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The globally averaged atmospheric mixing ratio of CH4 has 
risen since the pre-industrial epoch from 722 ±  25 ppbv in 
1750 to 1803 ±  2 ppbv in 20111. However, there is an unre-

solved debate regarding the causes of the temporal trajectory of CH4, 
and thus its sources and sinks, over the last 30 years. The observed 
plateau in the CH4 mixing ratio2 and its end3 have been attributed to 
some combination of changes in hydroxyl (OH) radical destruction, 
tropical wetland emissions, thawing permafrost and CH4 hydrates, 
agriculture, and fossil-fuel extraction and use, although their rela-
tive contributions are ambiguous given existing observations4–10.

Rising atmospheric CH4 mixing ratios are expected to change the 
distribution of atmospheric radiative energy, and this is the essen-
tial justification for coordinated and prioritized scientific inquiry 
regarding atmospheric CH4. While substantial resources have been 
devoted to measuring increasing atmospheric CH4 (refs 2,11) and 
understanding its anthropogenic contributions12–14, the observa-
tional determination of its radiative forcing has, to date, been lim-
ited. Satellite observations have inferred, but not quantified, the 
radiative forcing associated with rising mixing ratios of this gas15,16. 
Apart from those efforts, radiative forcing values have been strictly 
calculated by radiative transfer models based on information gath-
ered from laboratory observations. The calculations performed for 
the IPCC Fifth Assessment Report found that CH4 has contributed 
to a stratospherically adjusted long-wave (5–20 μ m) radiative forc-
ing at the tropopause of 0.48 ±  0.05 W m−2 from the pre-industrial 
epoch1. However, the methods used by that report were last revised 
in 199817, and recent work has indicated that an upward revision to 
the methane radiative forcing formulae and the determination of 
its global warming potential for future assessment reports is neces-
sary18, mostly due to the need to include short-wave effects.

The spectroscopy of CH4, which is the foundation underlying the 
radiative forcing calculations, is an active area of research19. This 
is because CH4 exhibits a line structure of exceptional complexity 
compared to other atmospheric greenhouse gases20, and line-by-line 
calculations and climate model radiation codes must capture this 
complexity to determine CH4 radiative forcing. They do so by using 
line parameters in spectroscopic databases such as High Resolution 
Transmission (HITRAN)21 and parameterizations of other absorp-
tion effects. These databases are frequently updated, and while the 
updates have produced only modest changes in CH4 infrared forc-
ing22,23, the scientific understanding of other potentially significant 
absorption effects such as broadening dependencies24 and H2O 
continuum absorption18,25 is still advancing. Alternatively, we can 
use field observations to establish the sufficiency of the approach 
by which CH4 radiative forcing is solely determined from radiative 
transfer calculations.

The specialized, long-duration suite of observations col-
lected at the US Department of Energy Atmospheric Radiation 
Measurement (ARM) Program26 at the Southern Great Plains (SGP) 
site (36° 36′  18″  N, 97° 29′  6″  W) provide a unique opportunity to 
observe greenhouse gases and their forcing, as indicated by the first 
observation of the increase in the greenhouse effect from rising 
atmospheric concentrations of CO2 (ref. 27).

The time series of weekly CH4 surface flask measurements from 
SGP shows a high variability in CH4 at SGP, with boundary-layer 
excursions sometimes exceeding 2,300 ppbv (Fig. 1). As with other 
locations of high-precision atmospheric CH4 measurements, the 
time series of CH4 mixing ratios shows fine-scale temporal variabil-
ity. At SGP, some of the excursions may be due to local hydrocarbon 
recovery, based on the correlation between CH4 and ethane mixing 
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ratios28,29 (see Methods). Meanwhile, an analysis of these instanta-
neous CH4 observations (see Methods) shows no significant trend 
in atmospheric CH4 before 2007, a break-point in 2007, and that 
CH4 mixing ratios have been rising at a rate of 7.5 ±  4.4 (95% confi-
dence interval (CI)) ppbv yr−1 since then.

While other studies have observed trends in the surface energy 
balance with broadband radiometry30,31, broadband observations 
are inadequate for attributing changes in that balance to changes 
in the atmospheric composition of specific gas species. Therefore, 
we use a long time series of clear-sky downwelling spectral infra-
red radiance observations to determine whether changes in atmo-
spheric CH4 mixing ratios have a discernible effect on the surface 
energy balance. We focus here on long-wave clear-sky flux changes 
since they are predicted to be the most sensitive long-wave radia-
tive flux signal associated with rising greenhouse gases32 and since 
detailed all-sky forcing calculations of the study site indicate that 
most of the forcing arises under clear-sky conditions (see Methods).

CH4 radiative forcing dependencies
Figure  2a shows, through radiative transfer calculations, that the 
infrared emission by CH4 that contributes to its long-wave sur-
face radiative forcing occurs predominantly between 1,200 and 
1,350 cm−1. However, as the radiative transfer calculations in Fig. 2b 
show, the determination of CH4 forcing is complicated by a signifi-
cant H2O and N2O dependence of the downwelling flux in the CH4 
absorption band, arising from the overlap of spectral absorption 
features of H2O and N2O with those of CH4. The downwelling flux 
is also highly temperature-dependent, both due to Planck func-
tion and absorption line temperature dependence. Fortunately, the 
surface mixing ratios for N2O are highly correlated with its mixing 
ratios throughout the column (Fig. 2c), so the radiative effects of 
N2O can be estimated using a near-surface measurement of its mix-
ing ratio. Radiosonde data at the ARM SGP site were used to control 
for variability in the atmospheric thermodynamic state33. Airborne 
measurements indicate that boundary-layer and free tropospheric 

fluctuations in CH4 mixing ratios are not highly correlated at sub-
seasonal timescales. Therefore, surface observations of CH4 mixing 
ratio alone are insufficient for calculating CH4 forcing at the times-
cales of our analysis.

CH4 surface radiative forcing was derived from 11 years of infra-
red spectroscopic observations made by the Atmospheric Emitted 
Radiance Interferometer (AERI)34. The forcing was determined 
by differencing AERI measurements with counterfactual line-by-
line calculations27 where the thermodynamic state is prescribed 
by concurrent radiosonde observations33, but the calculation used 
a pre-industrial CH4 mixing ratio (see Methods). Detailed data 
quality control and averaging methods were used to account for 
the effects of uncertainties in temperature, H2O and N2O, and the 
effect of instrumental noise, respectively (see Methods). The mini-
mum temporal resolution of the observations used here was 6 h (see 
Methods). From this process chain, we observe the direct, unad-
justed, instantaneous radiative forcing at the surface, which, while 
not biased by the effects of thermodynamics (see Methods), is still 
affected by them. Ideally, measurements would be made under pre-
scribed thermodynamic conditions, but we have no means of con-
trolling for these conditions in the field.

The mean spectral residuals were prominent only in the spectral 
region of CH4 absorption (see Methods) and therefore exclude the 
possibility that uncertainties in the atmospheric state and instru-
ment calibration were substantially affecting the results. Top-down 
validation of our forcing estimates, based on in situ observations 
by simultaneous aircraft overflights35, indicates that we can observe 
instantaneous CH4 forcing to within 0.14 W m−2 (see Methods). 
Sensitivity tests (see Methods) reveal that the transient plumes of 
boundary-layer methane would lead to an instantaneous surface 
radiative forcing signal of 0.05 W m−2, so our analysis is unable 
to discern the transient contribution of anthropogenic activity to 
observed forcing. However, supraseasonal time-series features of 
atmospheric CH4 mixing ratios, which do contain contributions 
from human activity4–10, are readily discernible in the observed 
radiative forcing.

Observation-derived forcing and thermodynamic influences
Irrespective of the source of the atmospheric CH4, we derive a time 
series of CH4 surface long-wave radiative forcing from observa-
tions that exhibits several prominent features (Fig. 3). During the 
multi-year atmospheric CH4 plateau, the trend in this forcing did 
not differ significantly from zero (P >  0.1). The time series exhib-
ited a significant change around 2007 at the end of the plateau 
(P <  0.0001). From then onwards, the trend differed from zero at  
0.026 ±  0.006 W m−2 yr−1 (99.7% CI). During the 11-year record, 
there was a large seasonal cycle, with an amplitude of at least 
0.2 W m−2.

During the time period of the atmospheric CH4 plateau, it is 
expected that there would not be significant trends in surface radi-
ative forcing from CH4, and this was confirmed by observations. 
However, the amplitude of the seasonal cycle in surface forcing 
throughout the time series and the forcing trend since 2006 can-
not be fully explained by the atmospheric CH4 mixing ratio at the 
SGP. The amplitude of the seasonal cycle in a CH4 dry atmospheric 
mixing ratio is 51.2 ±  10.1 (99.7% CI) ppbv, and, based on the 
mean water vapour profile during the observational period at the 
SGP, the seasonal cycle amplitude would be 0.012 ±  0.002 (99.7% 
CI) W m−2, significantly smaller than the observed amplitude of 
0.25 ±  0.01 (99.7% CI) W m−2. The observed trend in CH4 since 
2007 is 7.5 ±  6.6 (99.7% CI) ppbv yr−1, which, again based on the 
mean water vapour profile during the observational period at the 
SGP, would yield a trend of 0.002 ±  0.0009 (99.7% CI) W m−2 yr−1, 
significantly smaller than the observed trend of 0.026 ±  0.006  
(99.7% CI) W m−2 yr−1. However, analysing the time series in isola-
tion from thermodynamics is highly idealized, can yield varying 
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Fig. 1 | Recent evolution of atmospheric methane at the surface study site. 
Time series of the annual distribution of surface flask measurements of 
CH4 volume mixing ratio (vmr) at the DOE ARM SGP site. The box–whisker 
plots show the mean (+ ) and median (line), with the box bounding the 
25th and 75th percentiles and the whiskers set at the 0.1th and 99.9th 
percentiles for weekly flask measurements from a given year. Least-squares 
linear trend analyses are included for selected time periods before and after 
2007 (vertical dashed line). The 2007 change point was determined from 
weekly time-series data (see Methods).
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results depending on the choice of thermodynamic conditions, and 
is inconsistent with actual conditions in the field. Nevertheless, this 
discrepancy must be resolved.

We can exclude several potential explanations for these findings; 
for example, the contributions of observational error and analysis 
error would produce spectral residuals outside the CH4 absorption 
band and time-series statistics that are inconsistent with our find-
ings. Possible contributions from other radiatively active trace gases 
in the CH4 absorption band between 1,200 and 1,350 cm−1 can also 
be excluded (see Methods).

Rather, we find that when we perform a multivariate signal 
decomposition analysis of the deseasonalized time series of CH4 
forcing constructed over the entire time series using a nonlin-
ear predictor based solely on CH4 concentrations, we can explain 
roughly 80% of the variation in observed forcing (R2 =  0.793), 
implying that at least 20.7% of the variance is related to other fac-
tors (see Methods).

Here, we find that the contribution of trends and variability in 
water vapour to those in CH4 surface forcing are significant. Even 
though the residual spectra indicate that we are not imprecisely 
specifying atmospheric temperature and moisture, CH4 forcing is 
nonetheless dependent on atmospheric state. The primary reason for 
this water vapour dependence is that mid-infrared CH4 absorption 
occurs at the edge of a strong ν 2 H2O absorption band. Therefore, 
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Fig. 2 | Factors affecting CH4 long-wave surface instantaneous radiative forcing. a, Change in spectral flux for a 1 ppbv perturbation in CH4 for a 1 km 
layer in a mid-latitude summer profile44. b, Vertical sensitivity of the downwelling surface flux in the CH4 absorption band (1,200 and 1,350 cm–1) to 1 km 
perturbations in temperature, H2O, N2O and CH4 derived from Line-by-Line Radiative Transfer Model (LBLRTM) calculations with the mid-latitude summer 
profile. c, Box–whisker diagrams of the vertical distribution of CH4 and N2O, with the inset showing the associated correlation coefficient in the mixing ratio 
between the surface and a given height, from aircraft observations35 at SGP from flights in 2002–2012. The box spans the 25th to 75th percentile, and the 
whiskers span the 5th to 95th percentile of the observations.
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elevated H2O mixing ratios saturate the CH4 band36 and reduce the 
latter molecule’s radiative forcing, as shown in Fig. 4d. Indeed, we 
performed a model-only computation based on observed thermo-
dynamics and CH4 mixing ratios and obtain a trend of 0.020 ±  0.009 
(99.7% CI) W m−2 yr−1, which is not distinguishable (P >  0.05) from 
the observationally derived trend. In addition, this effect is largely 
insensitive to the observed mid-tropospheric temperature changes, 
as shown in Fig. 4c.

For the seasonal cycle, we find that the water vapour seasonal 
cycle of 7.7 ±  0.03 g kg−1 helps explain the seasonal cycle in observed 
CH4 surface forcing. For trends, we note that a long-term decreasing 
trend in moisture availability in the central United States has been 
observed37. This was also observed in a 14-year analysis of AERI 
clear-sky radiances38. At the SGP, an analysis of radiosondes coinci-
dental to the CH4 forcing observations is consistent with that find-
ing and yields negative trends in atmospheric moisture in the lowest 
1 km, as shown in Fig. 4b. While no significant change point in the 
vertically resolved time series is observed, column water decreased 
by 30% since the end of the CH4 plateau. This negative trend over 
the entire time series and especially since the end of the CH4 pla-
teau will tend to enhance CH4 forcing, and provides the opportunity 
to analyse the alternating effects of CH4 and H2O on the observed 

forcing. Figure  5 shows that the observed forcing trends in CH4 
forcing could be reproduced only when we include nonlinear pre-
dictors that include both CH4 concentration and observed ther-
modynamic trends (R2 =  0.997, see Methods). Specifically, trends 
in CH4 surface flask measurements and trends in height-resolved 
temporal profiles of temperature and humidity can be used to pre-
dict both plateau and post-plateau surface radiative forcing trends 
after all variables are decomposed into frequency noise (Fig. 5a), a 
seasonal component (Fig. 5b) and deseasonalized trends (Fig. 5c), 
yielding a normally distributed residual signal (Fig. 5d). The result 
is that the first temperature and moisture principal components, 
covering the lower 5 km of the atmosphere, explain nearly all of the 
signal’s variance (Fig. 5e,f).

Broader implications
This study presents the first observational derivation and quanti-
fication of the effect of time-varying CH4 on the clear-sky surface 
energy balance, with a large seasonal cycle amplitude of 0.25 W m−2 
and a significant difference in forcing trends at the SGP during and 
after the CH4 plateau. The decadally averaged trend in surface forc-
ing was larger for CO2 than CH4 at this site, but the perturbation 
of the surface energy balance from rising CH4 mixing ratios since 
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the end of the plateau was similar to the effect from rising CO2 
(0.02 ±  0.007 W m−2 yr−1) at the site. Although this difference was 
not statistically significant (P >  0.3), it suggests that, since the end of 
the plateau, the role of rising CH4 in perturbing the surface energy 
balance can be highly dependent on local water vapour trends39–42. 
At the SGP, CH4 surface forcing trends are not necessarily inferior to 
that of CO2, even though forcing at the tropopause by CO2 is much 
more than that from CH4 (ref. 1).

These observations show a long-term trend in CH4 surface 
radiative forcing, with variance from a function of rising CH4 mix-
ing ratios and the non-negligible contribution that depends on the 
vertical distribution of water vapour. This finding is related to tro-
popausal radiative forcing, which figures prominently in the sci-
entific discussion of how rising CH4 impacts average tropospheric 
temperatures1, but spatial patterns in upper tropospheric moisture43 
mediate forcing at the tropopause, while surface humidity more 
strongly affects surface forcing. For this investigation, we find that 
trends in surface forcing from greenhouse gases are convolved with 
the details of how the thermodynamic state of the atmosphere is 
evolving, and the local thermodynamic conditions must be taken 
into account. Since local temperature and humidity trends that are 
distinct from those at the SGP exist at other sites, the relative contri-
butions of thermodynamics and mixing ratio changes to the forcing 
may also differ. Observed trends in surface humidity have not been 
spatially or temporally uniform, nor have they been monotonic. The 
magnitude of the globally averaged land-surface humidity trend 
varies on decadal timescales while also exhibiting trends that are 
spatially variable over land and that show strong land–ocean con-
trast39–42

. Therefore, the direct impact of greenhouse gases on the 
surface energy balance cannot be predicted in isolation from ther-
modynamics. Nevertheless, as we have shown, CH4 surface radiative 
forcing trends can be derived from measurements and quantified 
spectroscopically.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41561-018-0085-9.
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Methods
CH4 surface radiative forcing was determined by differencing measured spectra 
from the AERI instrument45, subject to quality control (see below), with 
radiative transfer calculations using 512 levels of temperature and humidity from 
radiosondes profiles as processed by the ARM Best Estimates (ARMBEs)33,46, 
ozone from the Modern-Era Retrospective Analysis for Research and Applications 
(MERRA)47, CO2 profiles from the nearest spatiotemporal grid point from 
CarbonTracker-CO2 201348, monthly averaged N2O mixing ratios from the Mauna 
Loa Observatory (MLO)49 and pre-industrial (722 ppbv) CH4 mixing ratios. This 
counterfactual calculation, designed to simulate the spectrally resolved radiance 
field at the Earth’s surface, had CH4 mixing ratios that remained at annually 
averaged pre-industrial levels27. The counterfactual was created with the Line-by-
Line Radiative Transfer Model (LBLRTM) version 12.2, using the Atmospheric 
and Environmental Research (AER) line parameter database version 3.150 based 
on HITRAN 200851 with updated line-mixing52 and the MT_CKD_2.5.2 H2O 
continuum absorption model25. Limb-brightening factors, converting both 
observations and calculations from radiance to flux, were calculated with three-
point Gaussian quadrature over the zenith angle53. Supplementary Fig. 1 shows a 
schematic of this process chain.

Data quality control. AERI spectra were recorded every 8 min from the 
instrument’s initial deployment to April 2004 (at the SGP). Subsequently, spectra 
were recorded every 30 s, with only minor outages, to provide higher-temporal-
resolution data for cloud studies54. This analysis considered only data starting in 
2002 because the ARMBE data are derived from Vaisala RS-80 profiles before 
2002 and that instrument suffered a known dry bias55,56. The end of the analysis 
period was the start of 2013, which was chosen because the AERI instrument 
at SGP experienced a failure and was replaced in mid-2013. The analysis could 
be extended beyond early 2013, but would have to address complications from 
changing instrumentation57.

Only the subset of spectra recorded within 2 h of a radiosonde launch were 
utilized. With 4 daily launches, each measurement is separated by a minimum 
of 6 h and spans 4 h. Based on the radiosonde profile, a radiance spectrum 
was calculated using LBLRTM with 512 levels of temperature and relative 
humidity from the ARMBE product33. All AERI spectra recorded within 2 h of 
the radiosonde launch were rank-ordered by the root-mean-squared brightness 
temperature of the residual spectrum of the difference between the measurement 
and the LBLRTM calculation between 600 and 980 cm−1. This range was chosen to 
be sensitive to thermodynamic conditions but insensitive to CH4 or ozone, where 
the latter is strongly influenced by MERRA biases58. The rank-ordered spectra 
were averaged sequentially together (that is, the first two spectra were averaged, 
then the first three spectra were averaged and so on) and the r.m.s. of the residual 
between that average and the LBLRTM calculation was recalculated. The sequential 
average of the spectra that produced the minimum r.m.s. of the residual relative 
to the radiosonde-based LBLRTM calculation was used as the AERI spectral 
measurement for subsequent analysis. The rationale for this approach is to average 
as many spectra together as possible to minimize random measurement error, 
but to avoid biasing the spectra by averaging observations during which clouds 
were present or where the thermodynamic conditions had changed relative to the 
radiosonde.

Since the determination of CH4 surface forcing is so dependent on an accurate 
specification of the atmospheric thermodynamic profile, we apply additional tests 
of the sequentially averaged spectra against the counterfactual calculations to 
remove cases where the thermodynamic or condensate profiles differ substantially 
between the observation and the counterfactual. First, we evaluate the r.m.s. of the 
residual between the AERI spectral measurement and the LBLRTM calculation 
between 790 and 810 cm−1 (hereafter referred to as the 800 cm−1 channel), because 
this region is sensitive to atmospheric temperature, humidity and condensates (see 
Supplementary Fig. 2a,b). These plots show the slope and correlation coefficient of 
the least-squares relationship between the radiative flux sensitivity to moisture and 
temperature perturbations for a given channel outside the CH4 absorption feature 
(1,200–1,350 cm−1) and the average radiative flux sensitivity to moisture and 
temperature perturbations within the CH4 absorption feature. The least-squares 
relationship is derived from six model atmospheres, which span a wide range 
of terrestrial thermodynamic conditions44. The upper panels of Fig. 2a,b show 
that fluxes in the spectral region between 790 and 810 cm−1 are more sensitive to 
perturbations in temperature and moisture than fluxes in the CH4 absorption band. 
The lower panels show that perturbations in temperature and moisture produce 
flux perturbations in the 790–810 cm−1 spectral region and the CH4 absorption 
band that are highly correlated.

We also utilize the r.m.s. of the residual between 705 and 709 cm−1 (hereafter 
referred to as the 707 cm−1 channel), which is sensitive to the atmospheric 
boundary-layer temperature. Supplementary Fig. 2c shows the gain and correlation 
coefficient for the relationship between the variance of a spectral channel outside 
the CH4 absorption feature and the variance of the spectral channel within the 
CH4 absorption feature, where both are calculated with the measurements and 
calculations used in the aircraft validation cases (see below). This figure shows 
that the 707 cm−1 variance is highly correlated with the variance within the CH4 
band across a range data wherein the 800 cm−1 tolerance criterion is satisfied 

below 5 K. A gain of greater than unity, indicating high sensitivity to boundary-
layer temperature perturbations, is also shown at 707 cm−1 for the same 800 cm−1 
tolerance criterion.

Only spectral residuals with a r.m.s. residual spectrum brightness temperature 
at 800 cm−1 of less than 3 K and a standard deviation at 707 cm−1 of less than 0.3 K 
(after averaging) are considered for subsequent analysis. See Supplementary 
Information for the rationale for these threshold choices.

Supplementary Fig. 4 shows the average residual spectrum featuring a large 
deviation from zero where CH4 has a prominent absorption due to the use of a 
pre-industrial CH4 mixing ratio for the counterfactual calculation and deviations 
equivalent to less than 1 K in temperature, 10 ppmv CO2, 5% H2O and 10% 
N2O. The exception lies in the 9.6 µ m ozone absorption band between 980 and 
1080 cm−1, indicating a systematic overestimation of column ozone from the 
MERRA data products at SGP58. The lack of prominent spectral structures outside 
the CH4 and O3 bands excludes other possible explanations including cloud 
contamination, water vapour or temperature bias or instrument calibration, all of 
which produce spectral residuals with characteristic features not solely in the CH4 
absorption band.

Time-series decomposition. We tested the hypothesis that the cause for the 
observed trend in radiative forcing could be contained within a set of predictors 
including height-resolved trends in water vapour, height-resolved trends in 
temperature and ground-level methane concentration measured by flasks. If we 
cannot use these predictors to reproduce the observed forcing, we can infer that 
there are other contributing factors to the forcing that we have not considered. 
For the reconstruction of this time series, we used a two-step decomposition of all 
predictors using a widely utilized and flexible approach that avoids over-fitting59. 
First, we isolated the component of the unfiltered signal that cannot be described 
as white noise or outlier data using a calibrated random forest with 100 weak 
learners59. A calibrated random forest was used to reproduce the signal at the 
desired points in time, and the difference between the reproduced and actual signal 
was filtered out. Second, the remaining noise and cyclical components of the signal 
were removed using a moving-average filter with a 12-month window60. The size 
of the moving-average filter window was selected because the signal exhibited clear 
annual seasonal variations.

With this approach, we created a set of isolated trends for 1,025 predictors  
(512 each for temperature and humidity and 1 for flask CH4 observations).  
To make the problem less computationally expensive, and given the extreme level 
of redundancy in vertically resolved temperature and water-vapour predictors, 
we applied principal component analysis for the reduction of dimensionality61. 
The fraction of variance explained by the first 5 principal components (out of 
512) was found to be >  99.99% for both temperature and humidity, confirming 
the high degree of redundancy in the predictors. With 5 PCs for temperature, 
5 for humidity and 1 for methane concentration, we created a reduced set of 11 
predictors to describe the CH4 radiative forcing trend. An ensemble of five back-
propagation neural networks was then trained to reproduce the trend component 
of the CH4 radiative forcing62. To avoid over-fitting, the training and reproduction 
of the radiative forcing was done in a leave-one-out fashion, such that the radiative 
forcing value to be reconstructed from the predictors is withheld from the training 
set. Instead, ensemble neural networks are trained using the remaining data points, 
and then the network is used to reproduce the withheld data point. The procedure 
was repeated sequentially for all data points.

With this approach, the correlation coefficient between the observed trends in 
the entire CH4 surface forcing time series and the neural network prediction where 
all 11 predictors are used is 0.9983 (R2 =  0.997). Where only the CH4 flask data 
are used as a predictor to train the network, the correlation coefficient is 0.8907 
(R2 =  0.793). More specifically, we can explain ~80% of the variance in radiative 
forcing using custom-designed nonlinear predictor. However, we should note that 
our signal is obtained from the difference between an observation and calculation, 
which is not the best possible nonlinear predictor, so the amount of variance 
that can be explained using only CH4 concentrations is necessarily less that 80%. 
Rather, our results produce an estimate of the minimum of the fraction of variance 
that cannot be explained using the predictor(s) of interest. They also show that 
information from temperature and humidity, and not just CH4 flask concentration 
data, is needed to describe the observed trend in CH4 surface radiative forcing.

Statistical analysis methods. The statistical analysis of the time series seeks 
to determine whether and when a change point occurred in the measured 
CH4 surface radiative forcing, as well as the linear (temporal) trends and their 
significance. The following describes the methods used to perform this analysis.

Define yt as the CH4 forcing for the SGP site at time t = 1,… , T. Our statistical 
model is:

= + + − + + +y b b t b X t t a e v( ) (1)t t j t t0 1 2 0

where {bk} are unknown regression coefficients, {aj} represent (unknown) 
monthly effects, et are independent and identically distributed (iid) N(0, s2) with 
s2 unknown (N(a, b) denotes a univariate Gaussian random variable with mean a 
and variance b), and vt iid N(0, w2) with w2 known (also, et and vt are independent). 
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The model (1) contains two error processes: first, et represents error in the model 
specification and therefore s2 is estimated; second, vt represents error introduced by 
the measurement process on yt and therefore w2 will be considered fixed (see the 
section entitled Statistical analysis results). The variable Xt is defined to be 0 if t ≤ t0 
and 1 if t >  t0, and the change point must fall between fixed bounds TU <  t0 <  TL. 
Therefore, for t ≤ t0, the monthly adjusted trend in expected CH4 forcing has slope 
b1; for t > t0, the trend has slope b1 + b2.

The unknown parameters in (1) and the change point can be estimated using 
a common (frequentist) statistical technique called maximum likelihood63, which 
also yields CIs for the regression coefficients64. Given the set-up in (1), we can 
determine the significance of the change point t0 by way of model selection:  
the full model (1) can be compared to a ‘reduced’ model without a change point 
(H1: b2 ≠ 0):

= + + + +y b b t a e v (2)t j t t0 1

A test of H0 can be performed using a standard full versus reduced model F-test for 
nested models64.

The frequentist analysis described above ignores any uncertainty in estimating 
the change point, and the model is not well suited to assess this uncertainty 
(outside of asymptotic evaluations)65. Alternatively, a Bayesian approach can be 
used to determine the significance of the change point while accounting for its 
uncertainty (again using model comparison). Bayesian models that mirror the full 
(1) and reduced (2) models can be set up using non-informative prior distributions 
and estimated using Markov chain Monte Carlo methods66. Markov chain Monte 
Carlo output can be used to compare the full and reduced models using Bayes 
factors67.

Statistical analysis results. The aforementioned models were fit for many different 
data sets from the SGP site. This data set was created by using values of the 
800 cm−1 brightness temperature residual threshold parameter ranging from 0.1 
to 10 (see the section entitled Data quality control). However, if the data set for 
a particular threshold value had fewer than 50 observations, the analysis was not 
conducted. The lower and upper limits of the change point were fixed to TL = 2004 
and TU = 2010; any potential change points near the beginning or end of the 
time series are not of interest. The seasonal cycle of CH4 due to hydroxyl radical 
destruction is captured via the monthly effects {aj}; for comparison, all models 
were fitted and the results are presented both with and without the monthly effects.

For the maximum-likelihood models, plots of the estimated change point, 
significance of the change point, and estimates of the slope parameters (with 99.7% 
CIs) from both before and after the change point are provided in Supplementary 
Figs. 5 and 6. The results from the Bayesian models were approximately identical 
to the maximum-likelihood models and are omitted. On the basis of the similarity 
of results, the main text used the more familiar frequentist results including the 
monthly adjustment.

Supplementary Table 1 numerically summarizes the results of the statistical 
analysis used in the main text where the 800 cm−1 brightness temperature threshold 
is 3 K.

Controlling for N2O. The methods used to determine CH4 surface radiative 
forcing can be biased by N2O. Figure 2b shows this due to the substantial amount 
of overlap in spectral radiance changes from perturbations from N2O and CH4. 
However, the vertical profiles of N2O collected by the ARM-Airborne Carbon 
Measurements (ACME) missions35 at the SGP show that N2O mixing ratios at 
altitude are highly vertically correlated with the surface (see the insets of Fig. 2c) 
and vary by less than 1 ppbv seasonally.

Moreover, these differ very little from measurements at the MLO. The error 
incurred in CH4 forcing from utilizing monthly averaged MLO N2O observations 
instead of in situ ARM-ACME N2O observations was maximized at 1.2% of the 
CH4 forcing.

N2O can still bias CH4 forcing because it is emitted after precipitation following 
the nearby fresh application of nitrogen-based fertilizer68, causing >  5 ppbv 
deviations from the background N2O mixing ratio. Next-Generation Radar 
(NEXRAD) data69 were used to screen data to remove those observations for which 
precipitation had occurred in the previous 24 h.

Instantaneous error. There are several sources of error in the determination of the 
surface forcing from the AERI measurements. They include: spectroscopic error in 
LBLRTM; AERI measurement error; error in the temperature, water vapour, CO2 
or O3 inputs to LBLRTM inputs; and a contribution of unknown aerosol or cloud 
condensates to the AERI observations. While the error contributions from the 
first of these are outside of the scope of this analysis, we can perform a top-down 
estimate of errors from the last three with AERI measurements and LBLRTM 
calculations using inputs from simultaneous aircraft profiles.

Surface radiative forcing time series from the aircraft data were derived from 
differencing AERI observations with counterfactual calculations. These were 
compared with the surface radiative forcing time series computed by differencing 
an LBLRTM calculation with the aircraft-observed profile of CH4 and N2O and the 
counterfactual calculation.

Supplementary Fig. 8 shows the standard deviation of AERI-observed and 
aircraft-derived surface radiative forcing. Figure 3 shows that an abscissa value of 
3 K corresponds to an ordinate value of 0.14 W m−2, which is thus our estimate of 
the 1σ instantaneous error in radiative forcing.

Ethane data analysis. Supplementary Fig. 9a,b shows time-series analyses of 
ethane (C2H6) flask data. Non-methane hydrocarbon flask data from SGP were first 
filtered for outliers; values that deviated more than 2σ from a running median were 
excluded from trend analyses. Filtered data were then uploaded to the National 
Oceanic and Atmospheric Administration (NOAA) server for filtering and trends 
were determined using a previously published method70.

Clear-sky bias. We evaluate the potential for clear-sky bias in the determination 
of CH4 surface radiative forcing. We estimate this bias by recalculating the 
Broadband Heating Rate Profiles71 at the SGP for 2010 based on pre-industrial 
CH4 mixing ratios and comparing those to the original Broadband Heating Rate 
Profiles, containing time-varying CH4 derived from the nearest grid box from 
CarbonTracker-CH472. We then subset the data identified as clear-sky in the 
Radiatively Important Parameters Best Estimate product73.

We find that most of the forcing is in the clear-sky but that the all-sky surface 
forcing is 0.065 W m−2, or 33%, less than the clear-sky forcing. This finding is 
expected because of non-negligible overlap between broadband cloud absorption 
and CH4 absorption, thereby masking CH4 forcing. This cloud-masking may 
vary year-to-year. Currently, the independent estimates of cloud vertical profiles 
produce residual spectra with signatures of clouds, so the effect of CH4 cannot be 
isolated under all-sky conditions.

Non-methane contributions to observed signal. The possibility that condensates 
or non-methane gaseous atmospheric constituents are contributing to the observed 
CH4 surface forcing must be considered. The contribution of condensates can 
be excluded because they produce broadband signals that are not observed in 
the residual spectra. We can also address the non-methane gaseous constituent 
question by determining the effects of perturbations in the atmospheric 
concentrations of 32 additional species with spectroscopy tabulated in HITRAN21, 
and found their contributions to be at least five orders of magnitude smaller than 
for CH4.

Flask-based observations. At the SGP site, samples were collected into a pair of 
2.5 l glass flasks on a weekly basis from the top of the central facility 60 m tower. 
Flask collection started in April 2002 and is currently ongoing. The collection of 
a pair of samples allows basic quality assessment and control. These observations 
are part of the NOAA’s Global Greenhouse Gases Reference Network74. Flasks are 
collected in the afternoon, when the planetary boundary layer is well developed 
and observations are representative of a large area. Aircraft profiles of CH4 and 
N2O were recorded on approximately a bi-monthly basis from 2002 until the 
present (see Supplementary Fig. 7a,b).

Ground-based and aircraft-based flasks are analysed after they are collected 
at NOAA/Earth System Research Laboratory by gas chromatography, and 
measurements are reported against World Meteorological Organization CH4-
X2004 and N2O-X2006A scales. Flask-based observations are shown to have 
uncertainties of less than 1.2 ppbv for CH4 and 0.4 ppbv for N2O.

Aircraft validation. Aircraft profiles of CH4 and N2O above the SGP site were 
recorded on approximately a weekly basis with flask observations from 2002 until 
the present. Before 2006, the flasks were collected only at 0.6 and 3.6 km, but since 
then, flasks were collected at 12 elevations between 0.5 km and 5.5 km above sea 
level (see Supplementary Fig. 7a,b).

Single-site analysis. The analysis presented here focused on the SGP site. Several 
other ARM sites exist, including the North Slope of Alaska (NSA) site, and AERI 
data from that site were analysed for previous work27. For the CH4 analysis, 
however, differences in the instrumental noise in the AERI instrument at NSA 
greatly complicated the analysis there. In particular, the Extended-Range AERI at 
NSA has an expanded spectral range compared to the AERI at the SGP, leading to 
higher instrumental (random) noise over 1,200–1,350 cm−1 spanning the dominant 
CH4 absorption feature75.

Residual brightness temperature threshold rationale. The rationale for choosing 
a threshold of 3 K brightness temperature is based on balancing the number of 
data points with error in the CH4 surface forcing determination, both of which 
will increase with increasing threshold values. Another related factor for the 
determination of an appropriate threshold is the importance of observations 
throughout the year. The 3 K threshold enables a determination of the seasonal 
cycle in surface forcing at the SGP site and summertime multi-year trends at the 
NSA site. Supplementary Fig. 3 shows the relationships between the 800 cm−1 
brightness temperature residual threshold and the number of data points.

Code availability. The computer code developed for this research was written in 
Matlab and will be made available upon request.
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Data availability. The ARM data and radiative transfer codes used in this analysis 
are freely available to download from http://www.archive.arm.gov/discovery/ and 
http://rtweb.aer.com, respectively. The following are URLs from which input data 
can be downloaded:

MERRA: https://disc.sci.gsfc.nasa.gov/datasets?page= 1&keywords= merra
CarbonTracker-CO2: ftp://aftp.cmdl.noaa.gov/products/carbontracker/

co2/molefractions/ CarbonTracker-CH4: ftp://aftp.cmdl.noaa.gov/products/
carbontracker/ch4/molefractions/

NOAA CH4 data: http://ds.data.jma.go.jp/gmd/wdcgg/pub/data/current/ch4/
NOAA N2O data: ftp://aftp.cmdl.noaa.gov/data/hats/n2o/insituGCs/CATS/

daily/mlo_N2O_Day.dat
NOAA C2H6 data: http://ds.data.jma.go.jp/gmd/wdcgg/pub/data/current/vocs/

ethane/event/
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