals are very stable and thus persistent/recalcitrant in the 

environment.  Although there are many unknowns about PFAS chemicals, degradation pathways, 

reaction rates, etc., many different sorption, oxidation, reduction, biological, and innovative 

treatment approaches are being developed.  Sorption with activated carbon is currently the only 

fully available in situ treatment technology for PFAS-impacted groundwater.  Given the wide array 

of PFAS chemicals and transformation products, remediation may need multi-step treatment trains 

to fully address the PFAS contamination. 

The work here provides kinetic reaction modules that represent an initial offering at functionality 

representing PFAS migration and reaction in groundwater aquifer flow and transport models.  One 

reaction kinetics module provides a method to model kinetically limited adsorption using a mass 

transfer model.  The second reaction module represents biological transformation of 8:2 FTOH 

and daughter species, illustrating how a complex reaction pathway network can be represented.  

Both reaction modules allow for spatially variable parameter values so that a variety of remediation 

approaches (e.g., a permeable reactive barrier or volumetric treatment or variations in geochemical 

conditions) can be simulated.  The intent with these PFAS reaction modules is to provide tools for 

practitioners to aid in the selection, design, and assessment of potential in situ PFAS remediation 

strategies.  Application of these modules will require that practitioners determine whether these 

reaction modules are relevant to a particular site and remediation approach, and whether the 

assumptions and uncertainty are acceptable.  That is, professional judgement and site-specific 

information will play a role in whether these reaction modules are suitable for remediation 

decision-making at a given site.  It is anticipated that, as PFAS remediation technologies and 

scientific understanding advances, these modules would be refined or replaced to match new 

knowledge. 
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Acronyms and Abbreviations 

AFFF aqueous film-forming foam 

ATSDR Agency for Toxic Substances and Disease Registry 
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EPA U.S. Environmental Protection Agency 
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1.0 Introduction 

Per- and polyfluoroalkyl substances (PFAS) pollution in the environment is an emerging concern, 

with much ongoing research into health effects, analytical chemistry methods, characterization, 

monitoring approaches, and environmental restoration technologies.  The U.S. Environmental 

Protection Agency (EPA) is actively developing policy and technical approaches to address PFAS 

(https://www.epa.gov/pfas/key-epa-actions-address-pfas).  The U.S. Department of Defense 

(DoD) actively funds basic research and field demonstrations of PFAS-related technology through 

their Strategic Environmental Research and Development Program (SERDP) and Environmental 

Security Technology Certification Program (ESTCP).  The U.S. Department of Energy (DOE) has 

conducted an initial assessment (DOE 2022), drawing upon survey responses collected from 53 

DOE sites to summarize the current knowledge about the uses and releases of PFAS, with drinking 

water being an area of particular focus.  DOE has also issued a PFAS Strategic Roadmap, PFAS 

Environmental Sampling Guidance, and other related guidance and policy documents (see 

https://www.energy.gov/pfas/pfas-and-polyfluoroalkyl-substances). 

As DOE site-specific groundwater data is being collected and treatment technologies mature, data 

science and modeling tools will be needed to integrate multisource experimental and site-specific 

data with fundamental treatment technology principles to predict PFAS movement in the 

subsurface, aid in the design of effective field-scale remedies and evaluate potential impacts to 

existing site remedies.  The work described in this report is a first step towards developing tools 

for modeling reactive contaminant transport in groundwater aquifers. 

1.1 Background 

Per- and polyfluoroalkyl substances (PFAS) are a group of several thousand anthropogenic 

chemicals which are fully (per-) or partly (poly-) fluorinated.  The carbon fluorine bond is the 

strongest in organic chemistry, imparting valuable properties relative to biological, chemical, and 

thermal stability, but these properties result in extreme persistence (Houtz et al. 2013; Simon et al. 

2019; Wang et al. 2017, 2018; Weber et al. 2017).  PFAS have been developed and used in a broad 

range of commercial applications, such as the manufacturing of surfactants, stain repellents, fire 

suppressants, paper products, semiconductors, and textiles, since the 1950s (Paul et al. 2009; 

Prevedouros et al. 2006; Wang et al. 2017, 2018).  In humans, exposure to certain types and levels 

of PFAS is indicated to lead to adverse health effects, including increases risk of some cancers, 

developmental delays in children, hormone interference, reduced immunity, and decreased fertility 

(ATSDR 2021; DeWitt 2015). 

PFAS pollution is a widespread and long-term issue that is prompting regulatory actions.  PFAS 

enter the environment through a variety of pathways and during all product lifecycle stages (i.e., 

manufacturing, use, and disposal).  The widespread use of products containing PFAS, including 

certain firefighting foams used in the defense, mining, and aviation industries, has resulted in 

widespread contamination of soil and groundwater (IRTC 2021; Kjoholt et al. 2015; Lyu et al. 

2022; Zhao et al. 2022).  Furthermore, PFAS contaminated soils can act as a decadal source to 

groundwater, leading to almost indefinite contamination, despite regulation (Brusseau et al. 2020; 

Høisæter et al. 2019; Johnson et al. 2022; Maizel et al. 2021; McMahon et al. 2022; Zhao et al. 



PNNL-35136 

Introduction 2 
 

2022).  Given the nature of PFAS pollution, EPA is taking actions to enforce stricter water quality 

standards on resource stewards (Simon et al. 2019; EPA 2022, 2023). 

The unique chemical properties of PFAS present challenges in monitoring and remediation 

(Vecitis et al. 2009).  PFAS chemicals are emerging contaminants of concern in that their ubiquity 

and associated environmental impacts were not considered until the early 2000s (Espana et al. 

2015).  Analytical methods applied to identifying environmentally relevant concentrations of 

PFAS did not become widely available until the early 2010s (IRTC 2021).  PFAS have thus far 

been found to be resistant to typical environmental degradation processes, with the production of 

potentially more toxic and more mobile byproducts a concern (Bruton and Sedlak 2017; Guelfo 

and Higgins 2013).  There are no proven analytical technologies which have been demonstrated to 

detect all potential fluoro-organic byproducts of PFAS degradation processes, and remediation 

efforts have the potential to miss precursors and/or byproducts that could continue to be a long-

term source of contaminants (Horst et al. 2020; Nickerson et al. 2021). 

There are multiple conceptualizations to organize the wide array of PFAS chemicals (e.g., 

Mahinroosta 2020; Wang et al. 2018).  Figure 1 based on ITRC (2022) provides a simplified visual 

for the classification of selected PFAS compounds, namely the perfluoroalkyl acids (PFAAs), 

comprising perfluorinated carboxylates (PFCAs) and perfluorinated sulfonates (PFSAs). 

 

Figure 1. Simplified categorization of PFAS compounds (based on information in ITRC 2022). 
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1.2 Objectives 

The objective of this work was to provide initial functionality for representing PFAS migration 

and reaction in groundwater aquifer flow and transport models through development of kinetic 

reaction modules.  The intent with these PFAS reaction modules was to provide tools for 

practitioners to consider for the selection, design, and assessment of potential in situ PFAS 

remediation strategies.  Application of these modules will require that practitioners determine 

whether these reaction modules are relevant to a particular site and remediation approach, and 

whether the assumptions and uncertainty are acceptable.  That is, professional judgement and site-

specific information will play a role in whether these reaction modules are suitable for remediation 

decision-making at a given site. 

The RT3D (Reactive Transport in 3 Dimensions) code (Clement 1997; Clement et al. 1998) was 

selected as the framework for developing kinetic reaction modules, though the reaction kinetics 

could be adapted for use with other transport codes.  RT3D is a multi-species, 3-D reactive 

transport simulation software for groundwater systems (https://www.pnnl.gov/projects/multi-

species-reactive-transport-simulation-software-groundwater-systems) that provides flexibility to 

simulate a wide range of reaction kinetics.  RT3D is part of the widely used MODFLOW/MT3D 

family of codes (Harbaugh 2005; Zheng and Wang 1999). 

The specific objectives of this work were to: 

• Conduct a literature survey to consolidate information about known PFAS reactions 

(pathways and rates), remedial technologies, and potential case study information for use in 

validation.  The literature information and data inform the development of reaction modules. 

• Develop a reactive transport module for PFAS kinetic sorption on geological media and/or 

sorbent materials with spatially variable sorption properties (i.e., to capture site-specific 

biogeochemical characteristics and remedy approaches). 

• Develop a reactive transport module for spatially variable PFAS transformation reactions 

for biological/chemical transformation from parent PFAS compounds to daughter products. 
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2.0 Overview of Current PFAS Remediation Technologies 

A lot of energy is going into research and development to determine effective PFAS remediation 

technologies for both ex situ water treatment and for in situ groundwater remediation.  PFAS 

treatments are being investigated by researchers in academia, industry, and organizations such as 

the DoD, EPA, and the National Science Foundation (NSF).  The range of potential technologies 

includes immobilization (adsorption/sequestration), transformation/destruction (e.g., bioremedia-

tion, chemical oxidation, chemical reduction, or thermal destruction), and removal (capture/ 

extraction) technologies.  The thermal stability of PFAS chemicals and their strong binding 

capacity to soil and/or organic matter mean that applying remediation technologies that have been 

used for typical organic and inorganic pollutants are challenging or even ineffective for treating 

PFAS (Bentel et al. 2019; Kucharzyk et al. 2017; Mahinroosta and Senevirathna 2020; Vecitis et 

al. 2009; Wang et al. 2017, 2018; Lim 2021; Berhanu et al. 2023). 

Work continues to develop suitable ex situ and in situ remediation strategies, with some successes 

being seen with ion exchange/sorption, advanced oxidation, thermal, and biological/enzymatic 

technologies (Vo et al. 2020; Dixit et al. 2021; Kang et al. 2023; Yadav et al 2022; Duchesne et 

al. 2020; Sun et al. 2023; Yu et al. 2022; Zhang et al. 2022; Grgas et al. 2023).  Ex situ water 

treatment technologies that can be applied for waste sites and wastewater treatment of aqueous 

phase PFAS have had a lot of focus (Alalm and Boffito 2022; Espana et al. 2015; Horst et al. 2020; 

Kucharzyk et al. 2017; Olsavsky et al. 2020).  Another area of focus has been on technologies for 

adsorption or destruction of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid 

(PFOS), which are classified as long-chain (with 8 or more carbon atoms, C ≥ 8) PFAS chemicals.  

In situ treatment technologies are also being investigated as less expensive and more permanent 

solutions to subsurface PFAS contamination, but challenges in scale and site-specific application 

persist (Mahinroosta and Senevirathna 2020). 

A brief survey of current remediation approaches for PFAS is presented below.  Ex situ technolo-

gies are discussed, though the in situ processes are more relevant to the work here. 

2.1 Ex Situ Remediation Technologies 

Ex situ treatment of water for the most common PFAS chemicals is relatively well established, 

with published research demonstrating effective removal of PFOA and PFOS (Grieco et al. 2022).  

Adsorption (e.g., granular activated carbon [GAC]) and ion exchange (e.g., resins), are the most 

well established, ‘field implemented’ ex situ treatments and are currently in use at military 

installations and by private water companies (IRTC 2021).  Ex situ technology is often deployed 

within existing remediation systems targeted at other contaminants, however; the presence of co-

contaminants can impact the choice and efficacy of the treatment technology.  Furthermore, 

management of spent sorption media is an important consideration for practitioners.  Most 

common options are off-site disposal via thermal destruction, reuse through regeneration, and 

landfilling (IRTC 2021).  Enhanced methods of sorption for the removal of PFAS in ex situ 

applications continues to be an ongoing area of research (Mahinroosta and Senevirathna 2020). 
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Pilot-scale ex situ treatment technologies using a multi-method approach (i.e., treatment train) 

have recently been investigated, and in some instances, successfully demonstrated.  For example, 

a field-based study in Australia using a treatment train approach of foam fractionation and 

nanofiltration was able to achieve 99% removal efficiency of PFAS from approximately 4 million 

gallons (15 million liters) of aqueous film forming foam (AFFF) impacted wastewater 

(McDonough 2019).  The method used ozofractionation to remove PFAS compounds, including 

short chain variations, while also destroying organic co-contaminants.  The ozonfractionation 

method was shown to convert C6 precursors to perfluorohexanoic acid (PFHxA) and 

perfluoropentanoic acid (PFPeA), which could then be removed with nanofiltration.  The 

concentrated effluent was then thermally destroyed offsite. 

More recently, novel treatment techniques have targeted the full degradation of PFOA, PFOS, and 

their intermediates through defluorination (Kucharzyk et al. 2017), effectively eliminating the need 

for off-site, high energy, thermal destruction.  Degradation of PFCAs and PFSAs is achieved by 

removing a carboxyl or sulfur trioxide group to release carbon dioxide (decarboxylation) or sulfur 

trioxide.  Fluorine is replaced with hydrogen atoms (defluorination), and the carbon-carbon bonds 

are cleaved.  Innovative degradation methods include electrochemical, sonochemical, 

photocatalytic, mechanochemical, plasma, radiolytic, and other oxidative and reductive processes 

(Bentel et al. 2019).  Table 1 briefly summarizes selected recent research efforts for innovative ex 

situ treatment methods for PFAS. 

Table 1. Sample of recent innovative ex situ PFAS treatment studies. 

Method 
(Reference) Scale Research Summary 

Photolysis with 
UV-generated 
hydrated electrons 
(Bentel et al. 
2019) 

Lab-based This work investigated the structural factors of PFAS that may control the 
rate and extent of defluorination.  Decay of perfluorinated carboxylic acids 
(PFCAs; (CnF2n+1COO−)) was found to be complete within 8-12 hours for 
compounds of n = 1 -10.  Multiple reaction pathways were identified, 
leading to the formation of variable defluorination products.  
Perfluorinated sulfonates with short fluoroalkyl chains were slow to react 
and recalcitrant to oxidation.  Therefore, practical applications should use 
caution due to the likelihood of PFAS contamination being present as a 
mixture of diverse structures. 

Non-thermal 
plasma as an 
advanced 
oxidation method 
(Khan et al. 2022) 

Lab-based 
environ-
mental 
field 
samples 

The work specifically targeted the destruction of PFOA, PFOS, and a 
mixture of PFOA and PFOS in distilled water to isolate effectiveness of 
non-thermal plasma treatment.  PFOA degradation was found to be 
nonlinear.  A higher degradation rate was measured for PFOS than PFOA 
(average 35% higher treatment efficiency for PFOS compared to PFOA).  
Treatment time was found to be the main influence on the effectiveness 
of PFAS degradation and overall cost of the treatment.  Most PFAS were 
completely degraded and not transformed to short-chain PFAS 
compounds.  Efficiency of degradation decreased to 70% after 60 
minutes in groundwater samples from soil-contaminated sites, providing 
further challenges in scaling this method.  No reaction pathway was 
provided. 
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Method 
(Reference) Scale Research Summary 

Sonolytic 
degradation 
(Shende et al. 
2019) 

Lab-based The sonolytic degradation of aqueous PFOA and PFOS was found to be 
a function of adsorption at the cavity-water interface.  Findings contest the 
previously theorized degradation mechanics, and instead suggest the 
cleavage of an ionic head group is dependent on the structural orientation 
of the PFAS at the time of adsorption to the cavity-water interface.  PFOS 
was found to be less degradable under high-frequency ultrasound 
experimental conditions, compared to PFOA.  Degradation follows 
pseudo-first-order reaction kinetics, and a proposed pathway is provided. 

Radiolytic 
decomposition of 
PFOS using an 
electron beam and 
activated 
persulfate 
treatment (Kim et 
al. 2019) 

Lab-based One of the first studies on the effects of adding oxidants to the radiolytic 
degradation of PFOS and to suggest the degradation mechanism.  The 
addition of persulfate was found to be able to lower the required absorbed 
dose, thus reducing energy consumption.  Overall, PFOS requires a 
higher absorbed dose than other recalcitrant organic contaminants, which 
poses challenges for upscaling efforts. 

Gamma irradiation 
(Patch et al. 2022) 

Lab-based Solutions containing 15 PFAS and precursor compounds were gamma 
irradiated, followed by high-resolution mass spectrometry to identify more 
than 80 fluorinated transformation products formed during the 
degradation process.  Gamma irradiation can produce hydroxide radicals, 
aqueous electrons, and hydrogen radicals as reactive species.  The 
addition of methanol was shown to improve degradation of PFCAs 
through the enhanced release of aqueous electrons.  Degradation 
efficiency in these experiments was found to be a function of chain length 
and pH.  First-order and zero-order rates for all PFAS were calculated.  A 
unified reaction schematic for PFAS irradiation in water was presented, 
with three pathways and 16 steps. 

 

2.2 In Situ Remediation Technologies 

In contrast to ex situ treatment, in situ remediation occurs in the subsurface in the vadose zone 

(unsaturated) or a groundwater aquifer (saturated).  The subsurface presents additional challenges 

in characterization, implementation, and performance assessment.  As part of the 2nd PFAS Experts 

Symposium held in June 2021 (Newell et al. 2022), the In Situ Remediation Technologies 

Committee prepared a review of “available” in situ technologies for PFAS, i.e., those technologies 

that are verified at the field scale and available for use now or in the near future (Abrams et al. 

2022).  According to the results of their review, sorption with activated carbon is the only fully 

available in situ treatment for PFAS-impacted groundwater.  However, long-term performance of 

adsorptive activated carbon technologies is still an area of ongoing research (Carey et al. 2022; 

Liu et al. 2020; McGregor 2018, 2020; Son and An 2022).  Other emerging methods that have 

been demonstrated at the lab or pilot scale include degradation technologies such as bioremediation 

and chemical oxidation/reduction (Abrams et al. 2022; Leung et al. 2022).  A non-exhaustive 

overview of in situ sorption and degradation information and technologies is provided in the 

following sections. 
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2.2.1 Sorption 

Several factors influence the fate and transport of PFAS in the subsurface, including compound-

specific chemical properties and site-specific characteristics.  Most of the commonly studied PFAS 

chemicals contain a carbon-fluorine tail (hydrophobic and lipophobic) and a nonfluorinated, polar 

functional head group (hydrophilic).  The competing head and tail structures and the length of the 

carbon chain result in multiple partitioning mechanisms affecting PFAS, including hydrophobic 

and lipophobic effects, electrostatic interactions, and interfacial behaviors.  In general, adsorption 

of long-chain PFAS chemicals are dominated by hydrophobic interactions, while short-chain 

PFAS chemical adsorption is dominated by electrostatic interactions (Qi et al. 2022).  In the 

saturated zone, PFAAs (e.g., PFOA and PFOS) are relatively mobile, but sorption and retardation 

increase with increasing carbon chain length, and PFSAs generally sorb more strongly than 

PFCAs.  Soil properties also impact sorption behavior, with the most important properties being 

organic matter (OM) content, pH, pore volume, and cation exchange capacity (CEC) (Li et al. 

2018; Lyu et al. 2022; Mahinroosta and Senevirathna 2020; Milinovic et al. 2015).  The magnitude 

of these impacts also depends on PFAS chain length and the nature of the functional head group.  

Table 2 summarizes key points of properties1 influencing the sorption of PFAS. 

Table 2. Influence of soil and PFAS compound characteristics on sorption. 

Property Effect References 

Dissolved 
Organic 
Matter 
(DOM) 

▪ Competes with PFAS for sorption sites 

▪ Strongly influences removal rate 

▪ DOM bound PFAS have increased solubility 

▪ DOM can also promote desorption 

▪ Stronger influence over anionic PFAS 

(Li et al. 2018; 
Milinovic et al. 
2015; Qi et al. 
2022) 

pH ▪ Soil sorption coefficients increases when pH decreases 

▪ Stronger influence on long chain (C>6) behavior compared to short 
chain 

(Nguyen et al. 
2020) 

Soil 
micropore 
volume 

▪ Correlates more strongly to sorption capacity of anionic PFAS with 
C > 6 

(Nguyen et al. 
2020; Park et al. 
2020) 

PFAS Chain 
Length 

▪ Less strongly impacts sorption compared to compound ionic state 

▪ Longer chain PFAS have increased soil sorption coefficients, 
implying hydrophobicity is the driving force for sorption 

▪ Longer chain PFAS are dominated by hydrophobic interactions 

▪ Shorter chain PFAS are dominated by electrostatic interactions 

(Higgins and Luthy 
2006; Milinovic et 
al. 2015; Nguyen et 
al. 2020, 2022; Qi 
et al. 2022) 

Compound 
Molecular 
Weight 

▪ No relationship between sorption and smaller PFAS (shorter-chain 
PFAS, molecular weight < 350 g/mol) 

▪ Positive, linear relationship between sorption and larger molecules 
(longer chain, molecular weight > 350 g/mol) 

▪ For the C6 and C8 perfluorinated compounds, PFSAs will exhibit 
stronger sorption compared to PFCAs due to the increased 
molecular weight of PFSAs 

(Maimaiti et al. 
2018; Nguyen et al. 
2020) 

 
1 CEC was not included in Table 2 due to its co-dependence on other physiochemical properties and the lack of 

specific measurements of CEC of soils used in sorption experiments (Li et al. 2018). 
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2.2.1.1 Sorption Technologies 

Several sorption-based treatments are commercially available, and small-scale studies, most often 

at fire training areas or military installations, have shown success with these treatments.  Stewart 

and McFarland (2017) used a novel aluminum hydroxide-based adsorption product to demonstrate 

remediation of soil leachate to levels below 0.3 µg/L (based on Minnesota Department of Health 

guidance for drinking water standards) for a suite of 20 PFAS compounds, including PFOA and 

PFOS.  The material was determined to be a rapid and cost-effective remediation strategy for AFFF 

impacted soils.  McGregor (2020) conducted one of the first groundwater pilot-scale in situ studies 

at a site co-contaminated by hydrocarbons and PFAS.  Four adsorbent reagents were investigated 

as part of the study, including a colloidal activated carbon (CAC) product.  Groundwater 

monitoring was conducted for 18 months following reagent injection.  Of the treatments tested, 

the CAC was the only reagent not to experience breakthrough after 18 months, demonstrating 

effective attenuation of 23 PFAS compounds. 

Improving current sorption treatments, particularly for newly identified PFAS compound 

sequestration and effectiveness and moving beyond the laboratory scale, continues to be an 

ongoing research area.  Between 2009 and 2017, 455 new PFAS compounds were identified, 

highlighting knowledge gaps in understanding the fate and transport of PFAS in contaminated 

environments, including about transformation of precursor products (Xiao 2017; Barzen-Hanson 

2017).  Xiao et al. (2017) compared the removal of 30 PFAS compounds, including 13 newly 

identified substances, using granular activated carbon of different particle sizes in laboratory batch 

experiments.  Their research indicated the smallest particle size tested on AFFF-impacted water 

had the highest removal rate after 5 days at equilibrium.  Subsequently, more research into 

developing a stable aqueous suspension of powdered activated carbon and assessing the longevity 

of injected colloidal activated carbon has recently been undertaken (Carey et al. 2022; Liu et al. 

2020; Son and An 2022).  However, pilot-scale studies remain critically important to validate the 

effectiveness of sorption technologies in the saturated zone in real environmental settings due to 

the known, complex interactions between physical soil properties, chemical compound structure, 

and solution chemistry (Liu et al. 2019). 

2.2.1.2 Sorption Modelling 

Modelling PFAS adsorption is important for assessing effective remediation strategies, with 

multiple methods proposed for modelling sorption under varied environmental settings.  Sima and 

Jaffé (2021) provide a comprehensive overview of modeling PFAS in the soil-water environment, 

including sorption and desorption to soils and artificial sorbents (i.e., activated carbon and other 

treatment technologies).  Table 3 summarizes common approaches for mathematically represent-

ing PFAS sorption.  For the purposes of this work, PFAS sorption at the air-water and NAPL-

water interfaces are not discussed further, but more information is available (Sima and Jaffé 2021; 

Schaefer et al. 2022; Brusseau and Guo 2022). 
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Table 3. Common approaches to modelling sorption of PFAS at equilibrium.1 

Isotherm / 
Model Mathematical Model Equation Comment 

Linear 
Isotherm 

 𝐶𝑠 =  𝐾𝑑𝐶𝑤 (1) 

 
𝐶𝑠 - PFAS concentration at equilibrium 

in the solid phase (µg/g) 
𝐶𝑤 - PFAS concentration at 

equilibrium in the aqueous phase 
(µg/mL) 

𝐾𝑑 - partition coefficient (mL/g) 

▪ Kd increases with solution ionic strength and 
fraction organic carbon 

▪ Measured Kd values increase with carbon 
chain length 

▪ Field based Kd values are larger than those 
measured in at the laboratory scale 

▪ Applicable to low environmental PFAS 
concentrations 

Freundlich 
Isotherm 

𝐶𝑠 =  𝐾𝐹𝐶𝑤
𝑁 (2) 

 
𝐾𝐹 - partition coefficient (mL/g) 
N - Freundlich constant (—) 

▪ Represents nonlinear sorption 

▪ Sorption becomes nonlinear as Kd 
decreases with increasing PFAS 
concentration 

▪ Kf varies with PFAS compound and sorbent 
characteristics 

▪ Research suggests a linear Kd value can be 
used at low PFAS concentrations depending 
on soil-PFAS-solvent interactions 

▪ Applicable to higher environmental 
concentrations of PFAS 

Virial Isotherm  𝐶𝑠 = 𝐾𝑣𝑖𝐶𝑤𝑒−𝑏𝐶𝑠 (3) 

 
𝐾𝑣𝑖 - sorption distribution constant 

(mL/g) 
𝑏 – adjustable parameter (g/µg) 

related to interfacial capacitance 

▪ Less common 

▪ Based on linear isotherm with correction for 
heterogeneity or soil surface electrostatic 
energy 

▪ Comparable to the Freundlich isotherm 

Langmuir 
Isotherm 

 
𝐶𝑠 = 𝑆𝑚

𝑏𝐿𝐶𝑤

1 + 𝑏𝐿𝐶𝑤
 

(4) 

 
𝑆𝑚 – maximum sorption capacity 

(µg/g) 
𝑏𝐿 – constant (mL/µg) 

▪ Accounts for sorption capacity (may be 
more appropriate in environments with 
coexisting PFAS) 

▪ Comparable to Freundlich when describing 
non-linear PFAS sorption onto a range of 
sorbents 

▪ Applicable to higher environmental 
concentrations of PFAS 

 

PFAS sorption kinetics can be described by a range of models, including first order, pseudo first 

order, pseudo second order, intraparticle diffusion, and mass transfer.  Additional advanced 

representations have also been investigated in response to the need to reliably quantify adsorption 

kinetics for various PFAS compounds in different soils.  Zhou et al. (2021) proposed a universal 

physical law for PFAS adsorption by interpreting the adsorption kinetics as a nonequilibrium 

process with multiple rates, following the tempered one-sided stable density (TOSD) distribution.  

Several PFAS adsorption kinetic studies were reviewed and described, and then the TOSD-based 

models were successfully validated against these published data.  In addition, a recent study by 

 
1 Equations and corresponding comments in Table 3 are based on Sima and Jaffé (2021). 
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(Fabregat-Palau et al. 2021) represented sorption behavior of PFAs compounds in soil by 

modelling relative sorption at organic carbon and mineral sites.  The distribution coefficient (Kd) 

of was predicted for PFCAs and PFSAs (3 ≥ C ≥ 11) using only the organic carbon (OC) and 

silt/clay content information for the soil. 

PFAS concentrations in the subsurface tend to be very low, resulting in linear sorption isotherms 

being appropriate for the majority of practical modelling requirements (Brusseau and Van Glubt 

2019).  Sorption kinetics are generally most important during the initial exposure of sediment to 

PFAS (for which the time scales are relatively under natural conditions) and when the system 

hydraulics are changing (Zhang et al. 2019; Haggerty and Gorelick 1994).  Although desorption 

kinetics can affect the efficiency of a remediation process, few studies have measured desorption 

kinetics (Sima and Jaffé 2021).  Haggerty and Gorelick 1994 describe an immobile/mobile system 

for contaminant transport with kinetic adsorption/desorption based on a mass transfer approach.  

Their “one-site” first-order mass transfer approach generically represents processes for (1) sorption 

of contaminants onto and off of mineral and organic matter surfaces (chemical nonequilibrium), 

(2) diffusion into and out of minerals and organic matter (intra-sorbent diffusion non-equilibrium) 

and (3) diffusion into and out of lithologies of low permeability and smaller stagnant zone 

(transport-related, or physical nonequilibrium). 

2.2.2 Transformation and Degradation 

PFAS chemistry generally results in strong persistence and recalcitrance under natural environ-

mental conditions, posing challenges for remediation, compared to other better-understood 

contaminants (e.g., petroleum hydrocarbons, chlorinated solvents, metals, etc.).  Transformation 

through biological (e.g., microbial) or chemical (e.g., oxidation/reduction) processes has been 

demonstrated for ex situ processes, and in situ approaches are being investigated.  A brief review 

of select potentially applicable in situ transformation/degradation technologies is provided below, 

although most technologies are yet to be experimentally verified beyond bench-scale. 

2.2.2.1 Chemical Oxidation 

Chemical oxidation is a common in situ treatment method for certain environmental contaminants.  

Typically, such technologies use direct transfer of electrons to electron acceptors to transform or 

degrade the target contaminant (Leung et al. 2022).  The highly electronegative fluorine atoms 

within PFAAs, however, reduce the electron density of functional groups thus preventing oxidative 

attacks under general oxidizing conditions.  To overcome this challenge, more reactive free 

radicals have been investigated (Kucharzyk et al. 2017; Vecitis et al. 2009).  Mitchell et al. (2013) 

investigated degradation of PFOA by a catalyzed hydrogen peroxide process that generates 

additional reactive oxygen species, such as perhydroxyl radicals, superoxide radical anions, and 

hydroperoxide anions.  In reactions where hydroperoxide was generated as the sole reactant in 

solutions at an elevated pH, PFOA was reduced by 80% with no detectable degradation products.  

A more cost-effective and field-applicable strategy, however, may be thermally activated 

persulfate, which produces sulfate radicals that can degrade PFAS.  Park et al. (2016) achieved 

complete decomposition of PFOA using thermally activated (60 °C) persulfate, even in the 

presence of polycyclic aromatic hydrocarbon co-contaminants.  Notably, however, PFOS did not 
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degrade under the range of thermal experimental conditions applied, suggesting that a multi-

faceted treatment system would likely be needed to address both PFOA and PFOS. 

Crimi et al. (2017) conducted a comprehensive investigation using a ‘treatment train’ approach 

involving low cost in situ horizontal reactive media wells.  Granular activated carbon was used to 

sorb and concentrate PFAS from AFFF impacted media, followed by contaminant destruction and 

GAC regeneration using activated persulfate oxidation.  Although degradation of PFOA was 

enhanced (95% degradation within 24 hours) using multiple oxidant doses of lower concentrations, 

results confirmed previous findings that PFOS is resistant to degradation by heat-activated 

persulfate (S. Park et al., 2016). 

2.2.2.2 Chemical Reduction 

Based on experience with other contaminants, such as halogenated hydrocarbons (Burris et al. 

1996; Dror and Schlautman 2004; Gantzer and Wackett 1991), reductive dehalogenation through 

chemical methods should be an applicable mechanism for PFAS remediation through fluoride 

elimination.  Several studies have investigated reductive defluorination approaches, with PFAA 

degradation testing using reductants such as zero valent iron (ZVI), modified Fenton’s reagent, 

and dithionite (Leung et al. 2022; Mitchell et al. 2013; Vellanki et al. 2013; Xia and Liu 2020).  In 

one study (Ochoa-Herrera et al. 2008), catalyzed reductive dehalogenation of PFOS was achieved 

by electron transfer mediators under anoxic conditions and at increased temperatures (70 °C).  The 

process occurred more rapidly for branched versus straight-chain PFAS chemicals.  Lee et al. 

(2017) investigated the use of titanium(III) citrate in the presence of catalysts (vitamin B12 and 

nano zero valent copper) to reductively defluorinate PFOA.  The degradation pathway involved 

the removal of electrons from PFOA by vitamin B12 and the formation of cobalt-carbon 

intermediates.  The precursor complex was adsorbed on the surface of the nano copper where a 

reaction then formed less-fluorinated products.  The overall reaction efficiency was shown to 

increase under basic pH conditions.  The study (Lee et al. 2017) reported 65% PFOA removal with 

no release of short chain intermediates when using an initial pH of 9.0 and a temperature of 70 °C. 

2.2.2.3 Microbial Degradation 

There is growing evidence that PFAS compounds are reactive and will transform in the 

environment through biological processes mediated by bacteria, fungi, and enzymes (Yu et al. 

2022; Zhang et al. 2022; Berhanu et al. 2023; Grgas et al. 2023).  For example, PFAA precursors, 

including PFOA and PFOS, can biodegrade through various polyfluorinated intermediates to 

produce more mobile PFAAs as terminal products (Newell et al. 2021).  Biodegradation of PFAS 

is generally understood to involve enzymes that directly remove fluorine atoms by either adding 

oxygen or electrons across the F-C bond, allowing other normal assimilation enzymes to break 

down the rest of the compound (Shahsavari et al. 2021).  Studies have elucidated potential 

degradation and/or transformation pathways under certain natural and laboratory settings, but 

detailed kinetic information is lacking, and transformation products are often not able to be verified 

experimentally (Mejia-Avendaño et al. 2016; Nickerson et al. 2021; Weber et al. 2022; Zhang et 

al. 2022).  Conversion is generally slow, with low product yields.  Reaction pathways often have 

multiple intermediates, are generally branched, and mass balance accounting is a major challenge 

(Zhang et al. 2022). 
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Emerging trends in PFAS biodegradation and/or biotransformation are summarized below. 

• Combined biotic/abiotic degradation or transformation shows a direct correlation to soil 

nutrient status and PFAS sorption. 

• High molecular weight PFAS compounds break down to a diverse catalog of less well-

known, low molecular weight chemicals that cannot yet be measured reliably. 

• Molecular weight is a good indicator of compound stability (stability generally increases 

with decreasing molecular weight). 

• Many reactions target and transform the functional group of PFASs, yielding varied 

polyfluorinated compounds. 

• Proposed pathways for different compounds substantiate defluorination reactions, however, 

the specifics are not well understood. 

Specific biodegradation for PFOA and PFOS was described by Huang and Jaffé (2019) for a pure 

culture of an autotroph strain Acidimicrobium sp. A6, which is known to promote the Feammox 

process.  The Feammox process is a relatively novel pathway in the nitrogen cycle by which the 

anaerobic oxidation of ammonium (NH4
+) occurs under iron-reducing conditions.  The study 

reported the strain is common at iron rich sites where soil pH is < 7.  After 100 days of incubation, 

50% of detected POFA was transformed to intermediate products of perfluorobutanoic acid 

(PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), and perfluoro-

heptanoic acid (PFHpA) in enriched microbial cultures.  The proposed mechanism of degradation 

is defluorination while reducing iron and using ammonium or hydrogen as the electron donor. 

Currently, the best described biotic pathways are the aerobic degradation of 8:2 and 6:2 FTOH 

(Liu et al. 2010; Wang et al. 2009; Harding-Marjanovic et al. 2015; Yan et al. 2022).  Proposed 

pathways have largely been derived from laboratory-scale investigations.  The recent study by Yan 

et al. (2022) investigated the biotransformation of 8:2 FTOH under nitrate-, iron-, and sulfate-

reducing conditions in microcosms of AFFF impacted soils, which is a closer representation of 

fate in the natural environment.  Different transformation products were detected, depending on 

the reducing agent, and two new compounds were identified during the biotransformation of 8:2 

FTOH.  Furthermore, biotransformation was found to be fastest under oxic conditions.  The 

biotransformation pathways proposed by Yan et al. (2022) for 8:2 FTOH under various redox 

conditions are shown in Figure 2. 
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Figure 2. 8:2 FTOH biodegradation pathways proposed by Yan et al. (2022).  Chemicals in 

rectangular boxes (solid and dashed) were detected in the study, while chemicals in 

brackets were not (though the paths are proposed in other studies).  Solid arrows are 

expected paths, dashed arrows are uncertain paths, with double arrows indicating a 

multi-step process.  Figure from Yan et al. (2022). 

2.3 Remediation Technologies Summary 

Research on PFAS chemicals is extensive and covers all aspects, including analytical 

quantification, determination of properties, toxicology, ex situ treatment, and in situ remediation.  

The stability of PFAS chemicals results in strong persistence and recalcitrance (particularly under 

natural environmental conditions in the subsurface), posing challenges for remediation.  There are 

many unknowns, including what PFAS chemicals there are (with new ones continuing to be 

identified), degradation pathways, reaction rates, etc.  Many different treatment approaches have 

been developed using traditional principles (e.g., adsorption, ion exchange, advanced oxidation, 

thermal, and biological) and innovative methods (e.g., photolysis, non-thermal plasma, sonolytic, 

radiolytic).  To date, sorption with activated carbon is the only fully available in situ treatment for 

PFAS-impacted groundwater, though long-term performance is still being investigated.  Work is 

progressing on other technologies for in situ PFAS transformation/degradation, with many 

proposed approaches, mechanisms, reaction pathways, and modeling approaches.  Reactive 
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approaches have challenges in detecting/verifying transformation products (which have the 

potential to be more problematic that the parent chemicals) and thus with closing the mass balance.  

Given the wide array of PFAS chemicals and transformation products, remediation may need 

multi-step treatment trains to fully address the PFAS contamination.  There is a lot of promise in 

the current research on PFAS treatment/remediation, but there is also a lot left to learn. 
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3.0 Reaction Kinetics Modules 

The objective of this work was to provide initial functionality for representing PFAS migration 

and reaction in groundwater aquifer flow and transport models through development of kinetic 

reaction modules.  The intent with these PFAS reaction modules was to provide tools for 

practitioners to aid in the selection, design, and assessment of potential in situ PFAS remediation 

strategies.  Toward this objective, two reaction modules were selected for development:  

kinetically limited adsorption and reactive transformation/degradation.  As noted previously, the 

reaction modules were developed for application with the RT3D multi-species, three-dimensional 

reactive contaminant transport code for groundwater modeling (Clement 1997; Clement et al. 

1998).  Implementation of reaction modules for RT3D is convenient because the reaction 

mechanisms are encapsulated in a code module that is compiled into a dynamic link library (DLL).  

Thus, no changes are needed to the RT3D code.  Rather, the RT3D code is simply run with the 

correct “rxns.dll” file for the reaction kinetics of interest.  Note that RT3D (as with sister codes 

such as MT3DMS) uses the MODFLOW (Harbaugh 2005) flow solution to simulate reactive 

contaminant transport. 

Note that application of either of these reaction modules will require that practitioners determine 

their relevance to a particular site and remediation approach, and whether the assumptions and 

uncertainty are acceptable.  That is, professional judgement and site-specific information will play 

a role in whether these reaction modules are suitable for remediation decision-making at a given 

site. 

The following sections describe the reaction modules for kinetically limited sorption and 

transformation of parent PFAS compounds in a reaction network.  These reaction modules were 

based on selected approaches discussed in the PFAS remediation technologies overview in Section 

2.0.  It is anticipated that, as PFAS remediation technologies and scientific understanding 

advances, these modules would be refined or replaced to match new knowledge. 

3.1 Kinetically Limited Adsorption Reaction Module 

Out of the wide range of research and approaches related to PFAS adsorption are discussed in 

Section 2.2.1, the mass transfer approach of Haggerty and Gorelick (1994) was selected to describe 

kinetically limited adsorption/desorption for a system with both mobile (dissolved phase) and 

immobile (sorbed phase) constituents. 

3.1.1 Description of the Kinetics and Code 

The mass transfer approach equations generically account for chemical nonequilibrium, intra-

sorbent diffusion non-equilibrium, and transport-related physical nonequilibrium.  In this scheme, 

the concentration difference between dissolved and sorbed phases is the driving force and the rate 

of adsorption (positive difference) or desorption (negative difference) is controlled by the mass 

transfer coefficient.  Figure 3 shows the differential equations that describe the kinetically limited 

adsorption for the two tracked species.  Note that the “Kd” variable is used to translate the sorbed-

phase concentration (e.g., µg/g) into an aqueous concentration (µg/L) based on linear equilibrium.  

If a different equilibrium distribution approach were more appropriate, the code could be modified 
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to use the Langmuir, Freundlich, or other isotherm (see Section 2.2.1.2).  The porosity and bulk 

density used in the groundwater model are intended to reflect subsurface formation properties, 

which may be spatially variable.  The first order mass transfer coefficient, eta, can also be specified 

as spatially variable to reflect variations in geochemistry/mineralogy or distribution of remediation 

amendments (e.g., activated carbon).  The appropriate values for the mass transfer coefficient and 

distribution coefficient will depend on the specific PFAS chemical involved, formation properties, 

and the geochemical conditions. 

 

!     rxns_PFAS_sorption 
!     ------------------ 
!       Two-species, spatially variable model for modeling kinetic mass  
!       transfer of contaminants between aqueous and sorbed-phases. 
!       The approach here is based on the mass-transfer model described by  
!       Haggerty and Gorelick (1994, Water Resources Research, 30(2):435-446). 
!       The model is given by the differential equations: 
!         
!              d(Caq)                  /        Cs  \ 
!              -----  =        - eta × | Caq - ---- | 
!                dt                    \        Kd  / 
!         
!              d(Cs)                   /        Cs  \ 
!       rhob × -----  =  poros × eta × | Caq - ---- | 
!                dt                    \        Kd  / 
!        
!        where eta   = first-order mass transfer coefficient [1/T] 
!              Kd    = distribution (partition) coefficient [L³/M] 
!              Cs    = solid-phase concentration [M/M] 
!              Caq   = aqueous concentration [M/L³] 
!              rhob  = bulk density [M/L³] 
!              poros = effective porosity [--] 
!              t     = time [T] 
 

Figure 3. Differential equations used in the kinetically limited adsorption reaction module. 

3.1.2 Example Reaction Module Application 

The kinetically limited adsorption reaction module is flexible enough to allow users to investigate 

a range of remediation scenarios.  The reaction module allows specification of the mass transfer 

rate (and the distribution coefficient) as spatially variable values.  Thus, the user could define 

(based on laboratory or field studies) how the adsorption varies as a result of differing formation 

geochemistry or mineralogy.  Another scenario that can be simulated is spatial variations in 

adsorption due to application of a permeable reactive barrier (i.e., PRB or in situ treatment 

wall/zone) or other volumetric distribution of sorbent in situ.  This reaction module does not track 

transport of sorbent as a species (and RT3D does not have functionality for tracking colloid 

transport).  However, changes in adsorption due to changes in sorbent distribution over time can 

be tracked by breaking up the groundwater simulation into multiple stress periods where each 

stress period has a different spatial distribution of sorbent, as reflected by the mass transfer 

coefficient values. 

As an example to illustrate application of this kinetically limited adsorption reaction module, a 

groundwater model was configured with flow from left to right, a PRB treatment zone, and a 
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contaminant source entering from the left.  Figure 4 shows simulation results for this example with 

a constant contaminant source and compares the results for plain linear equilibrium adsorption to 

the kinetically limited adsorption.  As with any adsorptive technology, as the sorbent approaches 

or reaches its loading capacity, contaminant mass will migrate through that zone of loaded sorbent.  

Sorbents that can concurrently sequester (such as strontium-90 incorporation into apatite minerals) 

or facilitate degradation provide an extra element of treatment.  Regardless, a constant source will 

be challenging for an adsorption approach. 

 

Figure 4. Comparison of equilibrium linear sorption and kinetically limited sorption for the 

same simulation duration and a constant contaminant source as the contamination 

passes through an adsorptive treatment zone. 

When a site either had a single, finite release or if the source has been removed/controlled, then 

the dissolved phase plume is only dealing with a finite plume, instead of a continued supply of 

contamination from a source.  A finite or “detached” dissolved phase plume can be a more tractable 

remediation problem.  Figure 5 shows the same simulation configuration as in Figure 4, but the 

source is a pulse that has a finite initial duration before it is removed/controlled.  The images in 

Figure 5 represent dissolved phase plume migration over time as it encounters a treatment zone 

and part of the mass is sorbed while part of the mass continues downgradient.  Figure 6 shows the 

same simulation, but in a 3D view with both the dissolved phase and the sorbed phase. 
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Figure 5. Time series plan view of dissolved contaminant transport and kinetic adsorption 

through a reactive zone for a pulse (transient release) of contaminant from a source. 



PNNL-35136 

Reaction Kinetics Modules 19 
 

 

Figure 6. Three-dimensional view of time series dissolved (a) and sorbed (b) concentrations as 

a pulse of a contaminant transports through a treatment zone where kinetically limited 

sorption occurs (same simulation conditions as for Figure 5). 

3.2 FTOH Degradation Reaction Module 

The objective for the second RT3D reaction kinetics module was to develop a reactive transport 

module for spatially variable PFAS transformation reactions from parent compounds to daughter 

products.  As discussed in Section 2.2.2.3, one of the best described biotic degradation pathways 

is that for transformation of 8:2 FTOH, which has been observed in the laboratory to occur under 

a range of aerobic and reducing conditions.  The reaction scheme described in Yan et al (2022) 

was selected for implementation because it was deemed a closer representation of AFFF 

contaminant fate in the natural environment.  Figure 7 shows the reaction network of interest, 

starting with 8:2 FTOH and continuing with transformation to multiple daughter products.  The 

chemical species that were not observed by Yan et al. (2022) were not included in this scheme. 
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Figure 7. FTOH biological degradation reaction pathways after Yan et al. (2022), excluding 

chemical species not observed (see Figure 2).  The reaction module allows user 

control over the active pathways and rates, including spatially variable activity. 

3.2.1 Description of the Kinetics and Code 

The reaction network of Figure 7 was translated into a set of differential equations to describe the 

first-order transformation from a parent to one or more daughter products.  Figure 8 describes the 

terminology used for the variables and the chemical species names.  There are three key variables 

related to the transformation reactions.  The f_<daughter>_<parent> parameters represent the 

“mass yield” of daughter species that is produced from a parent species.  The mass yield is simply 

the ratio of the molecular weights.  Setting the mass yields to 1.0 is equivalent to running a 

simulation in mol/L (instead of mass units such as µg/L).  The y_<daughter>_<parent> parameters 

represent the stoichiometric yield of a given daughter species from transformation of a parent 

species.  For example, stoichiometric yields of 0.3 and 0.7 for two daughter products that come 

from the same parent species means that 30% of the transformation of one mole of parent results 

in one daughter species while the other daughter species is 70% of the mole of parent transformed.  

If a reaction pathway is inactive for a given set of conditions, then the stoichiometric yield would 

be zero.  The final key parameters are the k_<parent> values, which represent the first-order 

degradation rate of a chemical species.  Another way to turn off a reaction pathway is to set the 

degradation rate to a value of zero.  The full set of parameters used in this reaction module are 

listed in Table 4, in the required order and with an indication of whether the parameter is constant 

or if it can be constant or spatially variable.  For parameters 15-40, they must either all be spatially 

constant or all spatially variable. 
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!  dydt(i) = change in ith species concentration over time [mol/L/d or mg/L/d] 
!  reta(i) = retardation factor for the ith species  [——] 
!  f_<daughter>_<parent> = mass yield of daughter from parent [(g/mol) / (g/mol)] 
!  y_<daughter>_<parent> = stoichiometric yield of daughter from parent [mol / mol] 
!  k_<parent> = first-order decay rate of parent species [1/d] 
! 
!   ftoh82    = 8:2 FTOH 
!   ftca82    = 8:2 FTCA 
!   ftua82    = 8:2 FTUA 
!   acid3f73  = 3-F-7:3 acid 
!   pfh1h     = 1H-perfluoroheptane 
!   acid73u   = 7:3 U acid 
!   amide73u  = 7:3 U amide 
!   sftoh72   = 7:2 sFTOH 
!   acid73    = 7:3 acid 
!   acid3oh73 = 3-OH-7:3 acid 
!   pfhxa     = PFHxA 
!   pfoa      = PFOA 
 

Figure 8. Terminology for the variables used in the FTOH biological degradation reaction 

module code. 

Table 4. Reaction parameters for the FTOH biological degradation reaction module. 

# Type* 
Mass Yield 

(g/mol) / (g/mol) 
 # Type* 

Stoichiometric Yield 
(mol / mol) 

 # Type* 
First-order 
Decay Rate 

(1/d) 

1 C y_ftca82_ftoh82  15 C / V f_ftca82_ftoh82  29 C / V k_ftoh82 

2 C y_ftua82_ftca82  16 C / V f_ftua82_ftca82  30 C / V k_ftca82 

3 C y_acid3f73_ftua82  17 C / V f_acid3f73_ftua82  31 C / V k_ftua82 

4 C y_pfh1h_ftua82  18 C / V f_pfh1h_ftua82  32 C / V k_acid3f73 

5 C y_acid73u_ftua82  19 C / V f_acid73u_ftua82  33 C / V k_pfh1h 

6 C y_sftoh72_ftua82  20 C / V f_sftoh72_ftua82  34 C / V k_acid73u 

7 C y_acid73u_acid3f73  21 C / V f_acid73u_acid3f73  35 C / V k_amide73u 

8 C y_amide73u_acid73u  22 C / V f_amide73u_acid73u  36 C / V k_sftoh72 

9 C y_acid73_acid73u  23 C / V f_acid73_acid73u  37 C / V k_acid73 

10 C y_acid3oh73_acid73u  24 C / V f_acid3oh73_acid73u  38 C / V k_acid3oh73 

11 C y_pfhxa_acid73u  25 C / V f_pfhxa_acid73u  39 C / V k_pfhxa 

12 C y_pfhxa_amide73u  26 C / V f_pfhxa_amide73u  40 C / V k_pfoa 

13 C y_pfoa_amide73u  27 C / V f_pfoa_amide73u     

14 C y_pfoa_sftoh72  28 C / V f_pfoa_sftoh72     

* C = spatially constant reaction parameter, C / V = can be either spatially constant or spatially variable 

 

Figure 9 describes the differential equations for each chemical species in the FTOH reaction 

network.  The transformations for a given chemical species may involve production from a parent, 

degradation to form daughter species, or both. 
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! Differential Reaction Equations 
!- ftoh82 
      dydt( 1) = (- k_ftoh82 * ftoh82 ) 
     &              / reta(1) 
!- ftca82 
      dydt( 2) = (  y_ftca82_ftoh82 * f_ftca82_ftoh82 * k_ftoh82 * ftoh82  
     &            - k_ftca82 * ftca82 ) 
     &              / reta(2) 
!- ftua82 
      dydt( 3) = (  y_ftua82_ftca82 * f_ftua82_ftca82 * k_ftca82 * ftca82  
     &            - k_ftua82 * ftua82 ) 
     &              / reta(3) 
!- acid3f73 
      dydt( 4) = (  y_acid3f73_ftua82 * f_acid3f73_ftua82 * k_ftua82 * ftua82  
     &            - k_acid3f73 * acid3f73 ) 
     &              / reta(4) 
!- pfh1h 
      dydt( 5) = (  y_pfh1h_ftua82 * f_pfh1h_ftua82 * k_ftua82 * ftua82  
     &            - k_pfh1h * pfh1h ) 
     &              / reta(5) 
!- acid73u 
      dydt( 6) = (  y_acid73u_ftua82 * f_acid73u_ftua82 * k_ftua82 * ftua82  
     &            + y_acid73u_acid3f73 * f_acid73u_acid3f73 * k_acid3f73 * acid3f73  
     &            - k_acid73u * acid73u ) 
     &              / reta(6) 
!- amide73u 
      dydt( 7) = (  y_amide73u_acid73u * f_amide73u_acid73u * k_acid73u * acid73u  
     &            - k_amide73u * amide73u ) 
     &              / reta(7) 
!- sftoh72 
      dydt( 8) = (  y_sftoh72_ftua82 * f_sftoh72_ftua82 * k_ftua82 * ftua82  
     &            - k_sftoh72 * sftoh72 ) 
     &              / reta(8) 
!- acid73 
      dydt( 9) = (  y_acid73_acid73u * f_acid73_acid73u * k_acid73u * acid73u  
     &            - k_acid73 * acid73 ) 
     &              / reta(9) 
!- acid3oh73 
      dydt(10) = (  y_acid3oh73_acid73u * f_acid3oh73_acid73u * k_acid73u * acid73u  
     &            - k_acid3oh73 * acid3oh73 ) 
     &              / reta(10) 
!- pfhxa 
      dydt(11) = (  y_pfhxa_acid73u * f_pfhxa_acid73u * k_acid73u * acid73u  
     &            + y_pfhxa_amide73u * f_pfhxa_amide73u * k_amide73u * amide73u  
     &            - k_pfhxa * pfhxa ) 
     &              / reta(11) 
!- pfoa 
      dydt(12) = (  y_pfoa_amide73u * f_pfoa_amide73u * k_amide73u * amide73u  
     &            + y_pfoa_sftoh72 * f_pfoa_sftoh72 * k_sftoh72 * sftoh72  
     &            - k_pfoa * pfoa ) 
     &              / reta(12) 
 

Figure 9. Code listing for the differential equations used in the FTOH biological degradation 

reaction module (see Figure 8 for terminology). 

3.2.2 Example Reaction Module Application 

Four different cases (A-D) with different (and arbitrary) initial conditions (Table 5) and reaction 

parameter values (Table 6) were simulated as examples of applying the FTOH reaction module. 
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Table 5. Initial species concentrations a for the FTOH reaction module example simulations. 

 Initial Concentration 
(mol/L) 

Species Name Case A Case B Case C Case D 

8:2 FTOH 100 100 100 100 

8:2 FTCA 0 0 60 90 

8:2 FTUA 0 0 20 80 

3-F-7:3 acid 0 0 0 70 

1H-perfluoroheptane 0 0 0 60 

7:3 U acid 0 0 0 50 

7:3 U amide 0 0 0 40 

7:2 sFTOH 0 0 0 30 

7:3 acid 0 0 0 20 

3-OH-7:3 acid 0 0 0 10 

PFHxA 0 0 0 0 

PFOA 0 0 0 0 

Table 6. Reaction parameter values a for the example FTOH reaction module simulations. 

Reaction Parameter Name Case A Case B Case C Case D 

f_ftca82_ftoh82 1 1 1 1 

f_ftua82_ftca82 1 1 1 1 

f_acid3f73_ftua82 0.25 0.5 0.5 0.25 

f_pfh1h_ftua82 0.25 0 0 0.25 

f_acid73u_ftua82 0.25 0.2 0.1 0.25 

f_sftoh72_ftua82 0.25 0.3 0.4 0.25 

f_acid73u_acid3f73 1 1 1 1 

f_amide73u_acid73u 0.25 0.2 0.1 0.25 

f_acid73_acid73u 0.25 0.3 0.3 0.25 

f_acid3oh73_acid73u 0.25 0.4 0.1 0.25 

f_pfhxa_acid73u 0.25 0.1 0.5 0.25 

f_pfhxa_amide73u 0.5 0.4 0.2 0.5 

f_pfoa_amide73u 0.5 0.6 0.8 0.5 

f_pfoa_sftoh72 1 1 1 1 

k_ftoh82 0.3 0.3 0.3 0.3 

k_ftca82 0.2 0.2 0.2 0.2 

k_ftua82 0.1 0.1 0.1 0.1 

k_acid3f73 0.06 0.06 0.06 0.06 

k_pfh1h 0 0 0 0 

k_acid73u 0.03 0.03 0.03 0.03 

k_amide73u 0.2 0.2 0.2 0.2 

k_sftoh72 0.04 0.04 0.04 0.04 

k_acid73 0 0 0.003 0 

k_acid3oh73 0 0 0.002 0 

k_pfhxa 0 0 0.001 0 

k_pfoa 0 0 0 0 

a Shaded cells differ from Case A. 
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Figures 10 - 13 show the time series concentration data for Cases A-D, respectively.  As the initial 

concentrations, reaction pathway stoichiometry, and transformation rates are adjusted, a different 

blend of transformation products is produced, with differing concentration magnitudes and rates 

of accumulation and loss.  The reaction parameter values selected were entirely arbitrary (and the 

mass yields were all set to 1.0 to use mol/L concentrations), so these results are not intended for 

interpretation of actual rates.  Site-specific microcosms and/or field studies would be used in a 

real-world application to determine appropriate parameter values. 

 

Figure 10. Time series data for the transformation reactions in FTOH reaction module Case A. 

 

 

Figure 11. Time series data for the transformation reactions in FTOH reaction module Case B. 
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Figure 12. Time series data for the transformation reactions in FTOH reaction module Case C. 

 

 

Figure 13. Time series data for the transformation reactions in FTOH reaction module Case D. 
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4.0 Summary 

As discussed in Section 2.3, ongoing research on PFAS chemicals is extensive and covers all 

aspects, including analytical quantification, determination of properties, toxicology, ex situ 

treatment, and in situ remediation.  PFAS chemicals are very stable and thus persistent/recalcitrant 

in the environment.  Although there are many unknowns about PFAS chemicals, degradation 

pathways, reaction rates, etc., many different sorption, oxidation, reduction, biological, and 

innovative treatment approaches are being developed.  Sorption with activated carbon is currently 

the only fully available in situ treatment technology for PFAS-impacted groundwater.  Given the 

wide array of PFAS chemicals and transformation products, remediation may need multi-step 

treatment trains to fully address the PFAS contamination. 

The work here provides kinetic reaction modules that represent an initial cut at functionality 

representing PFAS migration and reaction in groundwater aquifer flow and transport models.  One 

reaction kinetics module provides a method to model kinetically limited adsorption using a mass 

transfer model.  The second reaction module represents biological transformation of 8:2 FTOH 

and daughter species, illustrating how a complex reaction pathway network can be represented.  

Both reaction modules allow for spatially variable parameter values so that a variety of remediation 

approaches (e.g., a PRB or volumetric treatment or variations in geochemical conditions) can be 

simulated.  The intent with these PFAS reaction modules is to provide tools for practitioners to aid 

in the selection, design, and assessment of potential in situ PFAS remediation strategies.  

Application of these modules will require that practitioners determine whether these reaction 

modules are relevant to a particular site and remediation approach, and whether the assumptions 

and uncertainty are acceptable.  That is, professional judgement and site-specific information will 

play a role in whether these reaction modules are suitable for remediation decision-making at a 

given site.  It is anticipated that, as PFAS remediation technologies and scientific understanding 

advances, these modules would be refined or replaced to match new knowledge. 
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