NMR Technologies for High-Resolution Site Characterization and Monitoring of Environmental Remediation

Dave Walsh, PhD, and Darya Morozov, PhD
Vista Clara Inc., Mukilteo, WA, USA

RemPlex 2023 Global Summit
Table of Contents

• Introduction
 • Physical Principles of NMR
• Overview of NMR technology for environmental remediation
• Applications
 • High-resolution site characterization
 • Monitoring of remediation processes
 • Chlorinated Solvents
 • Seasonal soil moisture monitoring
 • Biofouling
 • Hydroxyapatite precipitation
 • NAPL detection
Introduction

Applications of Nuclear Magnetic Resonance (NMR)

Water molecules

Direct Detection of Hydrogen Nuclei

Medical MRI

NMR Geophysics
How it works?

Introduction

Geologic Material

- NMR principle
- How it works?
- Water molecules in pore space

NMR Signal

- Initial amplitude of NMR signal (A_0) \(\propto \) water content

NMR signal decay

- Time [ms]
- Water content
- T2 relaxation time [ms]

Modeling

- $K_{TC} = \frac{\phi}{\tau (S/V)^2}$
- $K_{SDR} = C_{SDR} T_2^2 S_0^N$
- $K_{SOE} = C_{SOE} (\sum A_i T_2)^2$
Geotechnical Nuclear Magnetic Resonance instruments

NMR Borehole Logging Tools

Portable and Direct Push NMR Tools

Surface NMR technology

NMR Soil & Core Analyzer
NMR Borehole logging tools:

- The NMR borehole logging tools can be operated in open or plastic-cased holes.
- In-situ measurement of hydrogeologic properties that govern contaminant storage and transport:
 - Porosity
 - Pore size distribution
 - Hydraulic conductivity
- Large diameters of investigation to see past the annular space of the well. The measurement is conducted directly in the formation.
- Multi-frequency operation below the AM broadcast band provides faster logging speeds and immunity to EMI noise.
Portable and Direct Push NMR logging tools:

- Portable and light-weight, battery powered
- Very high resolution in-situ NMR measurements
 - Vertical resolution can reach 2 inches
- Measure boreholes up to 10 cm diameter and 60 m deep
- Can be deployed using Direct Push rigs and CPT
- Low impact, no contaminated drilling waste
- The DP NMR technology is applicable in many areas of earth sciences such as high-resolution site characterization (HRSC), environmental monitoring, mining, and groundwater resources.
Direct Push NMR logging tools:

How it works:

- Same as borehole logging NMR, except smaller more portable instrumentation.
- NMR tool is deployed through drill rods.
- Expendable drill point is pushed out the bottom of the rods exposing the NMR tool to the formation.
- NMR measurements performed “on the way up”
Surface NMR (sNMR) technology

Earth’s magnetic field is used as background B_0 field

- Non-Invasive method, no drilling required.
- Quantitative Measurements to estimate water content, effective porosity, and permeability.
- Time-lapse monitoring of subsurface changes to observe variations in groundwater levels, fluid movement, and other dynamic processes.
Surface NMR (sNMR) technology

Limitations and Solutions:

Environmental and Cultural Noise
- Multi-coil acquisition with adaptive noise cancelation algorithm is a critical innovation enabling sNMR technology to be used in wider range of environments.

Magnetic Geology
- Spin Echo and CPMG pulse sequences can resolve large pose water in magnetic geology.
- Detection of NMR signal is still challenging in highly magnetic geology.

Depth of Investigation
- Depends on:
 - Loop size
 - Ability to generate and manage high voltage and current
 - Electrical conductivity of the subsurface
- High-power sNMR instrumentation is capable to resolve subsurface up to 150m.
Surface NMR (sNMR) technology

Surveys WaterWell Drilling Locations (Chile)

Non-invasive surface NMR shows shallow water and highly permeable aquifer from 25 m to 50 m deep.
NMR Soil & Core Analysis for groundwater investigations

Laboratory or field measurement of fluid content and hydrogeological properties from:

- Core samples
- Soil samples
- Drill cuttings

Specific applications:

- Formation-specific calibration of NMR hydrogeologic models for NMR logging:
 - Hydraulic conductivity
 - T_2 cutoffs for NMR-based estimation of bound/mobile porosity
- Residual water content in ore
- Monitoring of bioremediation processes
Applications: High-resolution site characterization

NMR borehole logging for conceptual site models of groundwater flow at NERT/PEPCon site

1988- catastrophic fire and explosions

Location 1: 2-inch PVC well

Location 2: 4-inch PVC well

Highly permeable zone

Water table

Study Area site

Poorly-sorted formation

1988 catastrophic fire and explosions

Highly permeable zone

Water table
Applications: High-resolution site characterization

DP-NMR: Ebey Island, Washington

- **Silt with organics**
- **Silt**
- **Medium to coarse sand, w/some gravel**
- **Silt**
- **Interbedded sand and silt**

NMR method can estimate K up to 3000 m/day

HPT technique unable to estimate K above 30 m/day

F_{avg}

T_2 Distribution (Stacked)

Water Content

Hydraulic Conductivity K (ft/day)

HPT-estimated
Applications: High-resolution site characterization

sNMR: Ebey Island, Washington
Applications: High-resolution site characterization

DP-NMR: Larned, Kansas

- F_{avg}
- T_2 Distribution (Stacked)
- Water Content (%)
- Hydraulic Conductivity (K m/day)

HPT-estimated

- Arkansas River Alluvial Aquifer
- High Plains Aquifer

HPT K-Estimation Limit
Groundwater Remediation – Chlorinated Solvents
Former Electronics Manufacturing Facility, California

Applications: Monitoring of Remediation processes

Objectives
• Improve plume capture
• Assess validity of CSM
• Assess mass flux

Study from Brad Cross
Contaminant Mass Flux Analysis

Applications: Monitoring of Remediation processes

West to East Transect

Gradient G

Screen Intervals

K_{NMR} (ft/day)

TCE (μg/L)

Estimated Mass Flux across a property boundary to assess individual source contributions to a co-mingled plume

Study from Brad Cross
Time-lapse NMR logging measurements showed that near surface soil water content responds differently to snowmelt and precipitation events at different locations on the hillslope.
In-situ detection of biofilm formation

- Borehole NMR logging tools were used to monitor biofilm formation in-situ.
- Nutrients and selected bacteria injected via tubing into monitoring wells.
- Over time, large pore spaces were clogged with biomatter, increasing surface relaxation associated with faster T2 relaxation which is relatively easy to detect via NMR.
- In the end of study, the wells were injected with bleach solution, removing biofouling and restoring baseline T2 relaxation values.
Hydroxyapatite precipitation to decrease the mobility of uranium at Moab UMTRA:

Applications: Monitoring of Remediation processes
Applications: Monitoring of Remediation processes

Hydroxyapatite precipitation to decrease the mobility of uranium at Moab UMTRA:

Remote monitoring system overview:
Applications: Monitoring of Remediation processes

Hydroxyapatite precipitation to decrease the mobility of uranium at Moab UMTRA:

- Before injections, larger hydraulic conductivity values in MW2 vs. MW3.
- A significant decrease in mobile water content and increase in capillary water content over time in MW2 between 2.5 to 3.5 m.
Applications: Monitoring of Remediation processes

Hydroxyapatite precipitation to decrease the mobility of uranium at Moab UMTRA:

- A dramatic change in hydraulic conductivity was detected over time in MW2 between 2.5 and 3.5m and 6.26 and 7m, associated with formation of hydroxyapatite in pore-space media.

- Smaller changes in NMR-based hydraulic conductivity were detected in MW3 between 3.5 to 5 m.

- The formation of permeable reactive barrier is stable over time (April/May 2023 vs. September 2023).
Applications: NAPL Detection

Crude oil spill site investigations: Bemidji, Minnesota (June 2023)

In-situ quantification of crude oil content in the formation
Summary

Hydrogeological NMR measurements provide unambiguous information on hydrogeological properties:

- Direct detection and measurement of water content in the formation
- Porosity and relative pore size distribution
- Bound and mobile water fractions
- Estimation of hydraulic conductivity and transmissivity

NMR logging technology can provide:

- High-resolution site characterization
 - More robust and accurate conceptual site model
- Efficient monitoring of remediation processes in-situ; remote monitoring is an option
- Soil moisture monitoring
- Improve project outcomes and reduce personnel exposure to radioactive materials
- Reliable and accurate monitoring of remediation processes in-situ within existing PVC wells
Acknowledgements:
This work was supported by US Department of Energy Grant Numbers DE-SC0020798, DE-SC0017096, DE-SC0019671. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US Department of Energy.

Thank you