

Grid Controls & Communications Perspectives

Young Ngo, CTO October 31, 2024

Survalent Introduction

Survalent.

Understand, Manage, Optimize

Survalent.

Grid Design, Operation, Maintenance

Laws of Physics & Systems Theory

Ohm's Law

Grid behavior under different voltage and current conditions. Grid operation within safe voltage and current limits.

Kirchhoff's Laws

Fundamental for network analysis, fault detection, and load distribution. Ensure that power is distributed effectively and that the grid remains stable.

Joule's Law

Survalent.

	Joule's law
If a current I	flows through a conductor kept
across a pote	ntial difference V for a time t, the
work done of	or the electric potential energy
spent is	W = VIt
In the absen	ce of any other external effect,
	s spent in heating the conductor.
Contraction of the second s	of heat(H) produced is
	H = VIt
	$\Pi = V \Pi$

Assessing thermal loads, predicting and preventing component failures due to overheating.

Control Theory Principles: feedback loops, PID, dynamic systems modeling **Communication - Cyber-Physical Systems Principles:** interconnected, physical/digital

DNO to DSO – Laws of Physic

Survalent.

Maintaining system **reliability and resiliency** while delivering **the electricity** to consumers in alignment with **its financial and operational objectives**

Reliability Resiliency

Decarbonization

Flexibility

Adapt...Transform...Evolve

Utiliverse