

STAX project introduction

- Since the late 1990's, large concentrations of radioactive xenon isotopes have been detected in many measurements
- It was proposed that the radioxenon sources were from the dissolution of nuclear targets used to make radioisotopes for medical treatments and from nuclear power plants
- Further investigation showed backgrounds to be a worldwide phenomena
- The International Monitoring System detects radioactive xenon every day from civil and industrial processes that make radionuclide screening difficult

From Generoso, 2017 CL19 O'BR1 1.00 0.05 0.10 0.50 5.00 0.01 ¹³³Xe (mBq. m⁻³)

Average backgrounds of radioactive xenon in the atmosphere

Overview videos of the worldwide radioxenon background

Place your QR Code here after removing this text box!

INTRODUCTION

OBJECTIVES

METHODS/DATA

RESULTS

CONCLUSION

 $\langle \rangle$

P2.4-341

How radioxenon background impact can be minimized

Measurement at station

B Bq/second \rightarrow C Bq/m³

ATM

calculation

Stack measurement

A Bq/m³

 Use a mathematical model (atmospheric transport model) to determine the expected concentration at the IMS station (Predictable) IMS Station Detection Atoms Detected 10⁴ atoms/day

-IMS Station-

 \succ Net Signal ~ A – C

Place your QR Code here after removing this text box!

INTRODUCTION

OBJECTIVES

METHODS/DATA

RESULTS

CONCLUSION

 $\langle \rangle$

P2.4-341

Radioxenon isotopic ratios

¹³⁵ Xe/ ¹³³ Xe ratio	BWR (n=79)	AGR (n=627)	MIPF (n=8253)
Maximum	3.08	0.40	1.22
Minimum	0.037	0.013	0.0001
Average	0.39	0.11	0.12
Median	0.26	0.09	0.089

INTRODUCTION
OBJECTIVES
METHODS/DATA
RESULTS
CONCLUSION

LABORATORY

P2.4-341

Place your QR Code here after removing this text box!

Conclusions

- The release profile for two different nuclear power reactors are different and dependent on the reactor type
 - The releases from these two nuclear power reactors are dependent on activities at the reactor as no detectable radioxenon is measured during typical steady state operations
- NPP release profiles are significantly different from MIPF, both in the routine and amount released
- The key ¹³⁵Xe/¹³³Xe ratio is not significant different across the two reactor types and MIPF

M.B. Kalinowski, M.P. Tuma / Journal of Environmental Radioactivity 100 (2009) 58-70

The frequency of the data reported from these two nuclear power reactors allow close characterization of the release profiles.

This data is consistent with previously published estimates.

INTRODUCTION OBJECTIVES METHODS/DATA RESULTS CONCLUSION

Place your QR Code here after removing this text box!

P2.4-341

References

- Global radioxenon emission inventory based on nuclear power reactor reports
 - Martin B. Kalinowski, Matthias P. Tuma, Journal of Environmental Radioactivity 100 (2009) 58–70
- Computation and Analysis of the Global Distribution of the Radioxenon Isotope ¹³³Xe based on Emissions from Nuclear Power Plants and Radioisotope Production Facilities and its Relevance for the Verification of the Comprehensive Nuclear-Test-Ban Treaty
 - Gerhard Wotawa, Andreas Becker, Martin Kalinowski, Paul Saey, Matthias Tuma, Matthias Zahringer, Pure Appl. Geophys. 167 (2010), 541–557
- Global Radioxenon Emission Inventory from Nuclear Research Reactors
 - Martin Kalinowski, Pouneh Tayybi, Michael Lichermann, Halti Tatlisu, Pure Appl. Geophys. 178 (2021), 2711–2739
- STAX Poster at SnT23 P2.4-367

HOFBURG PALACE - Vienna and Online 19 TO 23 JUNE

Place your

QR Code here after removing this text box!

INTRODUCTION

OBJECTIVES

METHODS/DATA

RESULTS

CONCLUSION

 $\left(\right)$