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Abstract—Malicious activities on measurements from sensors
like Phasor Measurement Units (PMUs) can mislead the control
center operator into taking wrong control actions resulting in
disruption of operation, financial losses, and equipment damage.
In particular, false data attacks initiated during power systems
transients caused due to abrupt changes in load and generation
can fool the conventional model-based detection methods relying
on thresholds comparison to trigger an anomaly. In this paper,
we propose a Koopman mode decomposition (KMD) based
algorithm to detect and identify false data attacks in real-
time. The Koopman modes (KMs) are capable of capturing
the nonlinear modes of oscillation in the transient dynamics
of the power networks and reveal the spatial embedding of
both natural and anomalous modes of oscillations in the sensor
measurements. The Koopman-based spatio-temporal nonlinear
modal analysis is used to filter out the false data injected by
an attacker. The performance of the algorithm is illustrated on
the IEEE 68-bus test system using synthetic attack scenarios
generated on GridSTAGE, a recently developed multivariate
spatio-temporal data generation framework for simulation of
adversarial scenarios in cyber-physical power systems.

Index Terms—cyber-physical security; Koopman mode decom-
position; false data injection; online attack identification.

I. INTRODUCTION

Modern electrical grids are increasingly complex cyber-
physical systems, with advanced sensing, control and com-
munication layers overlaid on nonlinear dynamical networks.
Real-time grid operations are aided by closed-loop feedback
control decisions that rely on advanced sensor measurements
to dynamically secure the balance between supply and de-
mand. For instance, the automatic generation control (AGC),
illustrated in Fig. 1, is designed to process measurements from
advanced sensors such as phasor measurement units (PMUs)
to update the governor set-points of the generators every few
seconds. Such tightly coupled cyber-physical control operation
arguably presents an opportunity for malicious cyber agents
to sneak into the system and cause disruptions, equipment
damages and/or financial losses. Real-world events such as
the Stuxnet [1], the Dragonfly [2], and the 2015 cyber-attacks
on the Ukrainian power grid [3] and on a substation in the
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state of California in US [4], demonstrate the vulnerability of
power systems worldwide to cyber attacks. Different, possibly
overlapping, classes of cyber-attacks have been investigated
in the power systems community, including denial of service
(DoS) attacks [5], [6]; gray-hole or packet drop attacks [7];
jamming or link-failure attacks [5], [8]; and false data injection
(FDI) or data integrity attacks [5], [6], [9]–[11].

Fig. 1: Illustration of a closed-loop power system, including
the controller (e.g. AGC), sensors (e.g. PMUs), actuators (e.g.
generators) and the communication layer (via WAN).

Related Work Due to economic and other reasons, sen-
sors are arguably among the least-protected components in
a power network [12] and, therefore, particularly vulnerable
to malicious cyber attacks. As such, we focus in this work
on identification of FDI attacks on PMUs which can report
GPS time-stamped measurements at typically 20-60 samples
per second [7] and allows visibility into the system transient
dynamics. A broad category of research efforts that considers
power systems transient dynamics while detecting and identi-
fying sensor attacks relies on physics-based models, coupled
with a dynamic state estimator (e.g. Kalman filters), to detect
anomalous sensors data via outlier detection methods such as
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cosine similarity test or statistical χ2-test [13]–[15]. In [15], a
state-space transformation and decomposition technique was
proposed to distinguish between the anomalies caused due
to malicious attacks and physical changes (e.g. changes in
topology, load, generation). In [16], the authors extended the
conventional static outlier detection method of evaluating one
sample of measurements at a time to a dynamic change-point
detector based on the cumulative sum (CUSUM) test on a
moving window of measurements. The work in [17] presents
an attack detection algorithm that involves superimposing
watermarked signals on the control inputs transmitted over
secure channels. In addition to the physics-based methods
mentioned above, machine learning-based online attack de-
tection algorithms have been proposed in [18], [19].

Approach Most of the existing detection methods are often
unreliable during system transients due to unforeseen changes
or insufficient training data. In addition, the system dynamics
is expected to display rich nonlinear behavior during the tran-
sients. In this work, we propose an online attack detection al-
gorithm which uses the Koopman mode decomposition (KMD)
to identify the spatial embedding of anomalous (and natural)
modes in the sensors data. The Koopman operator is a linear,
infinite-dimensional, composition operator that describes the
temporal evolution of a set of observable functions along
the trajectories of a finite-dimensional (nonlinear) dynamical
system [20], [21]. Spectral analysis of the Koopman operator
reveals that single-frequency modes, henceforth termed as
the Koopman modes (KMs), can be embedded in the spatio-
temporal dynamics of the nonlinear systems [22]. The KMs are
particularly promising in power systems applications, by way
of extending the notions of linear modal analysis (e.g. partic-
ipation factors) to the nonlinear regime in a computationally
efficient manner in contrast to other methods such as normal
forms [23], [24]. Efficient algorithms exist to compute KMs,
as well as the Koopman operator from streaming data in power
systems [25], [26]. Koopman modal analysis has found several
applications in power systems, including coherency detection,
stability, and partitioning (see [21] and the references therein
for details). As a novel contribution of this work, we extend the
Koopman modal analysis to the case of real-time identification
(detection and localization) of malicious data attacks on power
system sensors, in presence of transient fluctuations.

Contributions In this paper, we develop an online at-
tack identification algorithm that performs a Koopman-based
spatio-temporal nonlinear modal analysis on streaming data
from the sensors to detect and localize malicious activities.
Our proposed method is different from the existing methods
in the following two ways: (a) does not require any knowledge
of the power system models (b) does not require any training
or computational resources and the algorithm works real-
time. Performance of the algorithm is illustrated on IEEE
68-bus test-case using synthetic attack data generated using
GridSTAGE [27] which is a simulations-based framework
(built upon [28] and [29]) to synthesize adversarial scenarios in
a cyber-physical power grid. The rest of the article is structured
as follows: in Sec. II, we present the attack identification

problem in a closed-loop power systems; Sec. III briefly recaps
the KMD, while the proposed attack identification algorithm
is described in Sec. IV; Sec. V illustrates the working of the
algorithm with numerical simulation results; before the article
is concluded in Sec. VI with a summary and future plan.

II. PROBLEM DESCRIPTION

The power grid is a nonlinear electro-mechanical dynamical
system primarily driven by the complex interactions of vari-
ous synchronous generator models, excitation systems, power
system stabilizers, governor controls, as well as dynamic load
modulation [28], [29]. Since the attack identification algorithm
does not require any knowledge of the system model, it
suffices to consider only a compact abstraction of the system
dynamics in the control-affine form of:

xk+1 = f(xk) + h(xk)uk (1a)
yk = g(xk) (1b)

where xk are the vector-valued internal states (e.g. voltage an-
gles, voltage magnitudes, and frequencies); yk are the vector-
valued measurements from sensors (e.g. PMUs); uk are the
vector-valued control inputs to the generators (e.g. governor
set-points); f , g and h are locally Lipschitz vector-valued
functions of states representing the system dynamics, mea-
surements, and control channels respectively. For notational
convenience, we assume that the nominal (target) operating
point is shifted to the origin (i.e. f(0)=0), and that g(0)=0 .

Fig. 2: Block diagram of the closed-loop system under attack.

Attack Model: The adversary is assumed to have com-
promised one or more of the PMUs, phasor data concentra-
tors, network routers and/or communication links. Note that
since IEEE Standard C37.118-2 places no restriction on the
choice of the communication medium, portions of the PMU
communication network may include the internet which is
vulnerable to cyber-attacks. At each of the compromised nodes
in the communication network, the adversary can manipulate
PMU data which is typically not encrypted. The control
center receives the manipulated measurements data ỹk, with
ak := ỹk−yk being the vector-valued injected attack signal.
The control inputs are computed using a proportional output-
feedback controller with control gain K, such that the closed-
loop system becomes:

xk+1 = fc(xk) + hc(xk) ak (2a)
ỹk = g(xk) + ak (2b)

where hc(xk) :=h(xk)K and fc(xk) :=f(xk)+hc(xk) g(xk).
Fig. 2 illustrates the closed-loop system including the control
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inputs and the attack signals. Note that we do not place any
restriction on the type of attack, and merely interpret the attack
signal (ak) as any maliciously introduced anomaly between
the actual measurements (yk) and the measurements received
at the control center (ỹk).

Attack Identification: Attack identification algorithms in-
volve construction of vector-valued measurement residuals
(rk) as a difference between the measurements received at
the control center (ỹk) and the estimated measurements (ŷk):

rk := ỹk − ŷk . (3)

The measurement residuals are fed into some anomaly de-
tector, such as cosine similarity test, χ2-test, or CUSUM test
[13]–[17]. However, the estimates of the measurements are
often inaccurate (or, unavailable) during power system tran-
sients caused by unforeseen and/or unknown changes in load
and generation - potentially misleading the attack detectors
into false positives (natural events identified as attacks) or false
negatives (labeling an attack event as benign). While the work
in [15] proposes a method to distinguish between anomalies
due to attacks and modeling errors, its reliance on physics-
based linear system models and determination of multiple
thresholds for statistical tests potentially limits its application
to large-scale power systems displaying rich nonlinearity.

In this work, we propose a Koopman-based attack identifi-
cation algorithm which uses a moving window of n+1 most
recent snapshots of measurements {ỹk−n, . . . , ỹk−2, ỹk−1, ỹk},
n ≥ 2, to identify in real-time the sensors under attack.

III. BACKGROUND: KOOPMAN MODE DECOMPOSITION

Consider the discrete-time closed-loop system (2) under the
scenario when there is no attack, i.e. ak=0 ∀k,

(no attack) xk+1 = fc(xk) (4)

The Koopman operator U , [21], [23], is an infinite-
dimensional linear operator that acts on any scalar-valued
function of the state, ψ, and maps it into another scalar-valued
function of the state Uψ defined as follows:

Uψ := ψ ◦ fc . (5)

The linearity of the operator is exemplified by the fact that
for any two scalars α1 and α2 , and any two scalar-valued
functions of state ψ1 and ψ2, we have

U (α1ψ1 + α2ψ2) = α1 (Uψ1) + α2 (Uψ2)

The Koopman operator U admits (infinitely many) Koopman
eigenfunctions φj (non-zero scalar-valued functions of state)
and Koopman eigenvalues λj ∈C defined as follows:

Uφj = λjφj , j = 1, 2, 3, . . . (6)

Note that iterative application of (5) and (6) yields

φj(xk) = Ukφj(x0) = λkjφj(x0) . (7)

The set of all Koopman eigenvalues (λj) forms the discrete
spectrum of the Koopman operator U and, along with its
continuous spectra, define the spectral properties of U [21].

Koopman Mode Decomposition: The Koopman operator
translates the finite-dimensional nonlinear dynamics into an
infinite-dimensional linear representation. In particular, let us
consider the measurement function g = (g1, g2, . . . , gp)

T as
a p-dimensional vector-valued function of observables. If each
gi lies within the span of the Koopman eigenfunctions φj , then
the vector-valued observables g can be expanded as:

g(xk) =
∑∞

j=1
φj(xk)vj =

∑∞

j=1
λkjφj(x0)vj (8)

where vj are p-dimensional vector-valued coefficients of the
expansion, called the Koopman modes (KMs) [21]. The ex-
pansion in (8) is referred to as the Koopman Mode Decompo-
sition (KMD). Moreover, λj encode the temporal signatures
in the dynamics, with associated spatial signatures encoded
in φj(x0)vj . In particular, the magnitude and phase of the
Koopman eigenvalue λj are called, respectively, the growth
rate and the frequency of the associated KM.

Empirical Computation: There exist efficient algorithms
to compute finite-sum approximations of the KMD (8) based
on, for example, the Arnoldi algorithm [21], [22] (and the
references within) and the extended dynamic mode decompo-
sition [23], [30]. While we avoid a description of the methods
here for space constraint, it is sufficient to note that the
algorithms use a sequence of n+1 vector-valued observations
{g(x0), g(x1), . . . , g(xn−1), g(xn)}, n≥2, to obtain KMD as:

g(xk) ≈
∑n

j=1
λ̂kj v̂j (9)

where λ̂j are estimates of the Koopman eigenvalues (λj) ,
while v̂j estimate the products of the Koopman eigenfunctions
(φj(x0)) and the KMs (vj). A finite dimensional approxima-
tion of the Koopman operator K∈Rp×p is given as

K = K1K
+
2 , where (10)

K1=
1

n

n−1∑
k=0

g(xk+1)g(xk)
T and K2=

1

n

n−1∑
k=0

g(xk)g(xk)
T,

and the superscript ‘+’ denotes the pseudo-inverse, [30].
Notice that the empirical estimate K of Koopman operator,
learnt using {g(x0), . . . , g(xn)} can be used to predict future
observations {ĝ(xn+1), ĝ(xn+2), ĝ(xn+3), . . . } as

ĝ(xn+m) = Km g(xn) ∀m = 1, 2, 3, . . . (11)

The empirical computational steps (9)-(11) will be used to
design the attack identification algorithm in Sec. IV.

IV. PROPOSED ATTACK IDENTIFICATION ALGORITHM

Fig. 3 depicts key steps involved in the proposed online
attack identification algorithm combining KMD with spectral
clustering, as explained below. For identifying an attack at
time k, a moving window sequence of n+1 observations are
used, which is split into two sub-sequences: a (longer) learning
window L∈{k−n, . . . , k−ñ−1}, and a (shorter) prediction
window P∈{k−ñ, . . . , k} , for some ñ<n .

Step 1 Prediction: We identify the finite-dimensional em-
pirical Koopman operator K on the learning window L from
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(10) and using the empirical Koopman operator to predict the
observations (ĝ) within the prediction window P from (11).

Step 2 Koopman Mode Analysis: We compute the error
sequence (g̃) by subtracting the predicted sequence (ĝ) from
the actually observed sequence during the prediction window
P . Next the empirical KMs v̂j are computed using (9) from
the error sequence (g̃).

Algorithm 1 Koopman-Based Online Attack Identification

Choose n
Choose ñ < n
Set k ≥ n
while true do

Set learning window L={k−n, . . . , k−ñ−1}
Set prediction window P={k−ñ, . . . , k}
procedure STEP 1 PREDICTION

Estimate K from (10) using the observation se-
quence {g(xl)}l∈L (i.e. the learning window)

Use K to predict, as per (11), the observation
sequence {ĝ(xl)}l∈P (i.e. the prediction window)

end procedure
procedure STEP 2 KOOPMAN MODE ANALYSIS

Compute error sequence g̃(xl)= g(xl)− ĝ(xl) for
every l∈P (i.e. the prediction window)

Compute the empirical KMs from the error se-
quence {ĝ(xl)}l∈P using (9)

end procedure
procedure STEP 3 SPECTRAL CLUSTERING

Spatio-temporally normalize KMs
Perform spectral clustering on the normalized KMs

by using the weighted adjacency matrix
end procedure
k ← k + 1

end while

Step 3 Spectral Clustering The KMs identified in Step 2
encode the latent spatio-temporal signatures within the error
sequence required to identify the adversarial attack. The in-
tuitive idea is that if there is an attack during the prediction
window P then it should leave certain anomalous signature
within the KMs specific to the attacked sensor measurements.
On the other hand, if there is a natural event (sudden load
or generation change), that would excite similar modes in
the physically neighboring nodes reflecting as non-anomalous
deviations within the KMs. This allows differentiating between
adversarial attacks and natural events. To facilitate the iden-
tification of anomalous sensor measurements, we perform a
spatio-temporal normalization on the KMs v̂j . First, we stack
up the absolute values of the KMs into a p×ñ matrix:

v̂ := [|v̂1| |v̂2| . . . |v̂ñ|] (12)

Then each column of v̂ is normalized to unity-sum, which
effectively puts equal weight to each KM or, equivalently,
disregards the impact of the associated Koopman eigenvalues.
Next, each row in the resulting matrix is normalized to unity-
sum, which effectively puts equal weight to each sensor

irrespective of whether it is from a generator or a load. This
results in the spatio-temporally normalized KMs stacked up
into v . Each row in v sums up to unity, and represent a sensor.

Finally a spectral clustering is performed to identify the
anomalous sensors from the spatio-temporally normalized
KMs. Since each row in v, corresponding to a sensor, can
be seen as a probability mass function, we use the Kull-
back–Leibler divergence between the (sensor) rows to con-
struct the weighted adjacency matrix which is then fed to
k-means clustering algorithm [31] to identify the dominant
(attacked and non-attacked) clusters in the normalized KMs.

The key algorithmic steps are summarized in Algorithm 1.

V. NUMERICAL RESULTS

We begin this section by describing the adversarial data gen-
eration framework GridSTAGE, and then present an adversar-
ial use-case illustrating the application of proposed Koopman-
based attack identification algorithm.

GridSTAGE (Spatio-Temporal Adversarial scenario GEn-
eration) To evaluate the performance of the closed-loop power
system under several attack strategies and mitigation efforts,
we developed GridSTAGE which is a multivariate spatio-
temporal data generation framework for simulation of ad-
versarial scenarios in cyber-physical systems [27]. There is
no existing adversarial data-generation framework that can
incorporate several attack characteristics and yield adversarial
PMU data. GridSTAGE is available as open source from
GitHub.

GridSTAGE models the cyber-physical system of the power
grid, simulates adversarial scenarios in the system and gener-
ates multi-variate, spatio-temporal network data. GridSTAGE
is developed based on Power System Toolbox (PST) on
which nonlinear time-domain simulations can be generated for
standard IEEE bus systems. Using GridSTAGE, one can create
several event scenarios by enabling or disabling any of the
following: faults, AGC control, PSS control, exciter control,
load changes, and different types of cyber-attacks. IEEE bus
system data is used for defining the power system environment.
Sensors in the power system include both PMU and SCADA,
and simulated data are generated for both type of sensors.
Rate of frequency and location of the sensors can be adjusted
as well. Detailed instructions on generating several scenarios
with different attack characteristics, load characteristics, sensor
configuration, control parameters can be found in the github
repository [27]. The GridSTAGE framework currently supports
simulation of FDI attacks (such as ramp, step, random, trape-
zoidal, multiplicative, replay) and DoS attacks (such as time-
delay, packet-loss, freezing) on PMU data [32]. We use one of
these attacks to demonstrate the proposed attack identification
algorithm, while more extensive analysis on different types of
attacks will be performed in future.

Identifying Multiplicative Attack on PMUs: In this sub-
section, we briefly discuss a multiplicative attack on the PMU
data using the IEEE 68-bus as example. In this attack scenario,
the attacker strategically initiates an FDI attack soon after
there is a load change in the system, by injecting a signal
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Fig. 3: Step-wise schematic of the proposed online attack identification algorithm.
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Fig. 4: Time-series closed-loop simulation (using GridSTAGE)
of an adversarial attack scenario. Bottom two plots show the
attacked PMU measurements of voltage angle and magnitude
(measured at a rate of 50Hz) at the buses 1, 9, 52 and 66 in
IEEE 68-bus network. Top plot shows the (delayed) impact
of the attack on the resulting system frequencies. The attack
duration (shown in black dashed lines) are between 39s and
64s, while a natural load change happens in bus 23 (marked
by red square) at 38s.

that grows over time in proportion to the disturbance being
measured at the sensor. The attacker’s goal is to hide behind
the existing transient disturbances in the network (caused
due to load change). Based on the attack characteristics, this
introduces a delayed impact on the system measurements and
especially when the attack is over, the system sees a sudden
change in measurements which engages control resources to
counter the disturbance. Ideally, these resources should not

have been engaged. The motivation of this work is to identify
such attacks in their early stage such that disturbance seen by
the system is deemed as attack and additional resources are not
engaged. In Fig. 4, the attack scenario is illustrated, which is
initiated at 39s right after a natural load change which happens
at 38s. Finally Fig. 5 illustrates a successful application of the
online attack identification algorithm which is able to correctly
identify all the attack locations (buses 1, 9, 52 and 66) within
1s of the attack initiation, by performing a spectral clustering
on the normalized Koopman mode spreads of all the sensors
(top plot). It is evident that the Koopman mode spread for
the attacked sensors (middle plot) are distinctively different
from those at the other locations (bottom plot), and hence
successfully picked out by the clustering algorithm.

VI. CONCLUSION

This work introduced a novel real-time data-driven attack
detection algorithm based on the Koopman mode decomposi-
tion and spectral clustering. Koopman modes embed the time-
series streaming data (such as from PMUs) from the power
grid network into spatio-temporal modes. A k-means based
spectral clustering on the spatio-temporally normalized KMs
identifies the attacked and non-attacked clusters of sensors.
The proposed attack detection algorithm is illustrated on a
multiplicative attack on the PMU measurements representing
the bus voltage angle and magnitudes generated using the
GridSTAGE, a spatio-temporal multivariate adversarial data
generation platform that is developed in the scope of this
work. This induced attack if allowed to propagate for a
few seconds, introduces unintended frequency changes in the
network and engages resources without the need. However,
the proposed algorithm successfully detects the induced attack
within 1 second of attack initiation in the presence of load
changes in the network. Future scope of this work will explore
the application of the proposed attack detection algorithm
on wider attack scenarios, including various strategic and
stealthy attack types, as well as applicability of the method in
differentiating between naturally caused events such as faults
and component failures.
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Fig. 5: Koopman-based modal analysis followed by spectral
clustering separates out the attacked sensors from the non-
attacked one, even during transients. The attack is correctly
identified at 40s, within 1s of the attack initiation.
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