
Physical Biology
     

PAPER • OPEN ACCESS

Non-steady state mass action dynamics without
rate constants: dynamics of coupled reactions
using chemical potentials
To cite this article: William R Cannon and Scott E Baker 2017 Phys. Biol. 14 055003

 

View the article online for updates and enhancements.

Related content
Genome-scale estimate of the metabolic
turnover of E. Coli from the energy
balance analysis
D De Martino

-

Topical Review
Heinz W Engl, Christoph Flamm, Philipp
Kügler et al.

-

Enzyme oscillation can enhance the
thermodynamic efficiency of cellular
metabolism: consequence of anti-phase
coupling between reaction flux and affinity
Yusuke Himeoka and Kunihiko Kaneko

-

This content was downloaded from IP address 130.20.178.146 on 02/01/2019 at 17:30

https://doi.org/10.1088/1478-3975/aa7d80
http://iopscience.iop.org/article/10.1088/1478-3975/13/1/016003
http://iopscience.iop.org/article/10.1088/1478-3975/13/1/016003
http://iopscience.iop.org/article/10.1088/1478-3975/13/1/016003
http://iopscience.iop.org/article/10.1088/0266-5611/25/12/123014
http://iopscience.iop.org/article/10.1088/1478-3975/13/2/026002
http://iopscience.iop.org/article/10.1088/1478-3975/13/2/026002
http://iopscience.iop.org/article/10.1088/1478-3975/13/2/026002
http://iopscience.iop.org/article/10.1088/1478-3975/13/2/026002
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/51757381/Middle/IOPP/IOPs-Mid-PB-pdf/IOPs-Mid-PB-pdf.jpg/1?


Battelle Institute

Introduction

One hundred and fifty years ago Peter Waage and Cato 
Maximillian Guldberg published their first article 
describing the law of mass action, that the rate of a 
chemical reaction is proportional to the concentration 
of the reacting species [1–4]. For a reversible reaction, 
labeled by  +1 for the forward reaction and  −1 for the 
reverse reaction, in which γA moles of chemical A are 
transformed into γB moles of chemical B,

�γ γ
−

A B,A B
1

1
 (Scheme A)

the forward rate due to reaction 1 is simply,

= γk Aforward rate .1 A[ ] (1)

The brackets indicate the concentration, and the 
constant of proportionality k1 is known as the rate 
constant. A similar relation exists for the reverse 
reaction  −1. The net rate is given by,

= −γ γ
−k A k Bnet rate .1 1A B[ ] [ ] (2)

All introductory chemistry texts describe the law of 
mass action in one form or another. Although the 
relationship is simple and can easily be applied to many 

reactions, the application to more complex systems 
such as biological metabolism is challenging because 
most rate constants are not available and measuring 
the missing rate constants is very labor intensive.

Typically rate constants are measured by first iso-
lating and purifying the individual enzymes and then 
determining the rate constants spectrophotometri-
cally in vitro. The process is challenging to implement 
in a high-throughput manner and in principle, meas-
urements would have to be done for each enzyme in 
the system of interest because even enzymes having 
high sequence similarity to the orthologous enzyme 
in another species can still have widely differing rate 
parameters. For example, for the enzyme dihydro-
folate reductase, the turnover rates for the substrate 
7,8-dihydrofolate measured in vitro vary five orders 
of magnitude across species—from 284 s−1 to less 
than 1 s−1. Consequently, thousands of rate param-
eters would be needed for each new genome, and even 
then the traditional kinetic analysis provides measure-
ments of rates in vitro rather than in vivo. Thus, while 
a large number of enzyme rate parameters have been 
determined for a few well-studied model systems such 
as Escherichia coli and Saccharomyces cerevisiae, this is  
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Abstract
Comprehensive and predictive simulation of coupled reaction networks has long been a goal 
of biology and other fields. Currently, metabolic network models that utilize enzyme mass 
action kinetics have predictive power but are limited in scope and application by the fact that the 
determination of enzyme rate constants is laborious and low throughput. We present a statistical 
thermodynamic formulation of the law of mass action for coupled reactions at both steady states 
and non-stationary states. The formulation uses chemical potentials instead of rate constants. When 
used to model deterministic systems, the method corresponds to a rescaling of the time dependent 
reactions in such a way that steady states can be reached on the same time scale but with significantly 
fewer computational steps. The relationships between reaction affinities, free energy changes and 
generalized detailed balance are central to the discussion. The significance for applications in systems 
biology are discussed as is the concept and assumption of maximum entropy production rate as a 
biological principle that links thermodynamics to natural selection.
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not true for most systems of interest. As a result of the 
difficulty in obtaining rate constants, constraint-based 
flux models have been the method of choice for large-
scale modeling of biological processes such as metabo-
lism. Unfortunately, the lack of physics in regard to the 
law of mass action limits the ability of these approaches 
to narrow the solution space to only physically likely 
solutions. A considerable amount of work has focused 
on extending constraint-based models to include the 
physics of mass action in terms of thermodynamics 
constraints [5], hybrid models [6] or dual variables [7].

Thermodynamic [8–12] and other approaches 
[13–17] have been proposed for the study of elemen-
tary reactions using the law of mass action that do not 
use rate constants, and instead have used the concept 
of reaction affinities at steady state. In fact, a clear 
fundamental understanding of reaction affinities is 
essential for understanding these methods. IUPAC 
defines the reaction affinity A as the derivative of the 
total free energy G with respect to a reaction coordi-
nate, or the extent of the reaction, ξ, such that A

ξ
= .Gd

d
 

Nevertheless, there are conflicting definitions of reac-
tion affinity in the literature where it is common to 
see the reaction affinity defined as A = −∆Grxn [10], 
where ∆Grxn is the free energy change in the system 
due to a reaction. Other non-standard definitions in 
the literature directly employ the standard chemical 

potential µi
0 or the concentration-dependent chemical 

potential µi such that µ ν= ∆ = ∑ξ
GG

i
M

i i
d

d rxn
0 0  [18] or 

µ ν= ∆ = ∑ξ
∂
∂

GG

T P
i
M

i i
,

rxn( )  [19], where the signed 

stoichiometric coefficients ν γ= −i i for reactants and 
ν γ= +i i for products are used. In these definitions of 
reaction affinity, the loose use of calculus (a derivative 
is not a difference) is used to associate reaction affin-
ity with free energy changes. Moreover, adding to the 
confusion is the statement that µ ν∆ = ∑G i irxn . While 
this is true for a closed system characterized by con-
stant total number of particles (in the limit of large 
numbers), many reactive systems of high interest, such 
as biological systems, are open systems. In an open sys-
tem, the chemical potential µi is defined as a function 
of the average count or concentration of the respective 
chemical species [20]; that is, the chemical potential is 
a parameter—a constant—rather than a variable. In 
this case, the value given by µ ν∑ i i is also a constant; it 
does not vary with reaction conditions. But the change 
in the reaction free energy does vary with reaction 
conditions; it is only approximately constant if a reac-
tion doesn’t change the abundance of the reactants or 
products significantly, as in the case of the thermody-
namic limit of large concentrations at steady state. If 
this is the case, then the usual kinetic description of the 
reaction rate can be formulated to include a free energy 
term. In the case of reaction scheme A,

[ ]
[ ]

/

/

A =

≈
−
−∆

k A

k B
e

e

RT

G RT

1

1

1

 

(3)

≈ −γ −∆k Anet rate 1 e .G RT
1 A rxn[ ] ( )/ (4)

That is, in the limit that the concentrations do not 
change (i.e. a deterministic steady state), equation (4) 
is exact, as originally suggested by Temkin [11]—but 
only for macroscopic and deterministic steady state 
systems. A linear relationship between rates and 
−∆e G RTrxn/  exists when ∆Grxn is highly favorable and 

in that case the approximation is useful [8, 9]. But 
this is an extreme case and is not appropriate for the 
variety of reaction conditions in many systems. To 
see that this is the case, one only need to consider 
the initial phase of a reaction when only reactants 
for the forward reaction are present. In this case, for 
the forward reaction free energy ∆G1 and a reverse 
reaction free energy ∆ −G 1, equation (4) results in a 
finite reverse reaction rate because ∆ = −∆−G G1 1 
and ∆G1 has a finite value. One could argue that if the 
reactant concentrations for the reverse reaction are at 
zero, then the exponent of the free energy change for 
the reverse reaction should be zero (i.e. ∆ −G 1 would 
have an infinitely large positive value). However, the 
logic of this argument results in the contradiction that 
∆ ≠−∆−G G1 1 and therefore free energy is no longer 
a function of state. Even at steady state, when the 
number of particles of the reaction intermediates drop 
below ~10, equation (4) will not produce the correct 
results. A single firing of a reaction in this case can 
easily result in changes in the abundance of chemical 
species of 10–100%. This discussion suggests that a 
microscopic function related to the free energy change 
is needed that does not require any assumptions about 
linear relationships between rates and thermodynamic 
driving forces.

In this report, we first review the relationship 
between reaction affinity and free energy for isolated 
reactions using concepts from statistical thermody-
namic integration to explicitly demonstrate the rela-
tionship between kinetic formulations of rates that 
use rate constants and a statistical thermodynamics 
formulation that uses chemical potentials. (Readers 
intimately familiar with the relationship between reac-
tion affinities, free energies and multinomial statisti-
cal models can read ahead to the discussion of coupled 
reactions following equation (12).) Subsequently, a 
theorem for coupled reactions is presented based on 
chemical potentials which can provide relative rates 
for all sequentially coupled reactions under all condi-
tions—steady state or not—obviating the need for rate 
constants in many applications. However, if just one 
rate constant is known for the system of sequentially 
coupled reactions, then exact rates can be obtained, as 
well. The only requirement is that steady state levels of 
reaction intermediates be measurable and available to 
formulate chemical potentials. Unlike previous ther-
modynamic formulations, the approach is capable 
of modeling equilibrium, near-equilibrium and far 
from equilibrium conditions. We discuss the current 
work in the context of generalized detailed balance, 
and show that the work described herein extends the  
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applicability of generalized detailed balance. The abil-
ity to model the dynamics of systems for which accu-
rate rate constants are not available, such as biological 
systems, would be a considerable advance for predic-
tive modeling in biology. At macroscopic scale, this 
approach is shown to be the rescaled deterministic rate 
law based on a rigorous definition of reaction affini-
ties and a coupling constant is introduced that couples 
the rates of independent reactions. Furthermore, in 
the case that steady state concentrations are not avail-
able, it is shown that a maximum entropy assumption 
results in both a thermodynamically and kinetically 
optimal system in which the rate of entropy produc-
tion is maximized.

Theory

Review of reaction affinity and closed systems
The IUPAC Gold Book defines the reaction affinity as,

A
ξ

= −
Gd

d
,

where ξ is the extent of a reaction and G is the free 
energy, usually taken to be the Gibbs energy. We will use 
instead G to indicate a generalized free energy function 
that can be specifically defined by ensemble parameters 
such as total number of particles (N), volume (V) and 
temperature (T). During an incremental increase in a 
reaction by ξd , the amount ni of a substance i changes 
by ν ξ=nd di i  where νi is the signed stoichiometric 
coefficient such that γ ν=i i . Over the course of a 
reaction, an initial amount of substance changes from 

ni,0 to = +∆n n ni i i,0 , where ∫ ν ξ∆ =n di i . During 

the course of the reaction, the free energy change is 
given by,

G G G

G

A

∫

∫

α ξ α ξ

ξ
ξ

ξ

∆ = = − =

=

= −

ξ

ξ α

ξ

ξ α

=

=

=

=

′

′

′

′

, 0 0

d

d
d

d .

rxn

0

0

initial

final

initial

final

( ) ( ) ( )

 

(5)

For the extent of the reaction, we use the accepted 
criteria for thermodynamic integration [21, 22] such 

that ξ varies from ξ =′ 0initial  (no reaction) to ξ =′ 1final  
representing a complete reaction in the sense that a 
stoichiometric unit of products is produced from 
a stoichiometric unit of reactants. When the extent 
of the reaction is greater than one, then more than 
a stoichiometric amount of material is processed 
through a reaction. Since the free energy is a state 
function, the actual path of the integral does not 
matter.

The reaction affinity as a function of concentra-
tions or counts can be found by formulating the free 
energy as the multinomial Boltzmann distribution 
and explicitly taking the derivative of the free energy 
with respect to the extent of the reaction or reaction 
coordinate, ξ. The multinomial Boltzmann distribu-

tion describes how a mixed population of molecules 
is distributed among M chemical species i, each with 
a count of ni, such that ∑ =n Ni T. The species are 
not equally likely, but are distributed according to the 
Boltzmann criteria of the molecular partition func-

tion = µ−q ei
k T

i,solv
0

B/  where µi,solv
0  is the free energy of 

formation of compound i averaged over all solvent 
configurations and k TB  is the ambient thermal energy 
(kB is Boltzmann’s constant and T is temperature). The 
justification for using the Boltzmann criteria is similar 
to that used by De Decker et al, that the heat released 
due to chemical reactions is either moderate or aver-
aged over, such that microscopic processes like veloc-
ity distributions of individual atoms and molecules are 
decoupled from the statistics of the counts [23]. The 
microscopic analogue G of the free energy is then,

( ) ( )

[ ( ) ] [ ( ) ]

G ∏

∑ ∑

∑ ∑

− =

= − +

≈ ⋅ − − ⋅ − +

⎡

⎣
⎢

⎤

⎦
⎥

k T
N

n
q

N n n q

N N N n n n n q

log !
1

!

log ! log ! log

log log log

T
i

M

i
i
n

T
i

M

i
i

M

i i

T T T
i

M

i i i
i

M

i i

B

i

 (6)

where Stirling’s approximation is used in equation (6). 
G is a microscopic analogue of the macroscopic Gibbs 
energy G because it does not involve averaging the 
counts ni over all configurations. (The macroscopic 
Gibbs energy G is a function of total number of 
particles (Ntotal), temperature (T) and pressure (P) 
and is an average over all microstates at fixed Ntotal, T 
and P. Thus, once initial transients are averaged out, 
the macroscopic free energy is a constant for a closed 
system.) Taking the derivative of the microscopic free 
energy G with respect to the extent of the reaction gives,

∑ ∑

∑ ∑

ξ

ξ

ξ ξ

= −

≈ ⋅ − − ⋅ − +

= − ⋅ − +

⎧
⎨
⎩

⎫
⎬
⎭

k T k T

N N N n n n n q

n n n n q

1 d

d

d

d
log log log

d

d
log

d

d
log .

T T T
i

M

i i i
i

M

i i

i

M

i i i
i

M

i i

B B

[ ( ) ] [ ( ) ]

( ( ) ) ( )

A G

 

(7)

Here, NT is an ensemble parameter—a constant—but 
for an open system ξNd dT /  is small but not generally 
zero. In the,next section we deal with open systems; 
here, for the sake of simplicity we will assume 
that ξ =Nd d 0T / . Next, we substitute the identity 

=
ξ ξn

nd

d

d

d

d

di

i  and subsequently substitute ν=
ξ

,n
i

d

d
i

∑ ∑

∑ ∑

∑ ∑

ξ ξ

ν ν

ν ν

= − ⋅ − +

= − ⋅ − +

= − ⋅ +

n

n
n n n

n
q

n
n n n q

n q

d

d

d

d
log

d

d
log

d

d
log log

log log .

i

M

i

i
i i i

i

M
i

i

i

M

i
i

i i i
i

M

i i

i

M

i i
i

M

i i

( ( ) )

( ( ) )

( )

In a closed system at constant NT, the quantity 
−k T q nlog i iB ( / ) is defined as the chemical potential µi, 
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which is unfortunate because this makes the chemical 
potential a variable rather than a parameter which can 
lead to confusion when discussing an open system 
where the chemical potential is strictly a parameter 
(see below). Likewise, one could argue that the open 
system parameter µi should be referred to explicitly as 
an average chemical potential. While these distinctions 
are clear in discussions of statistical thermodynamics 
and ensembles, they are less clear in discussions of 
metabolic modeling. Regardless, the reaction affinity 
can now be written as,

A
∑ νµ≈−

k T i

M

i i
B

where the approximation is again due to the use of 
Stirling’s approximation in equation (7). To avoid 
later confusion with the chemical potential in an open 
system, we will express the reaction affinity in terms 
of the equilibrium constant and counts (or similarly 
concentrations). Taking the exponential of the 
reaction affinity and writing the counts ni as an explicit 
function of the extent of the reaction ξ at the initial 
condition ξ = 0,

∏

∏

∏

∏

∏

∏

∏

ξ

ξ

ξ
γ ν

ξ

ξ

≈ =

=

=

=

⋅ =

=

=

=

⋅

ξ ν ν

γ

γ

γ

γ

γ

γ

= −n q

n

n

q

q

n

n

e 0

0

0

where

0

0

.

k T

i

M

i i

i
i

i
i

i
i

i
i

i i

i
i

i
i

0

reactants

products

products

reactants

reactants

products 1

i i

i

i

i

i

i

i

B ( )

( )

( )

( )

( )

( )

K

A

The constant K1 is the equilibrium constant for 
reaction 1, defined as the ratio of the molecular 
partition functions qi of the species i involved in the 
reaction, each raised to the power of its stoichiometric 
coefficient in the reaction [24]. It is important to note 
that the partition functions …q q, , M1  are the exponent 

of standard chemical potentials µ µ…, , M1
0 0  (scaled by 

the available thermal energy), which in this case are 
averaged over all lower degrees of freedom—solvation, 
translational, rotational, vibrational and electronic.

 In the case of reaction scheme A, the reaction affin-
ity becomes,

K
A ξ

ξ
≈

=
=

ξ γ

γ

= n

n
e

0

0
.k T A

B

0
1

A

B

B
( )
( )

( )
 (8)

In contrast to the reaction affinity, the microscopic 
analogue of the free energy change is the log odds 
of the densities of two different states, which for an 
reactant state at ξ = 0 and a product state at ξ = 1 its 
exponential is [25],

K
G ξ

ξ
≈

=
=

ξ ξ γ

γ

−∆ = = n

n
e

0

1
,k T A

B

1, 0
1

A

B

B
( )
( )

( )
 (9)

where the approximation is again due to the use 
of Sterling’s approximation. To demonstrate that 
equation (9) is a microscopic free energy change, the 
free energy change of a reaction can be obtained from 
carrying out the integration in equation (5),
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(10)
Recognizing that the approximation in the second step 
is due to the earlier use of Stirling’s approximation 
in equation (7), we can rewrite the last equality as an 
exact relationship,

⎛

⎝
⎜
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⎟
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∑ ∑
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(11)

Again recognizing that the equilibrium constant K1 
is the ratio of the molecular partition functions of 
the species involved in the reaction, each raised to the 
power of its stoichiometric coefficient in the reaction, 
for reaction scheme A we get,

K

K

G

ν ν
ξ
ξ
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+ +

≈
=
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In the last expression the unsigned stoichiometric 
coefficients γ ν=i i  have been substituted for the 
signed coefficients. It is clear from comparison of 
equations (8) and (9) that the rigorous interpretation 
of the ratio of two mass action functions in equation(3) 
is the reaction affinity and not the microscopic free 
energy change for the reaction. If the value of the 
reaction affinity is constant when averaged over many 
states, as is the case for large systems at steady state and 
assuming real valued counts or concentrations, then 
the average value of the reaction affinity and the free 
energy change are equal in value. More generally, the 
reaction affinity can completely describe the relative 
dynamics of single (isolated) reactions even for non-
steady state systems. The reaction affinity, expressed 
strictly in terms of standard chemical potentials as 
parameters, is

ξ
ξ

≈ ⋅
=
=

ξ γ µ γ µ
γ

γ

= − − n

n
e e

0

0
.

A
k T k T A

B

0
A A B B

A

B

B

0 0
B

( )
( )

( ) ( )/
 (12)

Open systems and sequentially-coupled reactions
In biology and many other fields reactions rarely occur 
in isolation. Instead, multiple reactions may be coupled 
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together that transform initial reactants into final 
products. Consider the simple coupled reaction system,

�

�

γ γ

γ γ

−

−

A B

B C

A B

B C

,1
1

1

,1

,2
2

2

,2

 
(Scheme B)

where A, B and C are chemical species and γi j,  is the 
stoichiometric coefficient for species i of reaction j.

For an open system, the microscopic free energy is 
given by a multinomial Boltzmann distribution simi-
lar to equation (6) but without any restriction on the 
total number of particles. In this case, the derivative of 
the total number of particles in equation (7) must be 
included in the integral of equations (7) and (10). If the 
total number of particles before the reaction (ξ = 0) is 

NT
0  and after the reaction (ξ = 1) is ν+∑NT i i

0 , then 
the respective reaction affinity and free energy change 
are,
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Here the symbol Ξ is used to represent the microscopic 
free energy of an open system and ∆Ξ to indicate a 
change in the microscopic free energy with dependence 
on the total number of particles. In the equation for 

the free energy change, ⎡⎣ ⎤⎦ν+∑N Nlog ! !T i i T
0 0( ) /  

is negligible for systems with a large number of 
particles undergoing a single reaction. For the rest of 
the discussion, we will assume that the total number 
of particles does not change simply for convenience 
and clarity, and will consequently use formulations 
analogous to equations (8) and (9) instead.

In order to model coupled reactions in a manner 
analogous to the use of reaction affinities for isolated 
reactions, a function is needed for the odds of one reac-
tion relative to the next reaction. That is, for reaction 
scheme B information is needed on the relative rate 
of the first reaction to the second reaction. Taking the 
ratio of the mass action kinetic rate laws for reactions 1 
and 2 in scheme B, a term analogous to equation (8) is 
needed that couples sequential reactions,
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(13)

Here, K Kand1 2 are rate constants that are functions of 
the volume of the system such that for K ,1

K

K

ξ ξ=
=

γ γ

γ
n k n V

k Vor ,
A A1 1 1 1

1 1

A A
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( ) ( ( )/ )
( / )

and likewise for K2. Here K is used instead of k simply 
for convenience so that rate equations, thermodynamic 
functions and probability densities discussed below are 
all based on counts. The challenge in developing the 
function expressed in equation (13) is that K21 cannot 
be determined from equilibrium measurements or 
calculated from free energies of formation. Like rate 
constants, the proposed coupling constants K21 are 
system-dependent and have no system-independent 
standard value. Next, we demonstrate how non-
equilibrium steady state measurements can be used to 
determine coupling constants and how sequentially-
coupled reactions can be modeled using chemical 
potentials instead of rate constants. In all cases discussed 
below, the extent of each reaction i is ξ = 0i  and so we will 
drop the explicit notation for the extent of the reaction.

For reactions shown in scheme B, the deterministic 
time dependence of each chemical species is governed 
by the usual set of ordinary differential equations. For 
species B this time dependence is,

K K

K K

γ

γ

= −

− −

γ γ

γ γ

−

−

n

t
n n

n n

d

d

.

B
A B

B C

1 1

2 2

B

A B

B

B C

,1

,1 ,1

,2

,2 ,2

( )

( )
 

(14)

The deterministic rate equation can be rescaled in time 

by dividing by K τ=
γ −nA1 1

1A,1( )  and replacing the ratios 
of rate constants with equilibrium constants,
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(15)

where K KK =− −1 1 1/  and K KK =− −2 2 2/  are 
equilibrium constants such that the second term in 
each parenthetical expression corresponds to the 
reaction affinity for each reverse reaction. The factor 

K K
γ γ

n nB A2 1
B A,2 ,1/  is the value of the desired coupling term 

K
γ γ

n n .B A21
B A,2 ,1/

Unless one can determine the coupling term 

K
γ γ

n nB A21
B A,2 ,1/ , equation (15) is not useful for modeling 

systems of coupled reactions without rate constants. 
However, this coupling term can be determined by 
solving equation (15) at steady state. For the reactions 
in scheme B at steady state and with steady state con-
centrations denoted by SS,
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(16)

Equations (15) and (16) tells us that if we measure 
concentrations of metabolites at a steady state, we can 
determine the relative dynamics of sequentially-coupled 
reactions without rate constants, whether at steady state 
or not. The dynamics are relative to the characteristic 
time of some base reaction, determined by the choice 

of Kτ =
γ −

nA1 1
1

A,1( ) .
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The parameters that are needed are the steady state 
concentrations and equilibrium constants K−1 and 
K−2 (or equivalently the molecular partition functions 
qA, qB and qC). With these parameters in hand, it is easy 
to determine the coupling constants for the reactions 
using chemical potentials,
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(17)

The last equality is obtained by substituting for the 
definition of the chemical potential for an open 
system. There are many biological systems for which 
the stoichiometric coefficients are all unity. In this case, 
the coupling constant has the simple form,
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−
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The rate equation (14) expressed entirely in terms of 
chemical potentials and in terms of time relative to τ1 
is then,
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where again the extent of the reaction is taken to be 
ξ = 0 for all reactions such that the counts ni are the 
instantaneous counts for each of the chemical species i. 
The rate equation can be expressed more succinctly in 
terms of equilibrium and coupling constants,
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(19)

where again K−1 and K−2 are the equilibrium constants 
for the reverse reactions in scheme B. Equations (16) 
and (19) are the key concepts of this report. It will 
be demonstrated in the Results that for sequentially 
coupled reactions, using these equations with steady 
state concentrations or chemical potentials in lieu of 
rate constants enables one to determine the relative 
time dependence of the chemical species. In the next 
section, we generalize these equations to an arbitrary 
chain of sequential reactions.

General form of coupling
A set of sequentially coupled reactions can be 
represented by,
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(Scheme C)

where Zv is the product of the vth reaction with 
a stoichiometric coefficient of γ ννZ , . For the 
stoichiometric coefficient γ ννZ , , the first subscript 

νZ  indicates the chemical species and the second 
subscript ν indicates the reaction. Equation (19) can be 
generalized using the last two reactions of scheme C as 
a general case. The coupling term for the vth reaction 
can be derived in terms of the previous reaction ν− 1( ) 
from the steady state condition, as follows. The relative 
time dependence of the counts ν−nZ 1 of the reactant of 
the vth reaction, −Zv 1, is given by,
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where ν ν−c , 1 is the coupling term that will be derived. 
In equation (20) the time dependence is relative to 

that of the ν− 1 th( )  reaction. At steady state =ν− 0
n

t

d

d

Z 1  

such that, similarly to equation (16),
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where SS again indicates that the values of ν−nZ 2, ν−nZ 1, 
and νnZ  were obtained at steady state. The numerical 
value of ν ν−c , 1 at any state J is easily determined,
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The sequential nature of the reactions suggests an 
iterative process, in which the coupling between the 
first reaction in the sequence and the vth reaction is 
given by,

∏=ν
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=
−c c ,

i
i i,1

1
, 1

where ≡c 1.1,0  Consequently, the change in the counts 
of the product of the ν− 1 th( )  reaction, ν−nZ 1, when 
rescaled by the rate of the first reaction in the sequence 
is,
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Using this formulation, all reactions in a reaction 
network can be rescaled by the transition probability 
of any specific reaction. In principle, then knowledge 
of any one rate constant can be used to derive the 
absolute time-dependence of the entire system.

Results

Simulations of mass action using coupling constants 
in lieu of rate constants
Like equilibrium constants, coupling constants 
between reactions are the ratio of the rate constants 
of the respective elementary reactions. Unlike 
equilibrium constants, however, coupling constants 
between reactions such as K21 are system dependent 
just as are rate constants and chemical potentials 
in non-equilibrium steady state systems. For 
convenience, we refer to equations (18) and (19) 
as differential equations using coupled reaction 
theorem. For the reactions of scheme B, figure 1 shows 
the comparison between a simulation solving the 
stochastic equivalent of equation (14) and one solving 
for stochastic equivalent of equation (19). Both 
simulations used the Gillespie stochastic simulation 
method [26]. In the kinetic stochastic simulation, 
reaction/transition probabilities were determined 
using rate constants and counts, while in the stochastic 
thermodynamic simulation reaction probabilities 
were determined using chemical potentials and counts 
of species. Reactions were selected randomly based on 
the formulation of transition probabilities shown in 

table 1. In these simulations, the absolute time is not 
modeled—all results pertain to the characteristic time 
of the  +1 reaction in scheme B. However, if just one 
rate constant is available then the coupled reaction 
theorem can be used to reproduce the exact same time-
dependent trajectory as the trajectory governed by the 
(un-scaled) ordinary differential equation (14).

The top row in figure 1 compares the steady state 
trajectories of the reaction intermediate B from sto-
chastic simulations using the coupled reaction theo-
rem (blue) with trajectories from stochastic kinetic 
simulations (red). Simulations were carried out under 
a range of conditions, from mildly non-equilibrium 
conditions with a total free energy change from ini-
tial reactants to final products of  −2 kcal mol−1, to 
strongly non-equilibrium conditions with an over-
all free energy change of  −20 kcal mol−1. The steady 
state solutions of the deterministic (real valued) ordi-
nary differential equation are shown as dotted lines 
for comparison. When using the same set of random 
numbers, the trajectories from the coupled reaction 
theorem simulations are exactly the same as that for 
the stochastic kinetic simulations (the trajectories are 
offset by  +5 counts for clarity), indicating that fluc-
tuations around the steady state are identical. We can 
also demonstrate that the reaction probabilities are 
proportional, which is to be expected from the math-
ematical equivalence of equations (15) and (19).

The use of the coupled reaction theorem is valid 
away from the steady state, as well. Shown in row 2 in 
figure 1 are the transient decays from non-equilibrium 
states to the steady states obtained by setting the initial 
counts of the intermediate species B at a multiple of 
the steady state count. The transient is then the decay 
of the count of the intermediate species B to its steady 
state level. As expected, both the stochastic kinetic 
simulations and the coupled reaction theorem simula-
tions produce exactly the same trajectory when using 
the same set of random numbers. In the case of rows 1 
and 2 in figure 1, the forward rate constants for the two 
reactions differ in scale by four orders of magnitude 
(K K = −101 2

4/ ).
The multi-scale nature of the approach is dem-

onstrated by holding K K K=−1 1 1/  and K K K=−2 2 2/  
constant while varying K K1 2/  over a large range. Row 
3 in figure 1 shows the average steady state concentra-
tions calculated for both coupled reaction theorem and 
stochastic kinetic simulations when K K1 2/  is varied over 
eight orders of magnitude (10−4 to 104) in 100 000 dif-
ferent simulations, each represented as a point in the 
plot. As the ratio K K1 2/  increases, the concentration of 
the reaction intermediate increase as the intermediate is 
produced faster than it can be taken away until a steady 
state is reached. Once again, both methods produce 
exactly the same average steady state concentration.

Steady state concentrations, however, are less sensi-
tive to variations in the rate constants than the rate of 
material flow through the system of reactions. The net 
flow of material through reaction 1 in scheme B during 
a simulation with nsteps timesteps is given by,

Phys. Biol. 14 (2017) 055003
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π π= − −f n ,1,net steps 1 1( )

where nsteps is the total number of reaction steps and 
the reaction probabilities π1 and π−1 are given in table 1. 
At steady state, the net flow of material through each 

reaction is equal such that =f f1,net 2,net. The net 

material flow through either reaction during the 
simulation is plotted as a function of the ratio of the 
rate constants, K K1 2/  in the bottom row in figure 1. 
There is a many-to-one relationship between the ratio 
K K1 2/  and the overall material flow because each value 
of K K1 2/  can corresponded to multiple combinations 

Figure 1. (A)–(D) Comparisons between stochastic kinetic simulations (red) and simulations using the coupled reaction theorem 
(blue) as described in the text in which the same set of random numbers were used in both sets of simulations. Simulations of the 
coupled reactions of scheme B with all stoichiometric coefficients equal to unity were carried out at different driving forces by fixing 
C and setting the boundary concentrations of A to an appropriate level. In each case, the equilibrium constant for reaction 1 (K1) 
is 25-fold greater than that for reaction 2 (K2). In both (A) and (B) the coupled reaction theorem trajectory is offset by  +5 counts 
so that it can be distinguished. (A) Steady state trajectory from representative simulations using the same set of random numbers. 
(B) Non-equilibrium transient trajectories from representative simulations using the same set of random numbers. (C) Steady 
state counts of the intermediate B from 100 000 simulations of both stochastic kinetic and stochastic thermodynamic simulations 
in which the ratio of the rate constants K K1 2/  in the kinetic simulation is varied from 10−4 to 104 while keeping K K K=−1 1 1/  and 
K K K=−2 2 2/ . In the stochastic thermodynamic simulation, the parameters were varied using different steady state counts instead of 
varying rate constants. (D) Steady state material flow over the same set of simulations as in (C).

Table 1. Transition probabilities used in stochastic simulations. For the simulations based on rate constants, the denominator  

K K K K= + + +− −d n n n nA B B C1 1 2 2  while for the simulations based on the coupled reaction theorem K K= + ⋅ + ⋅ +−D 1
n

n

n

n1 21
B

A

B

A
 

⋅ ⋅ ⋅−
n

n

n

n21 2
B

A

C

B
K K .

Method

Transition probability

π1 π−1 π2 π−2

Kinetic K n

d
A1 K− n

d
B1 K n

d
B2 K− n

d
C2

Coupled  

reaction theorem
D

1 K⋅ ⋅−D

n

n

1
1

B

A
K⋅ ⋅

D

n

n

1
21

B

A
K K⋅ ⋅ ⋅ ⋅−D

n

n

n

n

1
21 2

B

A

C

B
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of K1 and K2. Once again the coupled reaction theorem 
and stochastic kinetic simulations produce exactly the 
same results when the same set of random numbers 
are used to select which reaction to fire. In fact, the 
correlation between the trajectories from stochastic 
kinetic and the coupled reaction theorem simulations 
across all values of K K1 2/  is 1.0 within the numerical 
precision of the software.

As mentioned above, if just one rate constant is 
available then coupled reaction theorem simulations 
can reproduce the exact time-dependent trajectory as 
the trajectory governed by the (un-scaled) ordinary 
differential equation (14). Measurement of K1 allows 
one to formulate the time dependence of the reaction 
intermediates such as B as (see equation (19)),

⎡

⎣
⎢
⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎤

⎦
⎥
⎥

τ γ

γ

= −

− −

γ

γ

γ

γ

γ

γ

−
−

−

n

t

n

n

n

n

n

n

d

d
1

1 .

B B

A

B

A

C

B

1
1

1

21 2

B

B

A

B

B

A

C

B

,1

,1

,1

,2

,2

,1

,2

,2

K

K K

 

(23)

Simulations in relative time
More conveniently, simulations can be carried 
out in relative time using equation (19) and 
then adjusted post-simulation to absolute time. 
Furthermore, relative to equations (23) or (14), the 
use of equation (19) can accelerate the convergence 
of the non-equilibrium transients according to the 
time scale of the rescaling reaction. If the dynamic 
equations are rescaled by the reaction with the fastest 
dynamics or highest probability, then the values of the 
respective time derivatives for the set of differential 
equations governing the dynamics of the system is 
reduced accordingly. As a consequence, simulations 
may converge to the steady state in a fewer number of 
steps. Regardless, the simulated time-to-steady state 
will be equivalent when time rescaling is used in this 
manner since reaching the steady state depends on the 
time scale of the reaction with the lowest probability or 
slowest dynamics.

To illustrate this time dependence, consider a pair 
of reactions similar to those in scheme B but catalyzed 
by a pair of enzymes, as shown in figure 2. Enzyme 1 
(E1) binds substrate A and produces product B, which 
is released and in turn bound by enzyme E2 to produce 
product C. Starting from a highly non-equilibrium 
state consisting of only substrate A and enzymes E1 
and E2, initially the fastest reaction will be the bind-
ing of A to E1 to form the complex E1A. The slowest 
reaction will be that producing the final product, C. 
Using a kinetic simulation based on rate constants and 
coupled reaction theorem simulation based on chemi-
cal potentials and rescaling, the dynamics of the un-
scaled and time-scaled system over a one second win-
dow are shown in figure 3(A) for the first enzymatic 
reaction and in figure 3(B) for the second enzymatic 
reaction. The differential equations used to model the  

reactions are analogous to equations (19) and (14), 
and are provided in the supplementary information 
(stacks.iop.org/PhysBio/14/055003/mmedia) along 
with all of the details of the simulation in the form of a 
browser-based computational notebook. A stiff, adap-
tive solver using was used to solve the differential equa-
tions [27].

Although both simulations start from the same set 
of concentrations, the simulation using the coupled 
reaction theorem and rescaling converges to the steady 
state more rapidly under all reaction conditions that 
were tested. The kinetic simulation spends a consider-
able amount of time simulating the fast dynamics that 
occur below 10−4 s (figures 3(A) and (B)), while the 
simulation using the coupled reaction theorem effec-
tively accelerates the convergence of the fast dynamics 
and spends relatively little time below the millisecond 
time scale. Regardless, the steady state is reached in 
the coupled reaction theorem simulation at approxi-
mately the same cumulative time point as the kinetic 
simulation because the dynamics of the slowest reac-
tions are unchanged in the vicinity of the steady state.

That the rescaled ODEs resulting from implement-
ing the coupled reaction theorem require less compu-
tational work to reach steady state solution is implied 
by figure 3(C) which shows that the rescaled ODE’s 
require fewer number of time steps to reach the steady 
state than the full ODE using rate parameters. Specifi-
cally how much computational work is reduced and 
under what conditions will be a topic of future reports 
where it will be tested on a sufficiently complex system 
of equations.

Course graining using summary reactions
In addition to being able to produce the correct 
dynamics without the need for rate constants, the 
coupled reaction theorem has an advantage over 
kinetic formulations of reaction dynamics for multi-
scale modeling of the steady state: course-graining the 
dynamics such that the equations are ‘telescopic’ is 
relatively easy. One can zoom in or out of the details 
of the reaction system as needed, which can be a 
considerable advantage for modeling [13]. If one is 
only interested in steady state phenomena, it is not 
necessary to model elementary reactions; summary 
reactions can be modeled using chemical potentials 
instead and still produce the correct steady state 
dynamics. The course-grained dynamics will be the 
composite dynamics of the collapsed system, however.

To demonstrate the ability to collapse reaction 
schemes to coarse-grained summary reactions, one 
only needs to consider a Kirchoff’s loop relationship 
for cycles [28, 29]. Consider the first reaction cycle 
shown in figure 2 from reactant A through reactions 
2–4 to product B and then through reaction  −1 back to 
initial reactant A. The free energy change for traversing 
around a cycle is zero. In the deterministic limit (large 
number of particles) and at steady state, the relation 
between rate and free energy is G∆ = − + −RT r rlog( / ) 
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Figure 2. Coupled enzyme catalyzed reactions corresponding to the uncatalyzed reactions of scheme B. The uncatalyzed reactions 
are 1 and 5. In the catalyzed reactions enzyme 1 (E1) binds substrate A in reaction 2, converting the substrate to intermediate B in 
reaction 3, and releasing B in reaction 4, while enzyme 2 (E2) binds the intermediate B in reaction 6, converts the intermediate to 
product C in reaction 7, and releases the product in reaction 8.

Figure 3. Time dependence of enzymatic reaction 1 (A) and reaction 2 (B) using rate parameters (labeled ‘kinetic’), the coupled 
reaction theorem with time-rescaling (labeled ‘CRT with time rescaling’) and the coupled reaction theorem formulation of 
summary reactions that do not include catalyst dynamics (labeled ‘CRT Summary Rxn’). The latter can be thought of as the 
statistical course graining of the reaction dynamics of the detailed system in which the summary reaction represents the course 
grained system. In both coupled reaction theorem simulations the processes occurring on small time scales (fast dynamics) 
converge much faster than in the simulation based on rate parameters. (C) Plot of the time scale of the dynamics as a function of 
the simulation step. The time rescaling results in larger time steps taken per simulation step for both CRT simulations. (D) The 
ratio of the rates for each of the reactions in figure 2. Reactions 2–4 and 6–8 involve enzyme dynamics while reactions 1 and 4 are 
summary reactions representing the overall process. At steady state, a Kirchhoff loop law is obeyed such that equation (24) holds. 
All subscripts refer to the reaction scheme shown in figure 2. Reaction parameters for figure are as follows. Equilibrium constants: 
KK = 100,1 5  K = 0.2,1  K = 5005 , K = 10 ,2

6  K = 0.2,3  K = −10 ,4
6  K = 10 ,6

6  K = 500,7  and K = −10 .8
6  Rate parameters (volume-

independent): =k 10 ,2
9  =−k 10 ,2

3  =k 10 ,3
3  = ⋅−k 5 10 ,3

3  =k 10 ,4
3  and =−k 10 ,4

9  =k 10 ,6
9  =−k 10 ,6

3  =k 10 ,7
3  =−k 2,7  =k 10 ,8

3  
=−k 10 .8

9  Concentrations: figures 4(A)–(C), = −A 10 3[ ]  and = ⋅ −C 1.4373 10 25[ ]  (both fixed); for figure 4(D), the initial condition 
is = ⋅ −C 1.4373 10 9[ ]  and the initial concentrations for enzymes is [E1]  =  0.5 * 10−3 and [E2]  =  0.5 * 10−3.
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where R is the gas constant, +r  is the forward reaction 
rate and −r  is the reverse reaction rate [11, 30, 31]. For 
such a cycle at steady state,

=+

−

+ + +

− − −

r

r

r r r

r r r
.1

1

2 3 4

2 3 4
 (24)

For an enzyme catalyzed reaction of a single substrate, 

+r 2, +r 3 and +r 4 correspond to the rates of binding of the 
substrate, the catalytic conversion of the substrate to 
product, and the rate of release of product, respectively. 
The ratio + −r r1 1/  then corresponds to the ratio of rates 
of the combined steps. The dynamics of the full set of 
reactions (reactions 2, −2, 3, −3, 4, −4, and 6, −6, 7, 
−7, 8, −8) and the summary reactions (reactions 1, −1, 
5, −5) in figure 2 are compared in figure 3(D), which 
shows the rate ratio of each reaction as the system 
approaches steady state, as well as the product of rate 
ratios in equation (24). In this figure, comparison of 
the product of the ratio of rates of reaction 2, 3, and 
4 (Rxn 234, blue solid line in figure 3(D)) can be 
compared with the ratio of the rates for reaction 1 (Rxn 
1, blue dashed line). While the combined trajectory for 
reactions 2, 3, and 4 (in the form of the product of the 
ratio of the rates) start at 10−8 s, the trajectory doesn’t 
converge until 10−4 s. In contrast, the trajectory of the 
ratio of forward and reverse rates for the equivalent 
reaction 1 takes minimal time to converge in the first 
few time steps and has converged by 10−6 s. Likewise, 
the combined trajectory for reactions 6, 7, and 8 (Rxn 
678, blue solid line) start at 10−8 s and converges by 
10−4 s, while the trajectory for equivalent reaction 5 
(Rxn 5, blue dashed line) converges immediately in the 
first few time steps at 10−6 s.

Compressing reactions 2, 3, and 4 into summary 
reaction 1 and reactions 6,7, and 8 into summary reac-
tion 5 are the mass action equivalent of course-grain-
ing in atomistic simulations: the degrees of freedom 
are averaged over and compressed to fewer degrees 
of freedom, enabling the removal of high-frequency 
dynamics from the trajectories. Since the course-
grained summary reactions 1 or 5 do not model the 
dynamics of enzyme binding, the rate ratio converges 
to the steady state value rapidly.

That the rate ratios can be predicted using course-
grained summary reactions and without the need for 
rate constants can be a considerable advantage for 
modeling biological systems. To model the simple 
two-substrate, two-product enzymatic reaction for the 
conversion of dihydrofolate to tetrahydrofolate, Fierke 
et al, demonstrated that the kinetic scheme involves 13 
reactions [32]. In the coupled reaction theorem form-
ulation, each pair of coupled reactions has the same 
canonical form shown in equation (19). One can model 
either the elementary reactions or a summary reaction 
that describes the overall phenomena as long as the 
appropriate steady state concentrations are available.

Using a coupled reaction theorem formulation, 
measurement of the steady state levels of metabolites 
and proteins as they exist unbound in the cytosol can 
be used to derive information on the dynamics of the 

individual and overall steps of the enzyme-catalyzed 
reactions, including rate constants.

Branched reactions
For branched reactions, however, steady state 
concentrations alone are not sufficient to derive the 
dynamics. Consider the branched reaction where a 
product of the first reaction �A B is then the reactant 
for two reactions occurring in parallel,

⥫⥬

⥫⥬
�A B
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k
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When the concentrations of each species is large 
enough, the deterministic rate law for species B is,
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Using the approach described above and solving 
for rate ratios at steady state results in two unknown 
coupling ratios and one equation, which cannot be 
solved without additional information. However, 
if either the flux = − = −− −r r r r r ror1,net 1 1 3,net 3 3 
through reactions 1 and 3, respectively, is measured 
using isotopic labeling assays (metabolic flux analysis 
[33]), then this additional information allows for 
determination of the necessary coupling parameters,
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In fact, since all reactions in a non-branching pathway 
all have the same net flux at steady state, any steady state 
flux through a reaction in a non-branching portion of 
a pathway containing reaction 1 and any steady state 
flux through a non-branching pathway containing 
reaction 3 are all that are needed to determine the 
coupling between reactions 1 and 3.

Useful assumptions when data on reaction affinities 
are not available
What can be done if steady state measurements of 
metabolite levels or reaction fluxes for branched 
reactions are incomplete or not available? To answer 
this question, it is necessary to know how the coupling 

terms (e.g. K
γ γ

n nB A21
B A,2 ,1/  in equation (19)) affect the 

reaction dynamics—in particular, the net rate through 
a reaction (flux) and the energetic cost to a biological 
cell. As can be seen in figure 1(D), changing the ratio of 
the rate constants K1 and K2 can dramatically affect the 
flow of material through the reactions. (Again, there 
is a many-to-one relationship between the ratio K K1 2/  
and the overall rate because each value of K K1 2/  can 
corresponded to multiple combinations of K1 and K2.) 
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In particular, a high or low value of the ratio K K1 2/  does 
not lead to a decrease/increase in overall rate; instead 
the optimum value appears to be closer to 1.

The top row in figure 4 demonstrates the relation-

ship between the coupling term K
γ γ

n nB A21
B A,2 ,1/  and the 

rate of product formation for the system in scheme B 
as determined by,

K K
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟τ γ= −

γ

γ

γ

γ
−

−
n

t

n

n

n

n

d

d
1 .C B

A

C

B
1

1
21 2C

B

A

C

B,2

,2

,1

,2

,2
 (25)

For each plot from left to right, the overall free 
energy change for the system � �A B C changes 
from  −2.0 to  −20.0 kcal mol−1. Within each plot, 
the net rate of production of product C is a sigmoidal 
function of the coupling term, specifically the rate 
parameter k1, with the highest rates occuring when 

A Kξ ξ = γ γ
RT n nexp , B A2 1 21

B A,2 ,1( ( )/ ) /  is equal to or greater 
than 1.0. As the driving force on the overall reaction is 
increased from left to right in each of the four plots, 
the range of values for the coupling term converges to 
1.0, as predicted from equation (16) when the reverse 
reactions  −1 and  −2 become highly unlikely.

As can be seen in the middle row of figure 4, the 
average value 1.0 for the coupling term has particular 
significance—it is the maximum entropy change (or 
production) steady state out of all the possible steady 
states. The definition of entropy production used here 
is the the entropy change in going from initial products 
to final reactants due to reactions (rxns) [25, 34],

∑ ∑
∆ =

− δ δ+ +

S

Pr C C Pr C Clog ,
i J

J J S J J S

rxn

rxns states
i i( → ) ( → ) 

(26)

where CJ is the configuration of state J, δSi is a change of 
state due to reaction i, δ+CJ Si is the configuration of state 
δ+J Si and δ+Pr C CJ J Si( → ) is the time independent 

state-to-state transition probability given by,

A

A∑
=δ+Pr C C .J J S

i

j
j

rxns

i( → )

The total free energy of the system is also represented 
in the figures by color-coding. The state of lowest free 
energy is also the state of maximum entropy production.

Thus, the maximum entropy production steady 
state is the thermodynamically most efficient steady 
state (least heat dissipation) and is characterized by 
being the steady state of lowest total free energy and 
highest thermodynamic likelihood. By comparison 
of the top and middle rows, and especially for a non-
equilibrium driving force of 2 kcal mol−1, it is apparent 
that it is possible to maximize the net rate but at the cost 
of thermodynamic efficiency. That is, while a some-
what higher net rate can be achieved, the system must be 
maintained at a higher energy. However, at even mod-
erate thermodynamic driving forces of 5 kcal mol−1  
for the overall reaction, there is no speed advantage—the  
net rate is maximized very close to the thermodynamic 
optimum. As long as both reactions individually have 

Figure 4. For each plot above, the x-axis is the numerical value of the coupling term, K
γ γ

n nB A21
B A,2 ,1/ . (top row) Net rate of formation 

of final product C from the reaction system shown in scheme B according to equation (25). As the driving force increases from  −2.0 
to  −20.0 kcal mol−1 across the top row, the value of the coupling term at which the rate becomes maximal converges to 1.0. (middle 
row) Entropy production (equation (26)) as a function of the coupling term. The total free energy of the reaction system, in kcal 

mol−1, is represented by colors, as well. The maximal entropy production and total free energy both occur at K =γ γ
n n 1.0B A21

B A,2 ,1/ . 
(bottom row) Entropy production rate (equation (27)) as a function of the coupling term. The entropy production rate is also 
maximal when the coupling term is 1.0.
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moderate non-equilibrium driving forces, there is no 
speed advantage to tweaking rate constants. Rate and ther-
modynamic efficiency are meaningfully combined in the 
concept of entropy production rate, hinted at by Lotka [35, 
36] and proposed by Schrödinger and many others since 
[37] as the operating principle for biological systems. The 
definition of the entropy production rate used here is,

σ = ⋅ ∆r S .net rxn (27)

As can be seen from the bottom row of figure 4, the 
entropy production rate is also maximized when 

K =γ γ
n n 1.0B A21

B A,2 ,1/ , as are the entropy production and 
total free energy of the system. This is significant in 
that it suggests that on the larger scale of biological 
systems there does not necessarily need to be a 
tradeoff between growth rate and the thermodynamic 
efficiency of growth. Furthermore, the bottom row 
of figure 4 shows that there is a dramatic decrease in 
steady state entropy production rates as one moves 
away from the thermodynamically optimal state in 

which A Kξ ξ = =γ γ
RT n nexp , 1.0.B A2 1 21

B A,2 ,1( ( )/ ) /  If one 
assumes that adaptation favors organisms with greater 
entropy production, then one can create reasonable 
models without even the need for steady state values of 
reaction intermediates by setting the coupling term to 
the value that maximizes the entropy production rate.

The definition of entropy production used above 
differs from that used recently by De Decker et al, in 
describing entropy production rates for mass action 
processes [23],

A∑σ = ⋅
T

r
1

,I
i

i i

rxns

where T is the temperature. Besides the difference in 
units, one important difference is that the definition 
of entropy production rate in equation (27) uses 
the overall rate going from initial reactants to 
final products of the system rather than the rate 
of individual processes. One definition of entropy 
production rates is not necessarily more correct than 
any other, but rather, like any descriptive statistic, the 
appropriate entropy production rate formulation 
depends on the phenomena one is characterizing. For 
biological systems undergoing natural selection in 
which one wants to characterize competition among 
species, it is the overall rate of entropy production 
via growth that is important and not necessarily the 
entropy production rates of sub-processes.

Discussion

In the work described above, we show that the state 
of the system at steady state is sufficient to define the 
material and energy fluxes through a system of serially 
coupled reactions. This is particularly important for 
biology in that both steady state concentrations and 
fluxes can be determined for many chemical species.

Related to this work, Zia and Schmittmann devel-
oped a framework for generalized detailed balance 

which extended the concept of detailed balance to 
the non-equilibrium domain [38]. The idea is that 
any steady state is uniquely characterized by the pair 
∗ ∗Pr V,{ }, where Pr is the probability of a configuration 
= …C n n, , M1{ } and ∗Pr  is the value at the steady state 

configuration (the most probable state in a system at 
steady state). ∗V  is the set of probability currents which 
are proportional to the net steady state fluxes; that is, 
an element vi of V  is such that ∝ − −v r ri i i, the differ-
ence of the forward and reverse reaction rates for reac-
tion i. Equilibrium is the special case of ∗Pr , 0{ }.

Zia and Schmittmann demonstrated that the pair 
∗ ∗Pr V,{ } uniquely characterize a steady state for both 

equilibrium and non-equilibrium systems. In contrast, 
for the special case of sequentially coupled reactions 
described above, we demonstrated that configuration, 
= …∗ ∗ ∗C n n, , ,M1{ }  the set of counts/concentrations at 

steady state, alone is sufficient to uniquely character-
ize a non-equilibrium steady state in terms of relative 
time, and that the absolute time-dependence can be 
determined with knowledge of just one rate. The rea-
son for this is that the standard chemical potentials of 
species in a reaction constrain the dynamics of forward 
and reverse rates of the same reaction, while the dynam-
ics between reactions are likewise constrained by the 
observed steady state chemical potentials. The steady 
state chemical potentials as parameters for an open sys-
tem determine the probability of any chemical species i,

∑
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which in turn determines ∗Pr , the probability density 
of the steady state configuration ∗C  [25],
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Equation (28) is directly related to the microscopic 
free energy of the system [25]. It is clear from the work 
described above that for branched reaction pathways, 
knowledge of θ θΘ = …, , M1{ } (or µ µ…, , M1{ }) and 
only a subset of ∗V  is sufficient to characterize a unique 
non-equilibrium steady state. This begs the question, 
how many fluxes are needed to uniquely characterize 
a steady state in addition to the M chemical potentials/
concentrations?

Fleming et al [7] have recently addressed a this 
question—what conditions are necessary and suf-
ficient for duality between unidirectional fluxes and 
the concentrations/counts of chemical species in sys-
tems of coupled reactions? Their conclusion was that 
for a stoichiometric matrix of dimensions M  ×  P 
consisting of M rows corresponding to chemical spe-
cies and P columns corresponding to chemical reac-
tions, the rank of the stoichiometric matrix deter-
mines the number of reactions whose dynamics can 
be determined based on species concentrations alone. 
Surprisingly, they found that 26 of 29 genome-scale 
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metabolic models had stoichiometric matrices that 
were full rank. Of the remaining three stoichiometric 
matrices of the models, all were less than full rank by 
only three or less. Since the steady state concentrations 
are used to set chemical potentials for use as param-
eters in an open system, the implication for the work 
presented above is that the relative reaction dynamics 
could in principle be simulated using chemical poten-
tials in place of rate constants for as many reactions as 
there were metabolites in the full rank models. This 
suggests that only M−P fluxes are needed in addition to 
the M chemical potentials/concentrations to uniquely 
characterize any steady state system without rate con-
stants.

The demonstration that the maximum entropy 
production rate solution to the system of equations in 
scheme B is in many cases also the maximum rate solution 
prompts discussion on the nature of natural selection. 
Previously, a correlation between the standard entropy 
changes of overall reaction pathways and their activities 
has been demonstrated [39]. If metabolite measurements 
are available, the hypothesis of maximum entropy for 
steady states of evolutionary optimized systems is test-
able [40, 41]. It is important to note however, that while 
entropy production may be maximized at steady state, 
steady state entropy production rates are constrained by 
the rates achievable by the respective enzymes [42].

From an evolutionary perspective, conservation 
of a specific rate constant would be very hard and 
would require strict error tolerances in replication, 
which would lead to decreased ability to adapt. More 
likely, fitness fluctuates around the state of maximum 
entropy production. However, it must be kept in mind 
that the coupled reactions of metabolism do not repre-
sent the total thermodynamics of the cell and it is even 
possible for an individual reaction entropy to decrease 
rather than increase. Feedback regulation of enzyme 
activities may occur for many reasons, such as regu-
lating the production of metabolites to synchronize 
the cell’s network of coupled reactions with those of 
the environment [43]. Regardless, predictive models 
of complex adaptive systems such as those found in 
biology and elsewhere that do not depend on hard-
to-measure parameters are urgently needed to accel-
erate research in systems relevant to medicine, climate 
and energy challenges. We have outlined a statistical 
thermodynamic framework that would enable such 
large-scale simulations. The approach does not rely on 
kinetic parameters, but rather on standard free energy 
values and metabolite concentrations for which robust 
measurement methods are being developed [44].
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Supplementary material

The details of the computations regarding the 
coupled enzyme simulations (re: figures 2 and 
3) are available as a literate computing ( Jupyter) 
notebook with Matlab code at https://github.com/
wrcannon/CoupledEnzymeSimulations and can 
be viewed online at http://nbviewer.jupyter.org/
github/wrcannon/CoupledEnzymeSimulations/
b lob/mas ter /CoupledEnzy meSimula t ions_
PhysicalBiology.ipynb.

Alternatively, a pdf version of the notebook is pro-
vided as a supplementary file.
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