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Accurately estimating 
activity due to Xenon 
isotopes in noble gas 

detectors requires 
attributing observed counts 

to each isotope. Physics 
informed machine learning 
could produce interpretable 

2D Gaussian regions of 
interest that out-perform 
current rectangular ROIs.
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Geant4 simulated 
beta/gamma histograms 

were used to train a neural 
network with a novel 2D 

Gaussian response 
function.

The neural network 
reduced root mean squared 

error by 75% or more for 
each isotope. The resulting 

2D Gaussians were less 
closely linked to known 
emission peaks of the 
isotopes in question.

This method produced 
viable and interpretable 

results but should be 
extended with more 

complex simulations and 
tested on real-world 
calibration samples.
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Introduction

Please do 
not use this 
space, a QR 
code will be 

automatically 
overlayed

Regions of interest for the 10-ROI method 
(Cooper, Auer et al. 2019)

Convolutional neural networks have been shown to be 
able to accurately classify beta/gamma histograms as 
anomalous (Azimi, Afarideh et al. 2021) and have 
produced accurate classification of isotope presence or 
absence and estimation of isotopic concentration in 
simulated samples (Armstrong, Carpency et al. 2021).

Prior Work

Noble gas detection systems are used to detect 
underground nuclear detonations by measuring the 
activity of four Xenon isotopes: Xe-135, Xe-133, Xe-
133m, and Xe-131m. These isotopes are useful due to 
their ability to migrate from a test location to the 
testing stations but are also produced by civil nuclear 
processes. To differentiate between these, gas samples 
are measured with beta/gamma coincidence 
detectors. Events with beta/gamma energies that fall 
within one of 7 or 10 regions of interest (ROI) are 
assumed to come from their respective isotope.

Introduction
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Objectives

Please do 
not use this 
space, a QR 
code will be 

automatically 
overlayed

Using a novel neural network architecture, estimate the number of counts produce by each of 
four Xenon isotopes

To avoid “black box” models, select an architecture that is interpretable and uses physics-
based assumptions (e.g. that ROI’s can be approximated with 2D Gaussian functions of energy)
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Methods and Data
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Data
The data were generated using a GEANT4 
simulation of a detector representative of the 
beta/gamma cells in the International Monitoring 
System (IMS noble gas stations. The dataset 
consisted of 31,000 histograms which were split 
into training, validation, and test sets (80/10/10). 
Detector background was included at a constant 
level.

Network description

The final network consists of forty 2D gaussian 
peaks which are used to weight each count as a 
function of (𝐸! , 𝐸"). These are summed to 
estimate the amplitude of each peak. A weighted 
sum of the peak amplitudes is then used to 
calculate the number of counts from each 
isotope. (𝐸! , 𝜎! , 𝐸" , 𝜎") are learned during 
training.

Network tuning

• Dropout: 25% (final layer)
• Learning algorithm: ADAM (Kingma and Ba 

2014)
• Learning rate: (initial) 5×10#$, reduced on 

training plateau
• Loss function: log(cosh𝐸)
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Results

Please do 
not use this 
space, a QR 
code will be 

automatically 
overlayed

Distribution of errors in units of standard distribution of the true 
values. The neural net results exhibit much lower errors, though 
with some bias in the Xe-135 and Xe-131m predictions.

Weighted ROIs for each of the isotopes of interest. Blue regions are 
added to the count for the isotope and orange regions are 
subtracted. Both Xe-133m and Xe-131m subtract counts from the 
primary Xe-133 ROI (at 𝐸! ≈ 79	𝑘𝑒𝑉). Xe-133m includes a beta 
peak at ≈ 200	𝑘𝑒𝑉 (corresponding to a physical decay peaked at 
198.7	𝑘𝑒𝑉) while Xe-131m subtracts this peak but includes a wider 
peak at a slightly lower beta energy (near physical peaks at 129.4 
and 158.5	𝑘𝑒𝑉, accounting for 61.6% and 28.8% of decays, 
respectively).
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Conclusions and Future Work
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• No Radon or Lead counts were included in the simulations. The network was therefore not trained to 
account for these. More realistic simulations should result in improved peak selection.

• One potential source of error from beta/gamma coincidence detectors is undetected drift in the energy-
to-channel calibration. By introducing these errors as augmentations to the training data, it may be 
possible to generate ROIs that are robust to this calibration drift.

Future Work

• This method accurately attributed counts to appropriate isotopes of Xenon in simulation.
• Physics informed neural networks can produce interpretable models: in this case, the trained 

parameters are presented in the same format as current energy-based ROIs. The resulting peaks closely 
matched the regions of interest from existing literature. This represents both a validation of the current 
ROI method and of the use of interpretable machine learning methods.

• While the results are interpretable, there is a limitation of the architecture; the gradient of the Gaussian 
peaks falls off quickly (~𝑒#%!), which could result in parameters being “trapped” close to their 
initialization position. 

Conclusions
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