A Review: PFAS Adsorption, Sensing, and Remediation with Engineered Nanoporous Materials – 21193
Radha Kishan Motkuri,* Julian Schmid,* Dushyant Barpaga,* Yu H. Cheng,* Gabriel Hall,*
Vaithiyalingam Shutthanandan,* Sayandev Chatterjee,** Sagnik Basuray,** Pete McGrail*
*Pacific Northwest National Laboratory, Richland, Washington 99352, United States
**Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of
Technology, Newark, New Jersey 07102, United States
***Essence Diagnostics LLC, Newark, New Jersey, United States

ABSTRACT
Per- and polyfluoroalkyl substances (PFAS) are among the most abundant environmental contaminant
species. They are widespread due to uncontrolled industrial and commercial use and have been linked to
health risks such as cancer. With rising global concerns about the public health effects of PFAS, there is
an incentive to develop strategies for reliable monitoring and effective PFAS removal, particularly in
drinking water. Traditional PFAS sensing techniques are inefficient due to long measurement times, high
labor input, high costs, and limitations to ex situ analysis. Current commercially available sorbents for
PFAS removal generally lack the ability to capture PFAS components rapidly and quantitatively.
Furthermore, existing sorbents are notably inefficient in removing the more toxic, smaller PFAS chemical
chains. Large-scale applications of these methods tend to be costly and resource-intensive. Pacific
Northwest National Laboratory has developed unique strategies for PFAS sensing and removal with
capture probe technology that has an affinity for fluorocarbons, including PFAS. For both sensing and
removal, the customizable capture probes can target specific PFAS compounds since they used a metal-
organic framework (MOF)-based technology that can be fine-tuned and molecularly tailored. This
tailoring of the materials enables high PFAS sensitivity, selectivity, and faster uptake. We developed a
sensing technique based on the interactions of the capture probes with PFAS at the molecular level and
further transduced that to a quantifiable electrochemical response. Tunable capture probes with a range of
detection sensitivities allow for faster and more sensitive PFAS detection limits as low as 0.5 ng/L (compared to the U.S. Environmental Protection Agency health advisory level of 70 ng/L). Customization
of the capture probe results in improved sorption capacities (fast kinetics and high capacities) compared
to commercial granular activated carbons. This research applied various experimental and modeling tools
to improve understanding the molecular level interactions of PFAS and sorbent materials and their unique
adsorption properties
INTRODUCTION
Per- and polyfluoroalkyl substances (PFAS) are a group of over 5000 human-made compounds that consist of a hydrophobic, fluorine-saturated carbon chain, and a hydrophilic functional group (Fig. 1). Many PFAS are resistant to grease, oil, water, and heat, which makes them suitable to be used in a range of applications, such as stain- and water-resistant fabrics and carpeting, cleaning products, paints, and fire-fighting foams. Some PFAS are authorized by the U.S. Food and Drug Administration for limited use in cookware, food packaging, and food processing equipment. Widespread use of these materials coupled with their stability against degradation under the influence of the environment has led to an accumulation of considerable amounts of PFAS in air, soil, and water. This PFAS accumulation is believed to pose a greater risk to human health, compelling the U.S. Environmental Protection Agency (EPA) to establish the health advisory levels for perfluorooctanesulfonate (PFOS) and its carboxylic acid analog PFOA in drinking water at 70 parts per trillion [1-3].

Remediation strategies to address this challenge include sensing, capturing, and destruction of PFAS contaminations in drinking water. Conventional approaches to remediate PFAS, like air stripping, thermal treatment, soil vapor extraction, and hydroxyl-based chemical oxidation, have been shown to be ineffective in treating PFAS. A more promising approach that has already found an application for PFAS remediation and is worth investigating further are sorption-based removal techniques. The most widely applied material that has been used as an adsorbent for this purpose is activated carbon. While granular activated carbon (GAC) has shown to remove PFOS from groundwater with good efficiency, it was not as efficient in removing shorter chain PFAS due to slower sorption kinetics and suffered from very low sorption capacities. New emerging sorbents need to be tailored to exhibit high affinity and quick adsorption kinetics toward shorter chain PFAS like perfluorobutyrates (PFBA) and perfluorobutanesulfonic acid (PFBS) in order to fill that gap [4-8].

In this direction, our efforts have focused on developing novel adsorbent materials that have a high affinity toward the desired PFAS compound paired with rapid sorption kinetics. Over the past decade, Pacific Northwest National Laboratory (PNNL) has generated numerous nanoporous materials for the capture of various fluorocarbons, including C1 to C4 fluorocarbons. Our fluorocarbon adsorption studies have included covalent organic frameworks (COFs), zeolites, hierarchical porous carbons (HPCs) and, metal-organic frameworks (MOFs) as sorbent materials (Fig. 2) [9-11].
Using *in situ* experiments and molecular modeling studies, we observed positive affinities between fluorine groups and the metal center of MOFs [12-15]. More importantly, the knowledge of the exact interactions of the PFAS with the properties of the MOFs provides the opportunity to reveal the mechanism of fluorocarbon adsorption. This information can be used to design future sorbent materials for applications in a fluorine-containing materials, including PFAS.

By fine-tuning the MOF material, we were able to develop materials that showed improved selectivity, sensitivity, and capacity for PFAS adsorption compared to sorbents currently used by U.S. government agencies, such as the Department of Energy (DOE), the Department of Defense (DoD), and the EPA. Tailoring these materials to target PFAS in environmental water sources is a promising approach to further improving material performance. One of our methods was to equip the nanopores of the sorbent materials with appropriate surface functionalities or metal centers. This enhances the interaction between PFAS and the sorbent or the overall treatment particle porosity to achieve higher effectivity of PFAS adsorption. This is important because the affinity between PFAS molecules and the sorbent is maintained even with interferences from highly concentrated impurities, which are ubiquitous in real-world applications.

![Figure 2: Examples of nanoporous materials including MOFs, COFs, HPCs and zeolites [16-22].](image)

DISCUSSION

Capture probes for targeted PFAS adsorption

The pores of the materials such as MOFs, COFs, zeolites, and HPCs were engineered in order to optimize criteria like the surface area and super fluorophilicity of the functional groups or the metal centers. Furthermore, due to the large ratio of water in the samples, the stability of the materials under aqueous conditions must be accounted for. The uptake of various PFAS compounds with different end groups and fluorocarbon chain lengths was tested with solutions of the respective PFAS in deionized water and groundwater. The groundwater used in these studies was obtained from DOE well 299-W19-36 at the Hanford Site (TABLE I).
Solutions of the different concentrations of PFAS were combined with a defined amount of porous materials for a specific amount of time (~300 h). The initial concentration as well as the concentration of the solutions after the contact procedure were measured by 19F nuclear magnetic resonance (NMR). Generally, the materials made for targeted PFAS uptake showed higher adsorption capacity compared to materials employed by DoD (e.g. GAC and weak anion exchangers) due to optimized porosity and sorbent sorbate interactions of the capture probes and the respective PFAS [10, 11, 13, 23, 24].

<table>
<thead>
<tr>
<th>Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/L</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Chloride</td>
</tr>
<tr>
<td>Total Cr</td>
</tr>
<tr>
<td>Cr(VI)</td>
</tr>
<tr>
<td>Magnesium</td>
</tr>
<tr>
<td>Nitrate</td>
</tr>
<tr>
<td>Sodium</td>
</tr>
<tr>
<td>Potassium</td>
</tr>
<tr>
<td>Carbonate</td>
</tr>
<tr>
<td>Organics</td>
</tr>
</tbody>
</table>

The influence of the metal center in MOFs on the efficiency of a sorbent-sorbate system is exemplified using PFOS adsorption on two different MOFs, namely Fe-MIL 101 and Cr-MIL 101 materials [16,13]. For that purpose, ~8 mg of both materials were exposed to 800 µL of 10 mM PFOS solutions in water. The PFOS concentration in the supernatant solution after exposure was quantified by 19F -NMR spectroscopy using the peak at ~79 ppm. The decrease in peak intensity after a long exposure of the materials to the solution was attributed to the continuous disappearance of PFOS from the bulk phase of the supernatant (Fig. 3).

\[
y(t) = A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2}
\]
(Eq. 1)

These in situ NMR experiments show that both the Fe-MIL-101 and Cr-MIL 101 were able to adsorb and immobilize PFOS from the stock solutions. A closer look at our data reveals that PFOS concentration in the bulk solution decreased rapidly in the first minutes of exposure (~30 min) and slowly reach a plateau after longer sorption times (~40 h) (Fig. 4). Fitting the intensity profiles after sorption for the materials with a double exponential decay (Eq. 1) gave further quantitative insight into the performance of the PFOS capturing process.

![Fig. 3. 19F NMR results obtained from 10 mM PFOS/H$_2$O mixed with (a) CrMIL-101 (8.6 mg); (b) Fe-MIL-101 (8.2 mg) after time of exposition at room temperature (~25 °C) [9].](image-url)
A\textsubscript{1} and A\textsubscript{2} represent fit constants, while \(\tau_1\) and \(\tau_2\) are time constants. Comparison of the fitting results (TABLE II) indicates that PFOS sorption on Cr-MIL-101 was accelerated by a factor of 2 versus Fe-MIL-101. Extrapolating the fit to higher time values shows that the plateau indicating the maximum possible removal of PFOS from the bulk phase of the supernatant is reached at \(\sim 250\) h on Fe-MIL-101, while it only takes \(\sim 125\) h to reach the plateau on Cr-MIL-101. We assigned these differences in performance to the higher affinity of the Cr center to both S and F, while the Fe center presumably shows a higher affinity towards softer Lewis bases like the carboxylic acid analog PFOA [9].

![Normalized peak areas of the \(^{19}\text{F} NMR peak centered at ~79 ppm](image)

Fig 4. Normalized peak areas of the \(^{19}\text{F} NMR peak centered at ~79 ppm (O) monitored after different sorption times after addition of 800 \(\mu\text{L}\) of 10 mM PFOS/H\(_2\)O to (a) Cr-MIL-101 (8.6 mg) and (b) Fe-MIL-101 (8.2 mg). Red circles represent collected data while black lines represent fitted curves. Insets show data and corresponding fits for the first 40 h of data collection [9].

We performed X-ray photoelectron spectroscopy (XPS) studies on Cr-MIL-101 and Fe-MIL-101 before and after exposure to PFOS to gain further insight into the PFOS capture mechanism. We observe that the Cr p\(_{3/2}\) region of the pristine Cr-MIL-101 sample resolves into two species at binding energies of 577.1 and 578.2 eV, respectively, with the main contribution coming from the lower oxidation state. After exposure of Cr-MIL-101 to PFOS, the X-ray photoelectron spectra showed an increase in intensity for the higher oxidation state, indicating that Cr is oxidized during exposure to PFOS. A similar, yet smaller change of intensity occurred in the Fe p\(_{3/2}\) region of Fe-MIL-101 shifting the binding energy maxima from 711.8 eV in the pristine sample to 712.1 eV in the sample that was exposed to PFOS. That observation suggests that the sorption affinity of PFOS is larger for Cr than it is for Fe. Unsurprisingly, the opposite shift was apparent in the F region of the XPS spectra for unexposed PFOS, which showed a single, 1 s line at 689.3 eV vs. PFOS that was brought to contact with the MOFs exhibiting a second F environment with lower binding energy at 688.5 eV, indicating a reduction of the F center.

Comparing the fluorine spectra for the two PFOS-exposed MOFs shows that the fluorine atoms in PFOS that were contacted with Fe-MIL-101 have a more reduced environment than PFOS in Cr-MIL-101, pointing at a stronger interaction of the hydrophobic fluorinated PFOS tail with Fe. On the other hand, the S region of the photoelectron spectra indicates a stronger interaction of PFOS with Cr as the 2p\(_{3/2}\) sulfur line is shifting from 169.5 eV for the fresh PFOS sample to 168.3 eV for the sample that was sorbed onto Cr-MIL-101 and 168.8 eV for the sample that was sorbed onto Fe-MIL-101, respectively.
Because the PFOS concentrations in our samples exceeded the critical micelle concentration, suggesting that there are more sulfur-containing moieties exposed to adsorption sites, we give more importance to the S spectra compared to the F spectra for the analysis of the binding affinities of PFOS to the two MOFs. This assumption is supported by the larger change of the intensity shift in the S region of the spectra compared to the F region. Conclusively, because of the above-mentioned points we propose that Cr metal is able to bind the majorly exposed sulfonate groups in PFOS stronger than Fe-MIL-101, leading to higher overall interaction for this host-guest-system [9].

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>τ_1 (s)</th>
<th>A_2</th>
<th>τ_2 (s)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr-MIL-101</td>
<td>0.54</td>
<td>0.6</td>
<td>0.43</td>
<td>29</td>
<td>0.963</td>
</tr>
<tr>
<td>Fe-MIL-101</td>
<td>0.36</td>
<td>0.8</td>
<td>0.63</td>
<td>54</td>
<td>0.976</td>
</tr>
</tbody>
</table>

Incorporation of capture probes into a Microfluidic Impedance Sensor Platform

To evaluate whether PFAS in drinking water is below the EPA thresholds, new sensing techniques for PFAS compounds in drinking water must be developed. Such sensors must be applicable for a spectrum of PFAS compounds that exist at very low concentrations. The sensors must also maintain their functionality when other substances with much higher concentrations are present. Current sensing technologies rely on *ex situ* laboratory techniques, such as liquid chromatography–mass spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS) [25-31]. However, the use of these methods in practical applications is restricted by their lack of adaption to on-site problems or their insufficient sensitivity to meet health advisory requirements.

We developed a high-sensitivity detection technique incorporating our capture probes into an electrochemical platform using electrical impedance spectroscopy (Fig. 5A) [32]. The targeted capture of the PFAS induced an electrical response (increase in impedance). Further measures like optimization of the platform configuration and design and incorporation of additional, sensitive detection modalities have been undertaken to enhance the device sensitivity. Using this methodology, we have achieved detection limits as low as 0.5 ng/L for PFOS and 1.3 ng/L for PFOA, which is significantly below the EPA health advisory level of 70 ng/L recommended by EPA. The detection limit is comparable to quantification limits for state-of-the-art *ex situ* laboratory techniques (TABLE III).

The platform has high sensitivity, accuracy, and precision for a wide variety of PFAS concentrations and has shown its ability to eliminate matrix interferences. Our demonstrated approach can detect multiple PFAS compounds in deionized water and groundwater as a matrix. In general, these sensors have the potential to enhance onsite quantification and remediation of PFAS contamination, in comparison to costly and difficult laboratory analysis techniques. By embedding the MOF capture probes in a microfluidic channel layered with interdigitated microelectrodes (IDµE), we were able to test the binding of PFOS to Cr-MIL-101 with electrochemical impedance spectroscopy (EIS). The sensing principle is based on the capture and binding of PFOS by Cr-MIL-101 leading to alteration of the charge transfer or polarization resistance due to change in the available electrode surface area.
Fig. 5. (A) Schematics of the non-planar interdigitated chip used for PFOS detection with the microchannel cut from tape, filled with Cr-MIL101, and layered between two interdigitated microelectrode arrays (flow ports are indicated as well). (B) Top view of the assembled device. (C) Optical microscopic image of an empty microchannel (where MOF capture probe can be placed) with interdigitated electrodes. (D) Optical microscopic image of the microchannel with interdigitated electrodes filled with Cr-MIL-101. (E) Nyquist plot of the EIS response of the Cr-MIL-101 in 0.1X phosphate buffered saline buffer before and postexposure to (1) 50 μg/L PFOS, (2) 250 ng/L PFOS, and (3) 0.05 ng/L PFOS [32].

With all other circuit elements being chiefly parasitic and not contributing significantly to the resistance, we assume that this charge transfer or polarization resistance change is due to binding of PFOS by Cr-MIL-101 is the key contributor to the sensor signal. The radius of curvature of the semicircular region in the Nyquist plot indicates that the charge transfer resistance increases in the Cr-MIL-101 post-PFOS exposure. This technique allowed detection of PFOS at concentration levels as low as 0.5 ng/L, which is to the best of our knowledge lower than any other in situ employed sensing device results for PFOS detection reported in the literature to date [32].

Our detection limits are comparable to the state of the art for ex situ detection techniques (TABLE III).
TABLE III. A comparison the limits of detection (LOD) for PFOS with our portable electrochemical technique relative to various state-of-the art laboratory-based ex situ techniques.

<table>
<thead>
<tr>
<th>Technique</th>
<th>LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid chromatography-tandem mass spectrometry (LC-MS/MS)</td>
<td>~1 ng/L</td>
</tr>
<tr>
<td>Time-of-flight mass spectrometry</td>
<td>1-10 ng/L</td>
</tr>
<tr>
<td>ex situ ion chromatography mass spectrometry</td>
<td>1-10 pg/L</td>
</tr>
<tr>
<td>Particle-induced gamma-ray</td>
<td>~10 nmol/cm²</td>
</tr>
<tr>
<td>NMR</td>
<td>10 μg/L</td>
</tr>
<tr>
<td>TOP</td>
<td>1-10 ng/L</td>
</tr>
<tr>
<td>Our PNNL electrochemical technique</td>
<td>1 ng/L</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Our preliminary studies show improvement of technology development for both PFAS capture and separation, in terms of speed and capacity, relative to commercial sorbents (namely GAC). Additionally, the tunability of the nanoporous materials shows higher selectivity for the capture of the major representative PFAS from waste streams, groundwater, and industrial water. Ultimately, this technique is beneficial for the long-term removal of PFAS. Similarly, findings from our sensing work strongly suggest that our platform poses a promising approach for environmental monitoring. Further investigations about the transferability of our platform to other targets can be conducted in future work. We believe that this design can also be extended to other challenging emerging contaminants through modification and selection of appropriate receptor probes [9, 33]. The current EPS health advisory focus is on PFOS, or its carboxylate analog PFOA, but there are a total of ~6500 different PFAS molecules known. Recent studies indicate that the smaller chains can have higher toxicity (e.g., GenX). Our work has provided a proof-of-concept for PFOS detection and sensing at health advisory levels established by the EPA, along with capture/separation from water at elevated concentrations. This work provides a foundation for further development of materials for complete remediation of PFAS targets (such as GenX) by tailoring the capture probe.

REFERENCES

