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SUMMARY

The pathogenesis of human Ebola virus disease
(EVD) is complex. EVD is characterized by high
levels of virus replication and dissemination, dysre-
gulated immune responses, extensive virus-
and host-mediated tissue damage, and disordered
coagulation. To clarify how host responses
contribute to EVD pathophysiology, we performed
multi-platform ’omics analysis of peripheral blood
mononuclear cells and plasma from EVD patients.
Our results indicate that EVD molecular signatures
overlap with those of sepsis, imply that pancreatic
enzymes contribute to tissue damage in fatal EVD,
and suggest that Ebola virus infection may induce
aberrant neutrophils whose activity could explain
hallmarks of fatal EVD. Moreover, integrated
biomarker prediction identified putative biomarkers
from different data platforms that differentiated
survivors and fatalities early after infection. This
work reveals insight into EVD pathogenesis,
suggests an effective approach for biomarker iden-
tification, and provides an important community
resource for further analysis of human EVD
severity.
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INTRODUCTION

TheWest African Ebola virus (EBOV) outbreak of 2013–2016was

the most devastating human EBOV epidemic to date, causing

>23,000 laboratory-confirmed cases and >11,000 deaths

(WHO, 2016). The likelihood of future outbreaks of similar or

greater impact is unclear, but given the lack of any approved

countermeasures for prevention or treatment of EBOV disease

(EVD), it is critical to expand our knowledge of EVD pathogenicity

in humans to support countermeasure development.

EVD pathogenesis is marked by extensive virus replication

and systemic spread, dysregulated immune responses, exten-

sive tissue damage and organ dysfunction, and disordered

coagulation (reviewed in Messaoudi et al., 2015). Lymphopenia

and elevated pro-inflammatory cytokines in plasma are typical,

especially in fatal infections. Nonetheless, T lymphocytes are

robustly activated and, in survivors, become more specific

toward EBOV proteins over time (Ruibal et al., 2016). In

contrast, T lymphocytes in fatal infections exhibit pronounced

immunosuppressive marker (PDCD1 and CTLA4; PDCD1 is

also known as PD-1) expression and low EBOV protein speci-

ficity (Ruibal et al., 2016). The role of antigen-presenting cells

(APCs) is not fully understood, but a recent report suggested

that monocytes may be inefficiently activated (Ludtke et al.,

2016). Notably, systemic inflammation and immune dysfunc-

tion, as well as other clinical EVD findings (i.e., coagulopathies,

vascular leakage, and organ dysfunction), are characteristic
icrobe 22, 817–829, December 13, 2017 ª 2017 Elsevier Inc. 817
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Figure 1. Study Design and Patient Demographics

(A) Overview of blood sample collection from EVD patients and healthy controls. Serial samples from survivors are indicated by S1, S2, and S3. The number of

days that elapsed between S1 and S2 or S2 and S3 collections is indicated at the bottom left.

(B) The number of days between symptom onset and the first sample collection. Variation is represented as SD.

(C) Statistical analysis of clinical and demographic data. Patient data are on the left (white background); and on the right (gray background), columns list chi-

square (sex, disease presentation, and Ebola treatment center [ETC]) or t test (age and time from symptom onset to first sample) results for comparisons between

survivor (S) and fatality (F) or healthy control (H) patients. Odds ratios (OR) were estimated by logistic regression models with death as the outcome. For

continuous parameters (age and time from symptom onset to first sample) the OR was estimated for a difference of 10 years (age) or 3 days (time from symptom

onset to first sample). NA, not applicable.

See also Figure S1 and Table S1.
of classical sepsis caused by other disease agents (Hell-

man, 2015).

The recent EBOV outbreak afforded a rare opportunity to

perform multi-platform ’omics analysis of blood samples

collected from EVD patients with the goal of identifying host-

response mechanisms that contribute to EVD severity.

RESULTS

Study Design and Patient Cohorts
At three different hospitals (see Table S1), blood samples were

collected from EVD patients after initial diagnosis, and serial
818 Cell Host & Microbe 22, 817–829, December 13, 2017
samples were collected from survivors over the course of EVD

and recovery (Figures 1A and S1–S3 refer to the first, second,

and third samples collected from survivors). Patients with fatal

EVD succumbed to the infection before additional samples could

be collected. In total, we obtained 29 samples from 11 EVD

survivors and 9 samples from 9 EVD fatalities. For comparison,

we collected blood samples from 10 healthy volunteers. Sam-

ples were transported to our field laboratory and processed

for ’omics and other analyses (Figure S1). Statistical analysis of

clinical and demographic data revealed no significant differ-

ences between the survivor and fatality groups with regard to

sex, clinical presentation at diagnosis (i.e., dry versus wet



Figure 2. EVD Survivors and Fatalities Are

Differentiated by Viral Load and Host

Responses

(A) EBOV load (copies per nanogram of input RNA)

as determined by qRT-PCR of RNA from PBMCs.

(B) Average cytokine levels (as determined by

ELISAs) and associated p values for EVD patients

(fatalities, F; survivors’ first, second, and third

samples, S1, S2, and S3) compared with healthy

controls (H); or for S1/S2/S3 versus F compari-

sons. Specific comparisons are represented in

columns and assayed cytokines are represented in

rows. For the expression heatmap, F/S1/S2/S3

versus H comparison values are displayed as the

direction of expression in the EVD sample and

S1/S2/S3 versus F comparison values are dis-

played as the direction of expression in survivors.

FC, fold change.

(C) Expression trends for representative molecules

from transcriptomics (p < 0.000001), proteomics

(p < 0.001), metabolomics (p < 0.001), and lip-

idomics (p < 0.0001). Columns show log2 FC

values for individual molecules (IDs not shown),

and the color-coded bar above the heatmap in-

dicates the type of molecule in each column. Rows

represent different comparison groups, and FC

values are displayed as the direction of expression

in the survivor samples versus the comparator.

Lipid species identified by positive and negative

ionization are shown separately.

See also Figure S2 and Table S2.
disease; the ‘‘dry’’ stage is characterized by fever, malaise, and

myalgia; the ‘‘wet’’ stage is distinguished by gastrointestinal

symptoms, suggesting more advanced disease), age, time

from symptom onset to the first sample, or the Ebola treatment

center location (Figures 1B and 1C; clinical and demographic

data are provided in Table S1). As such, these parameters

were not used for correlation analysis with ’omics data down-

stream. There were no significant differences between the

ages or sexes of the EVD patients and the healthy controls

(Figure 1C).

Ebola Fatalities Can Be Differentiated from Ebola
Survivors by Viral Load and Host Responses
In recent and past EBOV outbreaks, higher viral load at the time

of admission has been correlated with fatal outcome (Nanclares

et al., 2016; Schieffelin et al., 2014), and patients with fatal EVD

express higher plasma inflammatory cytokines compared with

survivors (Ruibal et al., 2016; Wauquier et al., 2010). Consistent
Cell Host & Mic
with these reports, EVD fatalities in our

cohort exhibited significantly higher pe-

ripheral blood mononuclear cell (PBMC)

viral loads on admission compared with

EVD survivors (Figure 2A; Student’s

t test, p = 0.0302). PBMC RNA-

sequencing and plasma proteomics data

corroborated this finding (Figures S2A

and S2B). Upon admission, EVD survivors

exhibited significantly elevated levels of

interleukin-6 (IL-6), tumor necrosis factor
(TNF), and IL-10 (p = 0.0000008, p = 0.0005, and p = 0.01,

respectively; measured by ELISA), which were diminished at

later time points (Figure 2B; see also Table S2). In fatal EVD

cases, plasma IL-6 and TNF were higher than in EVD survivors

(fold change [FC] = 5, p = 0.002; and FC = 5, p = 0.001, respec-

tively) (Figure 2B), in line with previous observations (Ruibal et al.,

2016;Wauquier et al., 2010). Thus, EVD fatalities can be differen-

tiated from survivors by both viral loads and plasma cytokine

levels upon admission.

Next, we clustered significantly altered factors from all plat-

forms together to identify trends in the host-response data (Fig-

ure 2C). Comparing serial samples from EVD survivors with

those from healthy controls, we observed the highest level of

differential expression on admission and smaller differences for

later samples as the infection resolved (Figures 2C and S2C).

An analogous comparison between EVD survivors and fatalities

revealed host factors that were differentially expressed between

the groups on admission (Figures 2C and S2C). These
robe 22, 817–829, December 13, 2017 819



Figure 3. EVD Signatures in the Plasma

Metabolome and Lipidome

(A) Selected average plasma metabolite expres-

sion levels and associated p values for EVD pa-

tients (data are represented in the same way as in

Figure 2B). FC, fold change.

(B) The number of significantly changed (p < 0.01)

plasma lipid species (from both positive and

negative ionization analyses) that were increased

(red line) or decreased (blue line) in EVD in at least

one comparison (F versus H, S1 versus H, S2

versus H, or S3 versus H) for different lipid sub-

classes. The total number of significantly changed

lipid species for each lipid subclass is shown by

the dark-gray line and is indicated in parentheses

below each label at the edge of the radarmap. The

highest value depicted by the radar map is 30

(outermost concentric circle in light gray), and the

line corresponding to 20 is labeled on the panel.

Regardless of EVD outcome, lipid species in each

subclass trended in the same direction.

(C) The proportion of lipid species for each lipid

subclass depicted in (B) that exhibit significantly

higher (red line) or lower (blue line) expression in

EVD fatalities relative to S1 (p < 0.01). The pro-

portion of lipid species exhibiting no significant

expression difference between EVD survivors (S1)

and fatalities is also shown (green line). The

highest value shown by the radar map is 100%

(outermost concentric circle in light gray), and the

line corresponding to 50% is labeled on the panel.

CE, cholesterol ester; Cer, ceramide;

HexCer, monohexosylceramide; GM3, ganglio-

side GM3; SM, sphingomyelin; DG, diac-

ylglycerides; MG, monoacylglycerolipids; TG,

triglycerides; PC, diacylglycerophosphocholine;

LPC, monoacylglycerophosphocholine; PE,

diacylglycerophosphoethanolamine; LPE, mono-

acylglycerophosphoethanolamine; PEP, PE plas-

malogen; PG, diacylglycerophosphoglycerol;

PI, diacylglycerophosphoinositol; PS, mono-

acylglycerophosphoserine. See also Table S2.
differences were amplified when samples from fatalities were

compared with samples from survivors taken at later time points

(Figure 2C), most likely reflecting recovery in the latter group.

Plasma Metabolome Signatures Correspond to Clinical
Symptoms of EVD
We currently know little about the metabolic signatures of EVD.

Therefore, we examined our plasma metabolomics dataset to

identify metabolic signatures associated with outcome (Fig-

ure S2C and Table S2). A prominent signature observed nearly

exclusively among EVD fatalities was an acute reduction in

plasma free amino acids (PFAAs), involving predominantly
820 Cell Host & Microbe 22, 817–829, December 13, 2017
essential and conditionally essential

amino acids (Figure 3A). Since PFAAs

(e.g., glutamine) are consumed in inflam-

matory states to fuel immune cell prolifer-

ation and phagocytosis (Soeters and

Grecu, 2012), a strong reduction in

PFAA levels among EVD fatalities sug-
gests immune cell activation in these cases. EVD fatalities also

exhibited significantly reduced plasma glucose and fructose,

concomitant with substantial sucrose accumulation (Figure 3A),

suggesting perturbation of sucrose catabolism. Since sucrose is

normally digested by enzymes in the duodenal microvilli, its

abundance in EVD fatalities suggests the possibility that intesti-

nal tissue damage (which could impair sucrose digestion) is

increased in more severe cases of EVD. Other notable metabolic

signatures included significantly increased plasma inositols (pre-

cursors to signal transduction molecules) in patients with fatal

outcomes; and increased 2-hydroxybutyric acid in both EVD

fatalities and survivors in the acute phase of illness (i.e., in the



Figure 4. EVD Signatures in the Plasma

Proteome

Pathway enrichments and heatmaps showing

average pathway protein expression levels (log2
fold change, FC), and associated p values for ‘‘Cell

Adhesion Molecules’’ (KEGG pathway hsa04514;

A and B) and ‘‘Pancreatic Secretion’’ (KEGG

pathway hsa04972; C and D).

(A and C) KEGG pathway enrichment scores as

the negative log10 of the enrichment p value for

EVD patients (fatalities, F; survivors’ first, second,

and third samples, S1, S2, and S3) compared with

healthy controls (H); or for S1/S2/S3 versus

F comparisons.

(B and D) Expression levels and associated

p values for a selected set of plasma proteins

(indicated by Entrez Gene Official Symbols)

included in the respective KEGG pathways (data

are represented in the same way as in Figure 2B).

‘‘NA’’ in heatmaps indicates that FC and p values

were not calculated due to an insufficient number

of values in one of the conditions. In (B), SELP/

SELE indicates a protein profile that cannot be

assigned to one of these proteins due to their high

homology.

See also Table S2 and Table S3.
initial sample) (Figure 3A). Accumulation of 2-hydroxybutyric

acid (produced by the liver when high levels of glutathione

synthesis deplete L-cysteine) suggests that oxidative stress,

possibly mediated through production of reactive oxygen spe-

cies by activated neutrophils or macrophages, is a characteristic

of EVD regardless of outcome. Furthermore, higher levels of

2-hydroxybutyric acid in EVD survivors may imply that the liver

is more active in mitigating the effects of oxidative stress in

less severe EVD.

Lipid Signatures Differentiate Fatal and Non-fatal EVD
Alterations in various plasma lipid species are associated with

inflammatory diseases including sepsis (Filippas-Ntekouan

et al., 2017). Therefore, we next focused on our plasma lipido-

mics dataset to identify signatures of EVD. Plasma lipidomics

analyses (Figure S2C and Table S2) revealed alterations in lipid

subclasses that define both EVD in general and fatal EVD

(Figures 3B and 3C). General signatures of EBOV infection

include increases in plasma diacylglycerides and diacylglycero-

phosphoethanolamine (PE) species, and decreases in diacylgly-

cerophosphocholine, diacylglycerophosphoinositol, monoacyl-

glycerophosphoethanolamine, and PE plasmalogen species

(Figures 3B and 3C). In fatalities, diacylglycerophosphoglycerol

and a subset of monoacylglycerophosphoserine (PS) and cer-

amide species were significantly increased compared with survi-

vors, whereas monoacylglycerophosphocholine (LPC) species

were significantly decreased (Figure 3C). Cholesterol ester and

monoacylglycerolipid were also significantly decreased and
Cell Host & Micr
increased, respectively, in EVD fatalities

(Figure 3C); however, only a single signif-

icantly altered lipid was identified for

each. Although substantial additional

work will be required to dissect the impli-
cations of these lipid signatures for EVD pathogenesis, it is worth

noting the following: (1) PS is a major component of pro-coagu-

lant platelet microparticles (Lacroix and Dignat-George, 2012),

which are secreted by activated platelets, and increased PS

plasma levels in EVD fatalities suggests increased platelet acti-

vation in these patients; and (2) reduced plasma LPC is a corre-

late of inflammatory state and septic shock (Park et al., 2014),

and the significant reduction of LPC in fatalities is consistent

with immune and septic shock-related pathophysiology.

Macrophages and Neutrophils Are Strongly Activated
in EVD
We next explored our plasma proteomics dataset (Figure S2C

and Table S2) by using pathway enrichment analysis (Table

S3). Enrichment of the ‘‘Cell Adhesion Molecules’’ pathway

(KEGG hsa04514) was a general characteristic of EBOV infec-

tion, since this pathway was highly enriched in both survivors

and fatalities compared with healthy controls (Figure 4A). Upre-

gulated components included multiple class I major histocom-

patibility complex antigens (see Table S2) and adhesion mole-

cules found on endothelial cells (e.g., VCAM1), macrophages

(e.g., CD14, CD163, FCGR3A), and neutrophils (FCGR3B) (Fig-

ure 4B). Increases in soluble CD14 and CD163 are indicators

of macrophage activation and immunological stress in diseases

marked by immunopathology, including sepsis (Etzerodt and

Moestrup, 2013; Sandquist and Wong, 2014). Moreover, ecto-

domain shedding of FCGR3A and FCGR3B is stimulated by

activation and phagocytosis in macrophages and neutrophils,
obe 22, 817–829, December 13, 2017 821



respectively (Wang et al., 2013; Webster et al., 2006). These data

strongly implicate activated macrophages and neutrophils in the

host response to EVD, suggest that activation may be more pro-

nounced in fatalities, and are consistent with metabolomics and

lipidomics signatures that predict immune cell activation and

septic-like immune responses in EVD fatalities (Figure 3). Inter-

estingly, we also observed an increase in soluble VSIG4, a

co-stimulatory molecule expressed on macrophages, only in

fatalities (Figure 4B). Since VSIG4 is a potent inhibitor of T cell

activation (Vogt et al., 2006), we suggest that VSIG4 shedding

could be one mechanism by which T cell activation is impaired

in fatal EVD (Ruibal et al., 2016).

Pancreatic Enzyme Leakage Is Associated with
Fatal EVD
The ‘‘Pancreatic Secretion’’ pathway (KEGG hsa04972) was also

significantly enriched in theproteomicscomparisonbetweenEVD

survivors and fatalities (Figure 4C). Indeed, the levels of several

factors secreted by pancreatic acinar cells, including pancreatic

trypsins (PRSS1andPRSS2), lipase (PLA2G2A), and regenerating

family proteinsREG1AandREG3A,were strongly increased in the

plasma of EVD fatalities (Figure 4D). While some evidence sug-

gests that REG1A is a biomarker of sepsis (Llewelyn et al., 2013)

and/or intestinal damage mediated by inflammation (Vives-Pi

et al., 2013), increased circulating levels of pancreatic trypsins

and lipase are associated with acute pancreatitis (Malfertheiner

and Kemmer, 1991), which can be caused by viral infection.

Symptoms of acute pancreatitis include severe abdominal pain,

and complications may include acute respiratory distress,

disseminated intravascular coagulopathy, and kidney failure

(Agarwal and Pitchumoni, 1993), all of which have been observed

in patients with severe EVD (Leligdowicz et al., 2016). These

observations suggest a potential role for EBOV-induced pancre-

atic tissue damage and the consequential effects of systemic

release of pancreatic enzymes in EVD pathogenesis.

PBMC Transcriptional Signatures Revealed by Network
Analysis
Analysis of plasma ’omics datasets suggested that strong innate

immune cell activation and sepsis-like inflammatory responses

are associated with EVD (Figures 3 and 4). Next, we examined

whether our PBMC transcriptome dataset (Figure S2C and

Table S4) would substantiate these findings. We employed the

Multiscale Embedded Gene Co-expression Network Analysis

(MEGENA) approach (Song and Zhang, 2015), which identifies

modules of co-expressed genes from large transcriptional data-

sets. MEGENA identified 27 first-level ‘‘parent’’ modules

comprising the EVD co-expression network (including both

differentially expressed transcripts and transcripts that remain

unchanged after infection; Figure S3A and Table S5), of which

12 exhibited significant overlap (q < 0.05) with increased or

decreased transcripts from one ormore of the following compar-

isons: fatalities versus healthy controls (F versus H), survivors

(sample 1) versus healthy controls (S1 versus H), or survivors

(sample 2) versus healthy controls (S2 versus H) (Figure S3B;

module overlap calculations were determined for transcripts

exhibiting a q-value of <0.01 for EVD versus healthy control com-

parisons; and for comparisons in which fewer than 50 transcripts

exhibited a q-value of < 0.01, i.e., for S1/S2/S3 versus F and S3
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versus H, module overlap scores are not shown). Overall, more

modules were enriched in the F versus H condition compared

with the S1/S2 versus H conditions, suggesting that coordinated

transcriptional programs in PBMCs are more strongly activated

in fatal EVD. Moreover, fewer enriched modules were observed

in the S2 versus H comparison relative to S1 versus H,most likely

indicating recovery.

Module 2 (which is related to mitosis and includes the MKI67

proliferation marker) was strongly upregulated in all comparisons

(Figures S3B and S4A; Table S5), suggesting that a subset of

PBMCs undergo expansion and/or activation during EVD. The

Module 2 signature is not likely associated with lymphocytes,

because lymphocyte-specificmarkers exhibitedeither no change

in expression levels in any condition (e.g.,CD8A,CD8B,CD19) or

a mixed pattern between EVD survivors and fatalities (e.g., CD4)

(Table S4). Rather, because Module 2 includes multiple mitotic

regulators (Figure S4B) that are known to be transcriptionally

associated with monocyte-to-macrophage differentiation (Marti-

nez et al., 2006), monocyte differentiation may be a common

feature of the host response to EVD, regardless of outcome.

Myeloid Cells Express Antiviral Genes and May Be
Sensitized to Necroptosis in Fatal EVD
Three PBMC transcriptional modules (Modules 3, 18, and 27)

exhibited unique enrichment for increased transcripts in fatalities

compared with healthy controls. Module 3 included 197 tran-

scripts that were significantly increased (q < 0.01) and 20 tran-

scripts that were significantly decreased in the F versus H

comparison (Figure 5A). In contrast, fewer transcripts were

significantly altered and were changed to a lesser degree in

EVD survivor (S1/S2/S3 versus H) comparisons (Figure 5A).

This module is enriched for genes involved in innate immune

responses (Table S5). In addition, we identified significant

changes in transcripts for myeloid cell chemokine receptors

(CCR1 and CCRL2) and other macrophage-specific receptors

(FCGR3A, FCGR1A, andMS4A7), suggesting a strong contribu-

tion of cells of myeloid origin (see Tables S4 and S5).

Although previous reports have indicated that EBOV infection

impairs antiviral signaling in APCs (Messaoudi et al., 2015), we

observed upregulation of both type I and type II interferon-stim-

ulated genes in Module 3 (Figure 5B), suggesting that antiviral

signaling is at least partially intact in myeloid cells during human

EBOV infection in vivo. This observation is consistent with the

notion that myeloid cells are strongly activated in EVD, as

suggested by shedding of macrophage-specific cell adhesion

molecules (Figure 4) and metabolic signatures of immune cell

activation and systemic oxidative damage (Figure 3).

Interestingly, Module 3 also included multiple regulators of

apoptosis whose expressionmay alter apoptotic activity through

both extrinsic (TNF-mediated) and intrinsic (mitochondria-medi-

ated) mechanisms (i.e., CFLAR, BCL2A1, AIFM3, NAIP, XAF1,

and IFI6; Figures 5C and 5D). When extrinsic apoptotic signaling

is impaired during TNF receptor activation, cells may be sensi-

tized to necroptosis-dependent cell death regulated by the

MLKL protein (Silke et al., 2015). Accordingly, we suggest that

myeloid cells may be sensitized to necroptosis in fatal EVD,

due to abundant levels of TNF in circulation (Figure 2B),

increased expression of the pro-caspase-8 cleavage inhibitor

CFLAR (Figures 5C and 5D), and increased expression of the



Figure 5. EBOV Infection Strongly Induces

Antiviral and Antiapoptotic Gene Expression

in PBMCs

Shown are data associated with MEGENA Module

3, derived from PBMC transcriptome data.

(A) Average PBMC expression levels and associ-

ated q values for all transcripts exhibiting signifi-

cantly altered expression (q < 0.01) in at least one

condition when comparing EVD patients (fatalities,

F; survivors’ first, second, and third samples, S1,

S2, and S3) with healthy controls (H). For the

transcriptome heatmap, values are displayed as

the direction of expression in the EVD patient.

Columns show expression and q values for indi-

vidual transcripts (IDs not shown) and rows

represent different comparison groups. FC, fold

change.

(B and C) Transcript level and q-value heat maps

for a subset of Module 3 interferon-stimulated

gene transcripts (B) and apoptosis-associated

transcripts (C); data are represented in the same

way as in Figure 2B. Individual transcripts are

represented as Entrez Gene Official Symbols.

(D) Molecules involved in TNF receptor signaling

leading to activation of inflammatory gene

expression, apoptosis, and necroptosis, as well as

those contributing to apoptosis though the mito-

chondrial pathway. Transcripts that are signifi-

cantly altered in Module 3 (q < 0.05) are shown in

red or blue text, indicating increased or decreased

transcript expression in EVD, respectively. The

TNF protein, which is elevated in the plasma of

both EVD survivors and fatalities, is indicated by

dark red text. Asterisks indicate transcripts that

were significantly changed only in EVD fatalities.

See also Figures S3 and S4; Tables S4 and S5.
necroptosis regulator MLKL (Figures 5C and 5D). The effects of

necroptosis on disease pathology are context specific (Silke

et al., 2015), and how necroptosis contributes to EVD pathogen-

esis remains to be explored.

EBOV Infection May Induce Abnormal Neutrophils
Module 18 exhibited the strongest unique enrichment for the

F versus H comparison group (Figure S3B). Of the 101 Module

18 transcripts that were differentially expressed in EVD fatalities

(FC > 1.5, q < 0.01), only 16 were also differentially expressed in

the first sample from EVD survivors (S1 versus H), but exhibited

reduced fold changes (Figures 6A and S5A). Moreover, few

differentially expressed transcripts were observed in samples

from EVD survivors at later time points, indicating that the

Module 18 transcriptional response was resolved during recov-

ery (Figure 6A).Module 27 exhibited expression dynamics similar

to those of Module 18 (Figures S5A and S5B). Thus, Modules 18

and 27 aremore strongly represented among EVD fatalities, sug-

gesting that they contribute to EVD pathogenicity.
Cell Host & Mic
Module 18 is functionally enriched

for plasma membrane receptors and

G-protein-coupled receptor signaling

(Table S5). Intriguingly, many genes in

this module are neutrophil associated,

including CSF3R (which controls neutro-
phil production, differentiation, and function), receptors that

regulate neutrophil chemotaxis (CXCR1, CXCR2, FPR1, FPR2,

and AQP9), and a neutrophil-specific matrix metalloproteinase

(MMP25) (Figure 6B).Module 27 contains neutrophil subset-spe-

cific markers (CD177 and OLFM4), neutrophil collagenase

(MMP8), and other transcriptional markers of granulocytes in

blood (IL1RN and GCA) (Palmer et al., 2006) (Figure S5C), as

well as multiple transcripts encoding neutrophil granule proteins

(e.g.,CHIT, LTF, andBPI; see Tables S4 and S5). Together, these

observations suggest that two transcriptional modules that are

uniquely enriched in EVD fatalities are associated with transcrip-

tional programs expressed in neutrophils, implying a potential

role for neutrophils in regulating the outcome of EVD in humans.

In normal physiological states, neutrophils do not fractionate

with PBMCs in density gradient preparations of blood, due to

their higher density relative to mononuclear cells. However,

low-density neutrophils (LDNs; also known asmonocyte-derived

suppressor cells [MDSCs]) exhibiting pathologic functions have

been identified in PBMC fractions from patients with systemic
robe 22, 817–829, December 13, 2017 823



Figure 6. Neutrophils May Play a Key Role in EBOV Pathogenicity

(A) Average PBMC transcript expression levels and associated q values for all Module 18 transcripts that were significantly altered (q < 0.01) in at least one

condition when comparing EVD patients with healthy controls (data are represented in the same way as in Figure 5A). FC, fold change.

(B–E) Average expression levels for individual transcripts in EVD versus healthy control comparisons, with q values indicated by the colored dots at the top of each

bar. (B) shows neutrophil markers fromModule 18, (C) shows neutrophil activation and differentiation markers from Modules 18 and 27, (D) shows T lymphocyte

markers from other modules, and (E) shows ARG1 expression from Module 27.

(legend continued on next page)
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lupus erythematosus (Smith and Kaplan, 2015) and sepsis

(Darcy et al., 2014), among other conditions. A general charac-

teristic of LDNs is the concomitant expression of neutrophil acti-

vation markers (suggesting a mature phenotype) and neutrophil

differentiation markers (which are normally expressed in imma-

ture granulocytes) (Carmona-Rivera and Kaplan, 2013). In our

neutrophil transcriptional modules, we observed strongly

increased expression of neutrophil activation markers (FCGR3B,

CEACAM8, and ITGAM) and neutrophil azurophilic granule

proteins that are typically expressed during granulopoiesis

(MPO and LRG1) (Figure 6C). These observations are consistent

with the mixed-maturity phenotype observed for LDNs in

other systems, and support the notion that LDNs could develop

during EVD.

A Potential Role for Abnormal Neutrophils in T
Lymphocyte Dysregulation in EVD
In sepsis, T lymphocytes exhibit impaired proliferation and

increased apoptosis (Ward and Bosmann, 2012), similar to

EVD patients. Sepsis-derived LDNs (i.e., ‘‘neutrophil MDSCs’’)

that express arginase (ARG1) suppress T lymphocyte prolifera-

tion by catalyzing breakdown of arginine (an essential metabolite

for cell-cycle progression) and reducing T cell receptor zeta

chain (CD247) expression (Darcy et al., 2014). While a recent

study has implicated increased expression of immunosuppres-

sive molecules (CTLA4 and PDCD1) in the dysregulation of

T lymphocyte function during EVD (Ruibal et al., 2016), themech-

anisms that control T lymphocyte survival and proliferation have

not been fully elucidated. We speculate that LDNs that emerge

during EVD could contribute to reductions in T lymphocyte

numbers in a manner similar to what has been described in

sepsis, on the basis of the following observations: (1) CD4 tran-

script expression (a proxy for CD4 T lymphocyte levels) exhibited

significantly reduced expression in EVD fatalities, but was signif-

icantly increased in Sample 1 of EVD survivors (Figure 6D); (2)

CD247 and two other T lymphocyte signaling molecule tran-

scripts (LAT and ZAP70) exhibited expression profiles that

mirrored that of CD4 (Figure 6D); (3) the ARG1 transcript is a

component ofModule 27, one of the neutrophil-associatedmod-

ules, and is highly induced in fatal EVD (Figure 6E); and (4) levels

of urea, ametabolic by-product of arginine breakdown by ARG1,

were significantly increased in the plasma of EVD fatalities rela-

tive to those in the first sample from EVD survivors (log2 FC = 2.5,

p = 0.056; Table S2). These observations are consistent with

reduced circulating CD4 T lymphocytes in fatal EVD that occur

as a result of neutrophil-mediated, ARG1-dependent arginase

consumption and downregulation of CD247 expression.

Neutrophils May Enhance EVD-Associated Tissue
Damage
Another well-established feature of LDNs is their increased

capacity to release neutrophil extracellular traps (NETs) (Kaplan

and Radic, 2012), which are composed of cellular DNA, core his-

tones, and azurophilic granule-derived antimicrobial proteins.
(F) Normalized protein expression values for each sample from individual EVD pat

S1 versus F comparison for MPO, CTSG, and HIST3H2BB are shown below ea

insufficient number of samples in the S1 group. All transcript and protein IDs are

See also Figures S3 and S5; Tables S4 and S5.
NETs contribute to host defense by trapping microorganisms

and limiting their spread, and by serving as a scaffold for

thrombus formation on endothelium. However, excess NET for-

mation (or impaired NET clearance) can lead to tissue damage

and coagulopathies, and has been implicated in the pathogen-

esis of highly inflammatory conditions (e.g., sepsis) and other

viral hemorrhagic fevers (Kaplan and Radic, 2012; Raftery

et al., 2014). Consistent with the possibility of NET formation in

EVD, core histone proteins (e.g., HIST3H2BB), and azurophilic

granule proteins (MPO, CTSG, PRTN3, and AZU1) are present

in the plasma of EVD patients but not that of healthy individuals

(Figure 6F). All five proteins were detected in higher proportions

of patients in the fatality group; moreover, MPO, CTSG, and

HISTH2BB protein levels were significantly increased in samples

from fatalities (Figure 6F; PRTN3 and AZU1 ratios were not

calculated since each was detected only in a single survivor

sample). These observations suggest that mechanisms promot-

ing the release of NET-associated proteins, which have signifi-

cant potential to cause systemic tissue damage when present

at excess levels, are activated by EVD and upregulated in fatal

EVD. It is important to note that mechanisms other than NET

formation could be responsible for increasing plasma levels of

histones and neutrophil granule proteins in EVD patients (e.g.,

necrotic cell death). However, regardless of the mechanism,

neutrophils are likely to be involved, given that MPO, CTSG,

PRTN3, and AZU1 are predominantly expressed in this cell type.

Altogether, these observations suggest that neutrophils—spe-

cifically, LDN—contribute to EVD pathogenesis by dysregulating

adaptive immunity and promoting tissue damage. However,

definitive identification of LDN populations in EVD patients will

require PBMC surface staining with LDN-specific markers to

establish an increase in the absolute proportion of this cell type

compared with healthy controls. This confirmation, in combina-

tion with the results presented here, would strongly point to LDN

activity as a unifying explanation for critical correlates of fatal EVD.

Comparison with Other Human Transcriptome Datasets
We directly compared our PBMC transcriptome dataset with that

ofhumanswith sepsis (Severinoetal., 2014), and identifiedacom-

mon T lymphocyte-associated signature between EVD fatalities

and patients with septic shock (i.e., PD-1 signaling; Figure S6A

and Table S5). We also compared our PBMC transcriptomics

data with those of a longitudinal study of a single EVD survivor

(Kash et al., 2017) and identified many common signatures, as

well as signatures thatwere unique to each dataset (for examples,

seeFigure S6B; also seeTableS5). These findings further empha-

size similaritiesbetweenEVDandsepsis-relateddisease,demon-

strate that our data faithfully represent host responses in humans

with EVD, and highlight EVD host-response signatures that may

vary depending on host genetics or environment.

Biomarkers that Predict EVD Fatality
Finally, we used our ’omics, cytokine, and clinical datasets to

perform biomarker discovery and assessment. We employed a
ients or healthy controls. Variation is represented as SD. FC and p values for the

ch plot; FC and p values were not calculated for PRTN3 or AZU1 due to an

given as Entrez Gene Official Symbols.
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Figure 7. Biomarkers that May Predict Outcomes of EVD

(A) Plots for 11 candidate biomarkers. Log2 normalized expression for each feature is plotted against the days from onset on which the corresponding sample was

collected. Within each plot, each dot represents a single patient sample, colored by study group. Longitudinal samples from the same patient are connected with

lines. Samples from healthy patients are shown together at the far right of each plot (indicated by an ‘‘H’’ on the x axis). Above each panel the name of the

candidate biomarker is given, along with the dataset from which it was derived. ‘‘lipid_neg’’ and ‘‘lipid_pos’’ indicate lipids identified by negative-ionization or

positive-ionization liquid chromatography-tandem mass spectrometry, respectively. ‘‘_A’’ or ‘‘_B’’ designations indicate that the lipid has an isomer that differs

only in structural arrangement. Cytokine (IL-6 and TNF) data are derived from plasma ELISA analysis.

(B) Patient sample scores from probabilistic principal components analysis using the 11 candidate biomarkers shown in (A). Samples assessed in this analysis

were not included in the biomarker prediction analysis pipeline due to missing data. Each dot represents an individual patient sample.

See also Figure S7 and Table S6.
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nested, leave-one-out cross-validation (LOOCV) design on each

dataset individually and for all datasets combined (Figure S7A),

focusing on markers that predict survival early in EVD. Lipids,

metabolites, cytokines (ELISA-based), and clinical variables

(primarily driven by viral load) appear to provide the strongest

predictive power of survival at day 8 from symptom onset (Fig-

ure S7B). The metabolite L-threonine and the vitamin D binding

protein (GC) perfectly stratify patients by outcome, exhibit better

predictive ability than viral load, and are striking not only for their

stratification of outcome but also because their expression is

relatively stable in survivors over time (Figure 7A). Because

L-threonine and GC plasma levels can predict outcomes several

days prior to death (death occurs �11–12 days from symptom

onset, on average) (Velasquez et al., 2015) (Figure 7A), these

markers may be informative about discrete characteristics of

infections leading to death, in contrast to events that return to

baseline over time. Other individual markers are nearly as

distinctive. While our results are promising, follow-up studies

will be necessary to better estimate the true precision of the

putative biomarkers identified here.

During virus outbreaks, adequate blood volumes are often

difficult to obtain, assays for some biomolecules may fail, and

clinical data may be incomplete. Using 11 distinct biomarkers

(predicted by our LOOCV analysis), we predicted outcomes for

samples that were not included in our biomarker prediction anal-

ysis pipeline due to lack of data from one or more analysis plat-

form (Figure 7B; also see Table S6). These results suggest that a

combination of redundant biomarkers may be useful to ensure

accurate outcome prediction in real-life scenarios, which in

turn may improve outcomes for the most at-risk patients.

DISCUSSION

The overarching goals of this work were to use multi-platform

’omics analysis to develop hypotheses of EVD pathogenesis,

generate a high-quality resource of datasets for the research

community, and provide a standard for comparison with data-

sets generated in animal models of EVD pathogenesis or other

human disease systems. Our analysis of our ’omics datasets

established their quality and revealed insights into EVD patho-

genesis that need to be further explored: (1) the role of

pancreas-associated enzymes in EVD-induced tissue damage;

(2) the role of necroptosis signaling in myeloid cell functions dur-

ing EBOV infection; and (3) the contribution of neutrophils to

EVD-induced dysregulation of adaptive immunity and tissue

damage. In addition, we demonstrated that our datasets are a

valuable resource for identifying biomarkers that predict EVD

outcomes, which may be useful for developing diagnostic

assays. We further uncovered commonalities between molecu-

lar signatures of EVD and sepsis, supporting the concept that

overlapping mechanisms regulate outcomes related to these

conditions, and suggesting that sepsis-related research could

be harnessed to develop new hypotheses regarding mecha-

nisms of EVD pathogenesis and/or potential treatment options.

It is important to emphasize that PBMC samples used to

generate our transcriptomics dataset consisted of a mixture of

immune cells, and that infection-induced changes in transcript

expression levels could reflect a combination of changes in im-

mune cell populations and differences in immune cell activation.
In our high-containment field laboratory, we could not isolate

individual immune cell populations for transcriptomics profiling

or quantify immune cell populations to correlate with transcript

expression profiles. Nonetheless, our network analysis

approach separated PBMC transcriptomics data into modules

of co-expressed transcripts that included well-established

markers of different immune cell types, which enabled us to infer

immune cell population-specific contributions to EVD pathoge-

nicity. Additional studies will be required to precisely gauge the

impact of EVD-driven changes in peripheral immune cell popula-

tions on PBMC transcript expression, particularly for neutrophils,

which are markedly increased in the periphery of some EVD

patients (Hunt et al., 2015) but probably accumulate at similar

levels in survivors and fatalities (Ludtke et al., 2016).

Another challenge that needs to be addressed in future efforts

is how to best integrate PBMC transcriptomics data, which

reflects systemic alterations in immune cell function during

EVD; and plasma proteomics, lipidomics, and metabolomics

data, which reflect the aggregate responses of various cell types

and organ systems that are affected by EVD. Such integration

will require increased knowledge of host responses in specific

infected cells/organs and factors that are secreted due to activa-

tion or induction of cell death pathways by EBOV infection.

In summary, we have demonstrated the value of a multi-plat-

form ’omics approach, which provides a more complete context

for understanding host-response contributions to disease

pathology relative to individual platforms. Ultimately, this work

expands our knowledge of human EVD pathogenesis and may

facilitate future development of prophylactic or therapeutic

countermeasures. Moreover, we suggest that multi-platform

’omics analysis should be applied to samples from other human

disease systems to facilitate a clearer understanding of disease

pathophysiology and to accelerate identification of disease

biomarkers.
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EXPERIMENTAL MODELS AND SUBJECT DETAILS

Ethics and Human Subjects
All work performed in this study was approved by the Sierra Leone Ethics and Scientific Review Committee, the Research Ethics

Review Committee of the Institute of Medical Science at the University of Tokyo, and the University of Wisconsin (UW)-Madison

Health Sciences Institutional Review Board (IRB). IRB approval was also obtained at Icahn School of Medicine at Mount Sinai and

at Pacific Northwest National Laboratory prior to any sample shipments to these institutions. EBOV-positive subjects – as determined

by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) of whole blood specimens (performed by a

World Health Organization Collaborating Center or Chinese or British laboratories in Freetown, Sierra Leone) – were recruited

from three Ebola Treatment Centers (ETCs) in Freetown, Sierra Leone (located at the Joint Military Unit [JMU] 34th Regimental Military

Hospital at Wilberforce; the Hastings Police Training School 1; or the Police Training School 2) from February through May of 2015.
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Healthy subjects were recruited from healthcare workers and laboratory technicians at JMU during the same time period, none of

whom had previously experienced EBOV disease. Three of the healthy subjects provided two samples each; samples from these

patients were not treated as longitudinal because (i) the time between the first and second sample collection was approximately

4 months, and (ii) samples were correlated no more within the same patient than between patients. Consent was obtained from

all subjects prior to enrollment, and for children under the age of 18, consent was provided by the child’s parent or guardian. Basic

demographic data (i.e., sex, age, time from symptom onset to admission to an ETC, and disease type [i.e., wet vs. dry] upon admis-

sion) was collected from each patient at the time of enrollment (Table S1). None of the patients involved in the study described herein

received experimental treatments for EBOV infection (e.g., whole blood, plasma or serum from survivors, antibody cocktails, or anti-

viral drugs). All patients received supportive care.

Patient Samples
EBOV-positive patients were enrolled in the study after diagnosis and admission to an ETC, and an initial blood sample (% 3mL) was

collected. Additional (serial) blood samples were collected from most EBOV survivors over the course of their disease at intervals of

R 5 days. Because patients that succumbed to EBOV infection typically died within 3–4 days from admission to an ETC, wewere not

able to collect serial samples from these patients. Single samples were collected from healthy patients recruited from healthcare

workers and laboratory personnel at one of the ETC sites. All samples were collected using potassium-EDTA blood collection tubes.

All samples used in the current study are described in Table S1.

Virus Strains
Patients enrolled in this study naturally acquired infection by the West African Zaire EBOV, Makona strain. To validate EBOV inacti-

vation by chemical extraction procedures, we used EbolaDVP30 virus (based on the Zaire EBOV Mayinga strain), which encodes a

reporter gene in the place of an essential transcription factor (VP30) and can only grow in cells expressing the VP30 protein (Halfmann

et al., 2008).

Commercially Obtained Human Blood Samples
For EBOV inactivation studies, human (male, African American) blood samples collected in potassium EDTA-coated tubes were

obtained from a commercial vendor (Zen-Bio, Inc.).

Cell Lines
We used the Vero-VP30 cell line – a derivative of the Vero cell line (female African green monkey [Cercopithecus aethiops] kidney

epithelial cells) that constitutively expresses the Zaire EBOV (Mayinga strain) VP30 protein (Halfmann et al., 2008) – to generate

EbolaDVP30 virus stocks, and to evaluate chemically treated samples for the presence of live EBOV. Vero-VP30 cells were main-

tained inMinimumEssential Medium (MEM; Gibco) containing 10% fetal bovine serum (FBS; Sigma Aldrich) and a 1X penicillin/strep-

tomycin (P/S) cocktail (Gibco) at 37�C in a humidified atmosphere of 5% CO2. Vero-VP30 cells have not been authenticated through

DNA analysis or karyotyping. Liquid nitrogen stocks are mycoplasma-free (as determined by a polymerase chain reaction [PCR]-

based assay), and growing cultures were regularly tested formycoplasma contamination and discarded immediately if contamination

was identified.

METHOD DETAILS

Biosafety
Blood sample collection was performed only by trained technical personnel, and samples were immediately transported to a

research laboratory at the JMU site for processing. At the JMU research laboratory, samples containing EBOVwere processed using

Rapid Containment Kits (RCKs, Germfree); that is, portable, battery-operated, double HEPA-filtered, negative-pressure field labora-

tory containment units. Only personnel with extensive training and experience with biocontainment procedures engaged in the

processing of EBOV-positive blood samples. Personnel wore personal protective equipment while handling EBOV-positive samples

in RCKs, including designated scrubs and shoes, full-body gowns, gloves, hairnets, N95 masks, and eye protection. Standard

operating procedures (SOPs) for processing EBOV-positive blood samples were reviewed and approved by the UW-Madison Envi-

ronmental Health and Safety Department.

Following extraction and inactivation by use of various protocols (additional information below), samples were shipped from Free-

town, Sierra Leone, to the UW-Madison under export permits provided by the Pharmacy Board of Sierra Leone and with the approval

of the UW-Madison Environmental Health and Safety Department. Some samples were subsequently shipped to Pacific Northwest

National Laboratory (PNNL) or to the Icahn School of Medicine at Mount Sinai (ISMMS) for further analyses. Prior to any shipments

within theUnited States, all extraction/inactivation SOPs and supporting datawere reviewed and approved by theUnited States Cen-

ters for Disease Control and the UW-Madison Environmental Health and Safety Department, and relevant SOPs and supporting data

were further reviewed and approved by receiver institutions.
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Blood Processing and PBMC Isolation
Within 3 hr of collection, blood samples were processed to separate PBMCs and plasma using Ficoll-Paque PLUS (GE Healthcare).

Briefly, blood was mixed 1:1 with sterile 1X phosphate buffered saline (PBS), layered over 3 mL of Ficoll-Paque in a 15-ml SepMate

tube (STEMCELL Technologies), and centrifuged for 10 min at 1,200 x g. Following centrifugation, plasma was harvested in 2-4

aliquots of 0.5 to 1 mL and immediately frozen at -80�C, and PBMCs were collected and washed one time with sterile 1X PBS. After

washing, the PBMC pellet was suspended to homogeneity in 1 mL of TRIzol reagent (Life Technologies), allowed to incubate for

10 min at room temperature, and subsequently frozen at -80�C. Frozen TRIzol extracts were shipped to the UW-Madison.

Total RNA Extraction from PBMC
After shipment to UW-Madison, inactivated TRIzol PBMC samples were thawed and passed through a QiaShredder column

(Qiagen). QiaShredder eluates were mixed with 200 mL of chloroform, vortexed vigorously, and incubated on ice for 10 min. Subse-

quently, phases were separated by centrifugation (12,000 x g for 15min at 4�C), and the upper phasewas collected and used for total

RNA extraction with miRNEasy columns (Qiagen) according to the manufacturer’s instructions. An aliquot of the extracted total RNA

was reserved for qRT-PCR analysis of viral RNA and the remainder was shipped to ISMMS for RNA sequencing (RNA-seq) analysis.

PBMC RNA-Seq Analysis
Total RNA from PBMC samples was DNase treated with 1 U of Baseline Zero DNase (Epicentre) at 37�C for 30min, cleaned with 1.8X

volume of AMPureXP beads (Beckman-Coulter), and eluted in nuclease-free water. RNA quality was assessed using an Agilent

Bioanalyzer (all samples exhibited RNA integrity numbers > 9) and quantified using the Qubit RNA Broad Range Assay kit (Thermo

Fisher). Up to 500 ng of each DNase-treated sample was used for library preparation. Briefly, globin and ribosomal RNAs were

depleted using the Globin-Zero Gold rRNA Removal Kit (Illumina) according to the manufacturer’s instructions, and then purified

with 1.6X volume of AMPureXP beads. Ribosomal RNA depletion was confirmed by using Agilent Bioanalyzer analysis and noting

the absence of ribosomal peaks. Next, 8.5 mL of Elute, Prime, and Fragment Mix from the TruSeq Stranded Total RNA Library

Prep Kit (Illumina) were added to each sample, followed by fragmentation at 94�C for 8 min to yield a median fragment size distribu-

tion of 155 nt and a final library of 309 nt. Libraries were prepared according to the manufacturer’s instructions by using the TruSeq

Stranded Total RNA Library Prep Kit, incorporating different barcoded adaptors for each sample and amplifying libraries for 15 cy-

cles. Following final library quality control on the Agilent Bioanalyzer to confirm the expected size distributions, libraries were pooled

and sequenced on the Illumina HiSeq 4000 platform in a 100-bp paired-end read run format.

Following de-multiplexing, read sequences were trimmed at the 30-end after reaching a base with a PHRED quality score lower

than 10, or after encountering 15 baseswith a PHRED score lower than 28, using custom scripts. Next, 30 Illumina adapter sequences

were removed using cutadapt with a minimal overlap of 6 bp, allowing for an adapter error rate of 15%. Reads less than 50 nt (for

paired-end 100 nt reads) in length after quality and adapter trimming were removed from further analysis. Full-length adapter-

trimmed reads were mapped to the human (hg38) and viral (EBOV/G3683/KM034562.1) reference genomes using STAR v2.5 with

the corresponding gene annotations (Gencode GRCh37/V23 for the human genome), using detection of chimeric alignments with

a minimum mapped length and a minimum chimeric overhang junction of 15 nt, and default settings for all other arguments. Total

mapped read counts per gene were determined using featureCounts with default settings.

Quantification of EBOV Genomic RNA in PBMCs
EBOV was quantified in PBMC RNA by using the Ebola 2014 outbreak genesig qRT-PCR kit (which detects the EBOVMakona strain

nucleoprotein gene) and oasig one-step qRT-PCRmaster mix (Primerdesign) according to the manufacturer’s instructions. Genome

copy numbers were calculated based on a standard curve generated by using a positive control template (provided in the kit) and

were normalized to the amount of input RNA. Cycle threshold (ct) values, total copy number, and copy number per nanogram for

each sample are provided in Table S1.

Protein Extraction from Plasma
The 14 most abundant plasma proteins (albumin, a1-antitrypsin, transferrin, haptoglobin, a2-macroglobulin, a1-acid glycoprotein

[orosomucoid], fibrinogen, complement C3, IgG, IgA, IgM, high density lipoprotein [HDL; apolipoproteins A-I and A-II], and low

density lipoprotein [LDL; mainly apolipoprotein B]) were simultaneously immunodepleted by using Seppro IgY14 spin columns

(Sigma-Aldrich) according to themanufacturer’s instructions. Briefly, 10 mL of plasma (from Ficoll-Paque PLUS preparations, thawed

from -80�C) were diluted with 500 mL of 1X dilution buffer – in duplicate for each sample – and filtered using 0.45-mmSpin-X centrifuge

tube filters (Costar). Pre-filtered samples were then mixed with IgY14 beads and rotated end-over-end for 15 min. Immunodepleted

eluates from IgY14 columnswere collected by centrifugation and duplicate samples were combined. IgY14 beads were thenwashed

with 500 mL of 1X dilution buffer, and eluates from this wash step were collected and combined with the original eluates. Immunode-

pleted eluates (�2 mL per sample) were transferred to Amicon Ultra 4 Centrifugal Filter Units (Millipore) and centrifuged at 3,260 x g

forR 36 min to concentrate eluates to 150 mL total volume. Concentrated eluates were subsequently mixed with urea to a final con-

centration of 8 M, incubated at room temperature for 15 min, and then frozen at -80�C. Frozen 8 M urea extracts were shipped to the

UW-Madison.
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Plasma Proteomics Analysis
Plasma extracted with 8 M urea was shipped to PNNL for proteomics analysis. Dithiothreitol was added to a final concentration of

5 mM, and samples were denatured and reduced by incubating for 1 hr at 37�C with 800 rpm constant shaking in Thermomixer R

(Eppendorf). Then, iodoacetamide was added to a final concentration of 20 mM, and sample alkylation was carried out for 1 hr at

37�C with 800 rpm constant shaking in Thermomixer R. Subsequently, samples were diluted 5-fold with a solution of 50 mM ammo-

nium bicarbonate and 1 mM calcium chloride prior to the addition of sequence-grade trypsin (Promega) at a 1:50 enzyme-to-protein

ratio. Enzymatic digestion was carried out overnight (�16 hr) at 37�C with 800 rpm constant shaking in Thermomixer R. Following

digestion, peptides were desalted using a 96-well plate C18 SPE (Strata C18-E, Phenomenex), eluted in 600 mL of 80% acetoni-

trile/0.1% trifluoroacetic acid and lyophilized, and rehydrated in 25 mM ammonium bicarbonate. Concentrations were determined

by BCA assay, and samples were normalized to a final peptide concentration of 0.3 mg/ mL.

Peptide samples were analyzed by LC-MS/MS. The LC component was aWaters nano-Acquity M-Class dual pumping UPLC sys-

tem (Milford, MA) configured for on-line trapping of a 5-mL injection at 3 mL/min with reverse direction elution onto the analytical col-

umn at 300 nL/min. Columns were packed in-house using 360 mm o.d. fused silica (Polymicro Technologies Inc.) with 1-cm sol-gel

frits for media retention (Maiolica et al., 2005) and contained Jupiter C18 media (Phenomenex) in 5 mm particle size for the trapping

column (100 mm i.d. x 4cm long) and 3 mmparticle size for the analytical column (75 mm i.d. x 70 cm long). Mobile phases consisted of

(i) 0.1% formic acid in water; and (ii) 0.1% formic acid in acetonitrile with the following gradient profile (min, %ii): 0, 1; 2, 8; 20, 12; 75,

30; 97, 45; 100, 95; 110, 95; 115, 1; 150, 1.

MS analysis was performed using a Q-Exactive HF mass spectrometer (Thermo Scientific, San Jose, CA) outfitted with a home-

made nano-electrospray ionization interface. Electrospray emitters were home-made using 150 mm o.d. x 20 mm i.d. chemically

etched fused silica (Kelly et al., 2006). The ion transfer tube temperature and spray voltage were 325� C and 2.2 kV, respectively.

Data were collected for 100 min following a 15 min delay from sample injection. FT-MS survey spectra were acquired from 400–

2000 m/z at a resolution of 30k (AGC target 3e6), and data-dependent FT-HCD-MS/MS spectra were acquired for the top 12

most abundant ions in each survey spectrum with an isolation window of 2.0 m/z and at a resolution of 15k (AGC target 1e5) using

a normalized collision energy of 30 and a 60 sec exclusion time.

LC–MS/MS raw data were converted into dta files using Bioworks Cluster 3.2 (Thermo Fisher Scientific), and theMSGF+ algorithm

was used to search MS/MS spectra against the Human Uniprot 2016-04-13 database with 20154 entries, plus Zaire_Ebola virus

2014-07-10 sequence containing 7 viral protein entries. The key search parameters used were ±20 ppm tolerance for precursor

ion masses, +2.5 Da and -1.5 Da window on fragment ion mass tolerances, MSGF+ high resolution HCD scoring model, no limit

on missed cleavages but a maximum peptide length of 50 residues, partial or fully tryptic search, variable oxidation of methionine

(15.9949 Da), and fixed alkylation of cysteine (carbamidomethyl, 57.0215 Da). The decoy database searching methodology was

used to control the false discovery rate (FDR) at the unique peptide level to <1% and subsequent protein level to <0.5%

(% FDR = ((reverse identifications*2)/total identifications)*100). Identification and quantification of the detected peptide peaks

were performed by using the label-free Accurate Mass and Time (AMT) tag approach (Zimmer et al., 2006). Briefly, an AMT tag data-

base was created from the MS/MS results, and in-house developed informatics tools (including algorithms for peak-picking and

determining isotopic distributions and charge states, which are publicly available at ncrr.pnnl.gov/software) were used to process

the LC-MS data and correlate the resulting LC-MS features to an AMT tag database. Further downstream data analysis incorporated

all possible detected peptides into a visualization program, VIPER, to automatically correlate LC-MS features to the peptide identi-

fications in the AMT tag database. The resulting post-VIPER matching proteomics data were filtered to achieve an absolute average

mass error of 1.08 ppm and an absolute average net elution time error of 0.16%.

Lipid and Metabolite Extraction from Plasma
Lipids and metabolites were extracted from the same plasma sample by using an established chloroform/methanol extraction

procedure. Briefly, 150 mL of plasma (from Ficoll-Paque PLUS preparations, thawed from -80�C) were mixed with 600 mL of a 2:1

chloroform:methanol solution in siliconized 2-ml tubes, vortexed vigorously, and incubated at room temperature for 20min. Following

incubation, the samples were vortexed again and centrifuged at 12,000 x g for 10 min to separate phases. After centrifugation, the

upper (aqueous/methanol) phase (containing metabolites) and the lower (organic/chloroform) phase (containing lipids) were trans-

ferred to fresh siliconized tubes (the protein interlayer was discarded), evaporated to dryness using a speedvac and frozen at

-80�C. Frozen, dried metabolite and lipid extracts were shipped to the UW-Madison.

Plasma Metabolomics Analysis
Dried metabolite extracts of plasma were shipped to PNNL for metabolomics analysis. Extracts were chemically derivatized using a

modified version of the protocol used to create FiehnLib. Briefly, extracts were dried again to remove any residual moisture accrued

as a result of storage at -80�C. To protect carbonyl groups and reduce the number of tautomeric isomers, 20 mL of methoxyamine in

pyridine (30 mg/mL) were added to each sample, followed by vortexing for 30 s and incubation at 37�C with generous shaking

(1,000 rpm) for 90 min. At this point, the sample vials were inverted one time to capture any condensation of solvent at the cap sur-

face, followed by a brief centrifugation at 1,000 x g for 1 min. To derivatize hydroxyl and amine groups to trimethylsilyated (TMS)

forms, 80 mL of N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS) were then added to

each vial, followed by vortexing for 10 s and incubation at 37�C with shaking (1,000 rpm) for 30 min. Again, the sample vials were

inverted one time, followed by centrifugation at 1,000 x g for 5 min. The samples were allowed to cool to room temperature and
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were analyzed on the same day. Samples were analyzed according to the method used to create FiehnLib. An Agilent GC 7890A

coupled with a single quadrupole MSD 5975C (Agilent Technologies) was used, and the samples were blocked and analyzed in

random order. An HP-5MS column (30 m x 0.25 mm x 0.25 mm; Agilent Technologies) was used for untargeted metabolomics ana-

lyses. The sample injection mode was splitless, and 1 mL of each sample was injected. The injection port temperature was held at

250�C throughout the analysis. The GC oven was held at 60�C for 1 min after injection, and the temperature was then increased

to 325�C by 10�C/min, followed by a 10-min hold at 325�C. The helium gas flow rate was determined by the Agilent Retention

Time Locking function based on analysis of deuterated myristic acid and was in the range of 0.45–0.5 mL/min. Data were collected

over the mass range 50 – 550m/z. A mixture of FAMEs (C8-C28) was analyzed once per day together with the samples for retention

index alignment purposes during subsequent data analysis.

GC-MS raw data files were processed using theMetabolite Detector software, version 2.5.2 beta. Briefly, Agilent .D files were con-

verted to netCDF format using Agilent Chemstation, followed by conversion to binary files using Metabolite Detector. Retention

indices of detected metabolites were calculated based on the analysis of the FAMEs mixture, followed by their chromatographic

alignment across all analyses after deconvolution. Metabolites were initially identified by matching experimental spectra to a

PNNL-augmented version of FiehnLib, containing spectra and validated retention indices for over 850 metabolites, using a Metab-

olite Detector match probability threshold of 0.6 (combined retention index and spectral probability). All metabolite identifications

were manually validated to reduce deconvolution errors during automated data-processing and to eliminate false identifications.

The NIST 14 GC-MS library was also used to cross validate the spectral matching scores obtained using the Agilent library and to

provide identifications of unmatchedmetabolites. The threemost abundant fragment ions in the spectra of each identifiedmetabolite

were automatically determined byMetabolite Detector, and their summed abundances were integrated across theGC elution profile;

fragment ions due to trimethylsilylation (i.e. m/z 73 and 147) were excluded from the determination ofmetabolite abundance. Amatrix

of identified metabolites, unidentified metabolite features (characterized by mass spectra and retention indices and assigned as ‘un-

known’), and their abundances was created for statistical analysis. Features resulting from GC column bleeding were removed from

the data matrices prior to further data processing and analysis.

Data were imported into MatLab R2014a and log2 transformed. Outliers were assessed by Pearson correlation and robust Maha-

lanobis distance, and then the log2 values were median centered.

Plasma Lipidomics Analysis
Dried lipid extracts of plasma were shipped to PNNL for lipidomics analysis. Extracted lipids were analyzed by LC-MS/MS using a

Waters NanoAcquity UPLC system interfacedwith a VelosOrbitrapmass spectrometer (ThermoScientific, San Jose, CA). The electro-

spray ionization emitter andMS inlet capillary potentialswere 2.2 kVand12V, respectively. Lipid extractswere reconstituted in 200ml of

methanol, and 7 ml of each sample was injected and separated over a 90-min gradient elution (mobile phase A: ACN/H2O (40:60) con-

taining 10mM ammonium acetate; mobile phase B: ACN/IPA (10:90) containing 10mM ammonium acetate) at a flow rate of 30 ml/min

(Table S7). Sampleswere analyzed in both positive and negative ionization (full scan range of 200–2,000m/z) usingHCD (higher-energy

collision dissociation) andCID (collision-induceddissociation) on the top 6most abundant ions to obtain high coverage of the lipidome.

A normalized collision energy of 30 and 35 arbitrary units for HCD and CID were used, respectively. Both CID and HCDwere set with a

maximum charge state of 2 and an isolation width of 2 m/z units. An activation Q value of 0.18 was used for CID.

Confident lipid identifications were made by using LIQUID, which enables the examination of the tandem mass spectra for diag-

nostic ion fragments along with associated hydrocarbon chain fragment information. In addition, the isotopic profile, extracted ion

chromatogram, and mass measurement error of precursor ions were examined for each lipid species. To facilitate quantification

of lipids, a reference database for lipids identified from the MS/MS data was created, containing the lipid name, observed m/z,

and retention time. Lipid features from each analysis were then aligned to the reference database based on their m/z and retention

time using MZmine 2. Aligned features were manually verified and peak apex intensity values were exported for subsequent statis-

tical analysis. Positive and negative ionization data were analyzed separately at all stages. Normalization and outlier detection were

performed as described for proteomics.

Enzyme-Linked Immunosorbent Assays
Plasma (from Ficoll-Paque PLUS preparations, thawed from -80�C) cytokine (IL6, TNF, IL10, IL1A, and IL1B) levels were assessed

using commercially available sandwich ELISAs (enzyme-linked immunosorbent assays) for human cytokines (Millipore or Thermo

Fisher Scientific). Assays were performed according to the manufacturer’s instructions, and all samples were assessed in duplicate.

Absorbance readings were performed by using an Infinite F50 (Tecan) plate reader, and cytokine levels were quantified (for the

average of duplicate readings per sample) based on a standard curve using Microplate Manager Software 6 version 6.0 (Bio-Rad).

Biomarker Prediction
To prioritize markers that are predictive early in infection, training sets were filtered using four time-from-disease-onset thresholds

(8, 9, 10, and 11 days from symptomonset). Leave-one-out cross validation (LOOCV) was performed on each data source separately,

and also for all data sources combined (transcriptomics, proteomics, metabolomics, lipidomics, cytokine ELISA, and clinical param-

eters). For analysis using combined data sources, data were centered and scaled prior to combination using standard methods.

LOOCV was employed in iterations in which a single sample was first set aside as a test set and the remaining samples were consid-

ered for the training set (top-level cross-validation). Every sample was used in one iteration as a test set. To avoid potential training
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bias due to the longitudinal design of this study, the test and training sets were never permitted to overlap by patient. Once the test

and training samples were defined for a given iteration, a second level of LOOCV was employed to determine the optimal model

complexity (i.e., the number of features to include) for balancing variance and bias. Therefore, at each top level cross-validation iter-

ation and each nested level of cross-validation, a logistic regressionmodel was fit and tested against the nested level holdout (not the

top level holdout) using the glmnet package in R. Parameter coefficients were constrained and selected using the least absolute

shrinkage and selection operator (LASSO) on scaled training data. These estimates were combined to generate receiver-operator

characteristic (ROC) curves for each data source at each time-from-onset filter. A limitation of this method is that only features

with complete data are considered; therefore, if a feature (e.g., a protein) was not detected in every sample, then its potential use

as a biomarker was not examined. To assess significance within this study, bootstrap permutations decoupling the response and

predictors were applied to this same pipeline. For downstream principal components analysis and visualizations, a maximum of

two features from each data-source were selected by prioritizing those with large coefficient estimates in low complexity models.

EBOV Inactivation
A previous report described EBOV inactivation by using TRIzol extraction (Blow et al., 2004). To verify that 8 M urea treatment inac-

tivates EBOV, 20 replicates of commercially obtained human plasma (140 ml each) were spiked with 10 ml of EbolaDVP30 virus (Half-

mann et al., 2008) (�9.5e6 infectious virus particles), followed by addition of urea to a final concentration of 8 M. Following a 10-min-

ute incubation, urea-treated samples were diluted with 150 ml of MEM (Gibco) containing 10% FBS (Sigma Aldrich) and a 1X P/S

cocktail (Gibco) and vortexed; the full volume of each replicate sample was then used to perform a focus forming unit (FFU) assay

(employing a monoclonal mouse anti-EBOV VP40 protein antibody to detect replicating virus). In addition, 20 replicates of similarly

treated samples were used to infect Vero-VP30 cells (Halfmann et al., 2008) for blind passaging (5 passages were performed, with a

7-day incubation for each). At the conclusion of the fifth passage, culture supernatants were assessed for the presence of EBOV by

using the FFU assay. To verify that chloroform/methanol treatment inactivates EBOV, 20 replicates of commercially obtained human

plasmawere spiked with EbolaDVP30 as described above, followed by addition of 600 ml of chloroform/methanol (2:1 ratio). Samples

were vortexed and centrifuged to separate phases, and themetabolite and lipid fractionswere dried in a speedvac. Dried samples (20

replicates for each fraction) were resuspended in MEM containing 10% FBS and 1X P/S and were used for FFU assays. Additionally,

20 replicates of similarly treated samples were used for blind passaging as described above. Both 8M urea and chloroform/methanol

treatments completely inactivated EBOV.

QUANTIFICATION AND STATISTICAL ANALYSIS

Clinical and Demographic Data
Several statistical methods were used to test for associations of clinical and demographic parameters with outcome. Odds ratios

were estimated by logistic regression models with survival as the outcome. Continuous variables (age and time from symptom onset

to first sample) were compared among outcome groups by t test, and a chi-square test was used to compare sex, disease presen-

tation (i.e., wet vs. dry) and Ebola treatment centers. For the continuous variables, odds ratios were estimated for a difference of

10 years (age) or 3 days (time from symptom onset to first sample). These data are shown in Figure 1C and are also described in

the text of the Results.

Plasma ‘Omics and ELISA Data
All statistical analyses of ‘omics data were performed using the R framework. Normalized log2 transformed values were used for

statistical analyses of cytokines, proteins, metabolites, and lipids. For differential expression (DE) discovery, models were fit inde-

pendently for each feature (i.e., for each individual protein, metabolite, and lipid). To accommodate the correlation structure in

longitudinal comparisons, generalized linear mixed models (GLMM) were fit using the nlme and lme4 packages, allowing for random

slopes and intercepts within subjects, and fixed effects to contrast treatment group slopes. Comparisons between groups without

repeated measures were performed using the limma package with an empirical Bayes shrinkage estimate for variance. Assessment

of confounding variables was performed using three approaches: (i) outcomewas directly modeled against demographic covariates,

(ii) heat maps of candidate DE features were overlaid with demographic data for visual assessment, and (iii) residual variance fromDE

modeling was explored for unexplained correlation structure (e.g., batch effects). Surrogate latent variables were estimated using the

sva package, and those from the first 2 principal components were used to assess potential bias from latent correlation structure. For

plasma ‘omics datasets, fold-changes, P-values and Benjamin-Hochberg-adjusted P-values (i.e., q-values) for various group com-

parisons are reported in Table S2, and specific observations are highlighted in the figures, and in the Results and Figure Legends.

Multiple hypothesis correction was not carried out for plasma ELISA data.

Pathway Enrichment for Proteomics
Pathway (or feature set) enrichment statistics were calculated in R using a log-rank test to compare the ranks of features falling within

each pathway to those that do not. Ranks were determined by the statistical significance of the linear models used to contrast patient

groups. The pathway and null curves were visualized by plotting Kaplan-Meier survival curves using the Survival package in R.

Pathway enrichment results are reported in Table S3, and specific observations are highlighted in figures and in the Results and

Figure Legends.
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RNA-seq Data
Raw fragment (i.e., paired-end read) counts were combined into a numeric matrix, with genes in rows and experiments in columns,

and used as input for gene expression differential analysis with the Bioconductor Limma package after multiple filtering steps to

remove low-expressed genes. First, gene counts were converted to FPKM (fragments per kb permillion reads) using the RSEMpack-

age with default settings in strand-specific mode, and only genes with expression levels above 1 FPKM in at least 50% of samples

were retained for further analysis. Additional filtering removed genes with less than 50 total reads across all samples or of less than

200 nucleotides in length. Normalization factors were computed on the filtered data matrix using the weighted trimmed mean of

M-values (TMM)method, followed by voommean-variance transformation in preparation for Limma linear modeling. Data were fitted

to a design matrix containing all sample groups and pairwise comparisons were performed between sample groups (survivors’ sam-

ples 1–3, fatalities, and healthy controls). eBayes adjusted P-values were corrected for multiple testing using the Benjamin-Hochberg

(BH)method and used to select genes with significant expression differences (q < 0.01). Fold-changes and q-values for various group

comparisons are reported comprehensively in Table S4, and specific observations are highlighted in figures and in the Results and

Figure Legends.

Network Construction and Enrichment Analysis
The same filtered and normalized gene expression data matrix used in the differential gene expression analysis was also used as

input for Multiscale Embedded Gene Co-expression network analysis (MEGENA) with the MEGENA v1.3.4 R package (Song and

Zhang, 2015). The Pearson method was used to calculate co-expression correlation between gene pairs, with false discovery

rate (FDR) calculation by permutation analysis (100 iterations) and an FDR cutoff of q < 0.05 to identify significant correlations.

Following Planar Filtered Network construction, Multi Clustering Analysis and Multi-scale Hub Analysis were performed using 100

permutations. Significant modules and hubs were identified at FDR q < 0.05 and a resolution parameter cut-off (i.e., alpha) value

of 1. Finally, each module was tested for significant gene set enrichment (padj<0.05) against the Molecular Signatures Database

(MSigDB) using a Fisher’s exact test and Bonferroni correction to account for multiple testing, and module diagrams showing the

co-expression relationships between modules and genes within each module were plotted. MEGENA module data are reported

in Table S5, and specific observations are highlighted in the figures and in the Results and Figure Legends.

Comparisons with Other Published Datasets
Publicly available human PBMC transcriptomics datasets (GSE48080 and GSE93861) (Kash et al., 2017; Severino et al., 2014) were

obtained from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.

gov/geo/). Datasets were quantile normalized and then an empirical Bayes-adjusted t test was used to estimate differential expres-

sion between groups (i.e., severe sepsis or septic shock compared to healthy controls [GSE48080] or EVD survivor compared to

healthy controls [GSE93861]). Pathway enrichment was performed as described for plasma proteomics (results are reported in

Table S5). Heat maps comparing these datasets to our data were generated by using the ComplexHeatmap R package. Heat

map values represent the log2 effect size (i.e., the fold-change standardized by the standard deviation). Specific observations are

highlighted in figures and in the Results and Figure Legends.

DATA AND SOFTWARE AVAILABILITY

Demographic and Clinical Datasets
Anonymized patient demographic data, sample information, and viral genome quantification data (qRT-PCR) are provided in

Table S1.

Statistically Processed Datasets
Plasma ELISA, proteomics, metabolomics, and lipidomics datasets (including fold-change, P-values, and FDR-adjusted q-values for

various group comparisons) are provided in Table S2. Plasma protein pathway enrichment statistics are provided in Table S3. PBMC

RNA-seq data (including fold-change and FDR-adjusted q-values for various group comparisons) are provided in Table S4. MEGENA

module data are provided in Table S5, including module summaries, membership lists, overlaps with differentially expressed tran-

scripts derived from various group comparisons, and pathway and process enrichment statistics. Enrichment statistics for other

sepsis and EVD PBMC transcriptomics datasets are provided in Table S5.

Raw Data
All raw GC-MS data (metabolites), LC-MS/MS data (lipids), and proteomics raw mass spectrometry data corresponding to instru-

ment files, mzML, and MSGF+ MS/MS search for peptide identifications used to populate AMT tag databases have been deposited

at the Mass Spectrometry Interactive Virtual Environment (MassIVE) at the University of California at San Diego, (https://massive.

ucsd.edu/ProteoSAFe/static/massive.jsp), under the ID code MSV000080129.
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