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ABSTRACT: We present a theory for ion pair dissociation
and association, motivated by the concepts of Marcus theory
of electron transfer. Despite the extensive research on ion-
pairing in many chemical and biological processes, much can
be learned from the exploration of collective reaction
coordinates. To this end, we explore two reaction coordinates,
ion pair distance and coordination number. The study of the
correlation between these reaction coordinates provides a new
insight into the mechanism and kinetics of ion pair dissociation
and association in water. The potential of mean force on these 2D surfaces computed from molecular dynamics simulations of
different monovalent ion pairs reveal a Marcus-like mechanism for ion-pairing: Water molecules rearrange forming an activated
coordination state prior to ion pair dissociation or association, followed by relaxation of the coordination state due to further
water rearrangement. Like Marcus theory, we find the existence of an inverted region where the transition rates are slower with
increasing exergonicity. This study provides a new perspective for the future investigations of ion-pairing and transport.

■ INTRODUCTION

Ion-pairing can occur in molecular systems ranging from simple
salts dissolved in bulk solvents to complex interfaces between
different molecular species and is at the heart of many
fundamental chemical and biological processes.1,2 For example,
it plays crucial roles in the phase behavior of polyelectrolytes at
bulk and interfaces,3−5 specific ion effects in biomolecules such as
proteins and DNA,6,7 salt bridge formation in proteins,8

protein−DNA interactions,9 and protein translocation across
cell membranes via ion-pair-driven pore formation.10 Further-
more, for designing and developing novel energy materials such
as Nafion fuel cells membranes11,12 and batteries based on metal
ions and ionic liquids,13 fundamental understanding of ion-
pairing in the presence of matierial interfaces is a critical step.
Herein, we present a new theory in analogy with the Marcus
theory of electron transfer14,15 to unravel a generalized principle
of ion-pair dissociation and association mechanisms and their
rates in bulk water.
Numerous experimental studies such as X-ray scattering and

absorption,16 nuclear magnetic resonance (NMR),17,18 surface
enhanced Raman,19 dielectric relaxation,20 infrared (IR), and
2DIR spectroscopies21−23 have examined ion pairs at bulk and
interfaces in different environments. These studies have revealed
the presence of contact ion pairs (CIPs) and solvent shared/
separated ion pair (SSIPs) and have elucidated solvent dynamics
around them. For example, dielectric relaxation measurements20

and anisotropy decay measurements using polarization-resolved
mid-IR spectroscopy21,24,25 have shown that solvent molecules
that are bound to ion pairs exhibit extremely slow rotational
dynamics as compared to bulk solvent molecules. Due to the
important competition between ion−water and ion−ion
interaction strengths, the dynamics of solvation in the CIP
state should be different than in the SSIP state that is again

different than isolated ions in solutions. Solvent dynamics will
influence the mechanisms and rates for ion pair dissociation and
association. An improved understanding of the kinetics and the
equilibrium between CIPs and SSIPs will lead to a more
complete picture of ion-pairing events.
Computer simulations complement experiments by allowing

one to identify reactants, products, and the pathways connecting
them with molecular level details. This has the potential to
identify the critical processes associated with ion-pairing and
solvent exchange dynamics.26−38 Reaction rates can be
determined employing reaction rate theory (RRT) in computer
simulations, revealing the dependency of these rates on the
choice of reaction coordinates and their couplings to the
surrounding environment.39 The transition state theory
(TST),40−43 which is an integral part of RRT, is frequently
used to determine the transition rates (k) between reactants and
products at temperature T:

κ κ
β

β= = − Δ †k k
h

Gexp( )TST
(1)

Here, β = 1/kBT with kB as the Boltzmann constant and h is the
Planck constant; ΔG† is the free energy difference between the
transition state and the reactants that is required to activate
reactions. Also, κ is the transmission coefficient which is unity
when TST is exact (implying k = kTST), namely, the trajectories
located initially at the equilibrium reactant state arrive at the
dividing surface and proceed to the product state without
recrossing; κ < 1 indicates barrier-recrossing due to the coupling
of the reaction coordinate to solvent fluctuations.44−48
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For studying ion-pairing, the ion-pair distance (q) has been
historically the choice of reaction coordinate. The TST
formulation for q utilizes the potential of mean force (PMF)
W(q) exerted by solvent molecules along q:49,50

∫πμβ
=

−

−

† †

†k
q W q

q W q dq

1
2

exp( ( ))

exp( ( ))

q
qTST

2

0
2

(2)

where μ is the reduced mass of the ion-pair and q† is the location
of the top of the barrier between reactant and product states.
Studies28,38,49,51−53 showed that the consideration of this barrier
top as the transition state could result in extremely small
transmission coefficient (κ ≪1), implying significant barrier-
recrossing. This is a direct consequence of strong coupling
between solvent fluctuations and the reaction coordinate q. This
suggests that q alone is not a good reaction coordinate to describe
ion-pairing; explicit inclusion of solvent effects on q is necessary.
Herein, we study ion-pairing by utilizing a two-dimensional

reaction coordinate, Q ≡ (q,n), where n is the coordination
number,34,54 i.e., the number of water molecules bound to an ion
in the first solvation shell; n is introduced to account for solvent
fluctuations coupled to q. By computingW(q,n) using molecular
dynamics (MD) simulations in conjunction with classical force
fields, we show how solvent rearrangement activates ion pair
dissociation and association. We explore and highlight the
connection with Marcus theory of electron transfer,14,15 wherein
environment rearrangement is necessary to create a favorable
geometry before electron transfer can take place between
molecules. Thus, we are able to determine the rates and
mechanisms of ion-pairing with a Marcus-like theory of charge
transfer55 that accounts for explicit q−solvent couplings. We
examine this theory for the systems of ion pairs including Li+-F−

(small−small), Li+-I− (small−large), Rb+-F− (large−small), and
Rb+-I− (large−large) in the infinitely dilute water solutions,
which are expected to pose distinctW(q,n) surfaces as a result of
their different solvation structures.

■ TWO-DIMENSIONAL PMFS
In order to construct the Hamiltonian in terms of the coordinate
Q ≡ (q,n) for our ion pair systems, we perform coordinate
transformation as follows. The set of Cartesian coordinates X of
3N components (N is the number molecules including ions) is
transformed to generalized coordinates (Q, S). The S coordinate
has 3N− 2 components. The new conjugate momenta, which are
transformed from the set of Cartesian momenta P of 3N
components, are pq, pn, andPS, wherePS has 3N− 2 components.
Following the work by Darve and Pohorille,56 for a given Q ≡
(q,n) and the basis S, we can express the Hamiltonian with no
cross-terms involving pq and pn with PS as

= + + + +H Z p Z p Z p p V q nP Z P S
1
2

1
2

1
2

( , , )q q n n qn q n S
T

S S
2 2

(3)

Here, the first four terms represent kinetic energy terms, and the
last one is potential energy. Also, Zq is μion−ion

−1 , where μion−ion is
the reduced mass of an ion pair; Zn is related to the ion−water
reduced mass μion−water:

μ
= Λ

−
Zn

ion water (4)

Reference 34 shows that Λ depends on the number of water
molecules near the boundary between the first and second
solvation shells of an ion and governs fluctuations in
coordination number. The derivation for Zqn (demonstrated in
the Supporting Information (SI)), links Zqn to the mass of the ion
(mion) for which the coordination number n is considered:

∑= ′ ̂· ̂
=

Z
m

f r q
1

[ ]qn
i

N

i i
ion 1

wat

(5)

Here, ̂ri and q ̂ are the unit vectors pointing from an ion, say a
cation, to the ith of Nwat water molecules and to an anion,
respectively. Also, f i′ is derivative of the functional form of n given
in eq 6 with respect to the ion−water distance ri.

34 It is obvious
from eq 5 that Zqn →0 for the isotropic solvation structure
around the ion.

Figure 1.W(q) (a),W(q,n) (b and d), andMarcus parabolas (c and e; solid lines fitted to dotted lines representingW(q1,n) andW(q2,n)) demonstrating
dissociation mechanisms for the Li+-F− ion pair in bulk water. Contours are placed between 0 kcal/mol (blue) and 10 kcal/mol (red) with a spacing of
0.5 kcal/mol between two neighboring contours (left panel). Solvation structures of the Li+-F− ion pair indicating the reactant (CIP), activated (CIP*
and SSIP*), and product (SSIP) states in the dissociation process (right panel).
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With a (= 12) as an integer in eq 6, we define coordination
number of an ion in terms of the smooth function f. Here, r† can
be determined from the ion−water radial distribution function
(RDF); the first and the second peaks in the RDF correspond to
the first and second solvation shells, respectively, and the location
of the minimum between these peaks is r† representing the
boundary between these shells. We showed in our previous
work34 that the size of the solvation shells of ions depends on the
size and charge of ions; e.g., for a given ionic charge the size of the
first solvation shell increases with increasing ionic size, which is
understood from the increasing value of r† and coordination
number. The derivative f ′ in eq 5 is vanishingly small for all water
molecules except those near r† contributing the most to Zqn.
To calculate the PMF W(q,n), we are required to determine

the probability distribution function ρ(q,n) associated with the
generalized coordinates q′ and n′ having values q and n,
respectively, by the phase space integration of theHamiltonian:56

∫ρ δ δ β= ′ − ′ − −q n
C

d d q q n n Hx p( , )
1

( ) ( )exp( )
(7)

Here, C is the normalization constant. Now, the PMF can be
expressed utilizing ρ(q,n) as follows:

ρ= − + +W q n k T q n k T q dq dW( , ) ln ( , ) ln( )B B
2

(8)

where dW is a constant introduced to make sure the global
minimum ofW(q,n) is adjusted to zero. The term involving dq (a
small increment in q) is the radial correction.

■ RESULTS AND DISCUSSION

Discovery of Marcus Behavior. We employed umbrella
sampling57 and the WHAM method58 for obtaining the PMFs
from the OPLS-TIP4P force field-based59−62 MD simulations
(see SI for the detailed description). The PMFs for Li+-F− are
presented in Figure 1, while the PMFs for other ion pairs can be
found in the SI (Figures S1 and S2). We separately computed
W(q,n) for n = nLi (coordination number of Li+ ion) and for n =
nF (coordination number of F− ion). Here, W(q), which can be
determined from the equation exp(−βW(q)) = ∫ dnLi exp-
[−βW(q,nLi)] = ∫ dnF exp[−βW(q,nF)], is also presented in
Figure 1a. From W(q), it is clear that the Li+-F− pair prefers to
stay in the CIP state (q = q1) than in the SSIP state (q = q2), and
the CIP→SSIP transition along qwill require crossing the barrier
of 7 kcal/mol. On the other hand,W(q,n) provides an alternative
pathway of the CIP → SSIP transition, where coordination
number rearrangement activates the ion pair separation similar to
what Marcus proposed for the solvent rearrangement induced
electron transfer between molecules. To elucidate, we have
presented in Figure 1c and e the slices throughW(q,n) for q = q1
and q = q2 (dotted lines), respectively. We assume that these
slices can be fitted with parabolas (solid lines):

= + − =W n W K n n i( )
1
2

( ) , 1, 2i i i i
0 2

(9)

The quadratic form of eq 9 represents “Marcus Parabolas” with
same force constants (K1 = K2, as assumed by Marcus). If the
minima of these parabolas are W1

0 at n = n1 and W2
0 at n = n2,

respectively, the difference in PMFs from CIP to SSIP is

Δ = −

= −

W W n W n

W W

( ) ( )2 2 1 1

2
0

1
0

(10)

The reorganization energy, which is the amount of energy
required to change equilibrium coordination number in the CIP
state to equilibrium coordination number in the SSIP state, is

λ = −W n W n( ) ( )1 2 1 1 (11)

Now, the free energy of activation can be determined using λ and
ΔW:

λ
λ

Δ = + Δ†W
W( )

4

2

(12)

which leads to the Marcus’ expression of rate equation:55

κ
κ
β

β

κ
β

β λ
λ

=

= − Δ

= − + Δ

†

⎡
⎣⎢

⎤
⎦⎥

k k

h
W

h
W

exp( )

exp
( )

4

Marcus

2

(13)

Marcus parabolas are diabatic states, i.e., they cross at a point that
can be treated as the activated complex. Figure 1 shows that
Marcus parabolas have a crossing point (n*) forW(q,nLi) (Figure
1c) but not for W(q,nF) (Figure 1e). Hence, the Marcus theory
can only be applied utilizing the former.
Like TST, this Marcus-like theory is exact when the

transmission coefficient κ is unity. Utilizing this exact theory,
we can then describe a possible ion pair separation mechanism
that requires adiabatic traversal of n*, in which the ion pair
system switches from the CIP diabat to the SSIP diabat. The
proposed mechanism for the Li+-F− pair separation is schemati-
cally presented in Figure 1f. Starting in the CIP state, solvent
fluctuations change the number of water molecules in the first
solvation shell of Li+ from n1 to n*, forming the activated CIP*.
While this coordination state of Li+ persists, F− separates from
Li+ and transfers to the SSIP* state where both ions have
distinguishable solvation shells. Finally, additional solvent
fluctuations drive the rearrangement of the Li+−water
coordination, relaxing the ion pair system to the SSIP
equilibrium. We can treat this pathway as reversible and
demonstrate that ion pair association (SSIP → CIP transition)
occurs by reversing the dissociation pathway. Note that λ and
ΔW will be different, given that the reactant and product will be
interchanged. This proposed ion-pairing mechanism can be
validated by the quantitative determination of the transmission
coefficient, which we elucidate later in the paper.
Upon examining the PMFs for other ion pairs, Li+-I−, Rb+-F−,

and Rb+-I− (Figures S1 and S2, SI), we find that their dissociation
and association mechanisms also follow aMarcus-like theory. We
have showcased the ion-specific difference by examining the
crossing region of the Marcus parabolas. Although the Marcus
picture holds only for Li+ in Li+-I−, in the case of Rb+-F− and Rb+-
I− pairs, both the cation and anion exhibit Marcus behavior. For
these situations, one can make the case that the physical process
is triggered by faster dissociation and association. Our research
suggests that the activation of the coordination state of F− for the
Rb+-F− pair and the activation of the coordination state of Rb+ for
the Rb+-I− pair produce the faster rates.
Along the Marcus pathway, the ion pair separation becomes

spontaneous when the activated coordination state is achieved.
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However, one can argue that such separation may still require
overcoming a barrier along the q coordinate. In that case, the
exact TST rate of ion pair separation is proportional to the
product of the factor for the activation along n and the factor for
overcoming the barrier along q, which is given by

β
β β= − Δ − Δ*

*
†

k
h

W W
1

exp[ ]exp[ ]q n
q
n

n
q

TST
,

1 (14)

Here, ΔWq1
n* and ΔWn*

q† are the free energies of activation
associated with n and q coordinates, respectively. In Figure 2, we

have presented both the dissociation and association rates
calculated using the exact TST (eq 14) and Marcus methods
(kMarcus in eq 13) for a variety of ion pairs as a function of their
reactant−product free energy differences (ΔW). ForΔW > 0, the
anion transfer rate increases with the decrease inΔW. ForΔW <

0, the rate increases then decreases with the increase inΔW. This
is analogous to the inverted region that Marcus discovered for
electron transfer. We also find that the association rates are faster
than dissociation rates for all ion pairs except for Rb+-F−, where
the SSIP state is more stable. Although the Marcus rates and the
TST rates have a very similar trend, the former is significantly
faster than the latter in the case of Li+-F− because of the large

ΔWn*
q† that the Marcus method does not account for.

Eigen State Picture and Transmission Coefficient. To
determine the transmission coefficient, κ, we must consider the
adiabatic or nonadiabatic nature of ion pair dissociation. If the
diabatic states represented by Marcus parabolas are strongly
coupled, the ion pair dissociation can be treated as an adiabatic
process. Following Hush’s work on the adiabatic theory of
electron transfer in infinitely dilute solutions,63 κmay be assigned
to unity. However, the four different ion pairs studied here are
expected to exhibit different coupling strengths between the
diabatic states, which may result in different transmission
coefficients. To discern between these couplings (see SI for
details), we approximately determine the coupling strength as

= − −C n W n W n W n W n( ) [ ( ) ( )][ ( ) ( )]1 1 1 2 2 2 . The inclusion
of the coupling C(n) between the two states W1(n) and W2(n)
straightforwardly leads to the eigen state picture of ion pairing;
the dynamics in coordination number space that governs ion-
pairing is restricted on the lower eigen free energy surface in the
adiabatic case, while the higher eigen free energy surface is
accessed from the lower one in the nonadiabatic case.
In Figure 3a, we elucidate the eigen state picture of ion-pairing.

The crossing region for Li+-F− is located in the “abnormal
region” (it is at the same side of the two parabolas and |ΔW| ≫
λ), and due to the large coupling strength the lower eigen free

Figure 2. Dissociation (red) and association (blue) rate constants as a
function of free energy difference between reactants and products,
constituting the Marcus inverted region.

Figure 3. (a) Eigen free energy surfaces (red and blue) originated due to coupling betweenMarcus parabolas (black); dynamics is restricted on the lower
surfaces (red) within adiabatic approximation. For all ion pairs but Li+-F−, n1′ and n2′ are the higher energy species that are not accessed in this
approximation. It forbids Li+-F− separation because of the surface exchange between n2′ and n2, i.e., n2′ is on the lower surface and n2 is on the higher
surface. For Rb+-I−, the zoomed in crossing region is indicated with an arrow. (b) Ion-pairing pathways: The pathway involving the “normal region”
describes dissociation of Li+-I− and Rb+-F−, and Rb+-I−, and the pathway involving the “abnormal region” describes dissociation of Li+-F−. Reversing
these pathways can also describe association of ion pairs. Within adiabatic approximation, the dashed arrows are nonreactive, supporting the persistence
of the Li+-F− paired state. (c) Curvature of the lower eigen free energy surfaces in the neighborhood of the crossing regions.
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energy surface, it tends to avoid the higher one and remains well
separated. The only pathway that allows Li+-F− dissociation must
involve nonadiabatic hopping between these surfaces across the
“abnormal region”; that is unlikely to occur due to their coupling-
induced large free energy gap. Our finding is supported by the
fact that Li+-F− always prefers to stay in the paired state and is
insoluble in water.64 In the case of Li+-I− and Rb+-F−, and Rb+-I−,
the crossing region is located in the “normal region” (crossing
region at the opposite sides of the two parabolas). Since the eigen
free energy surfaces are well separated for Li+-I− and Rb+-F− due
to strong couplings, the idea of adiabatic traversal of the crossing
region for the CIP-SSIP transition is valid. The coupling is small
for Rb+-I− and both the nonadiabatic and adiabatic pathways may
describe the dissociation mechanism. However, we propose in
our classical description of ion-pairing that the adiabatic pathway
is reactive.
Landau65,66 and Zener67 introduced a semiclassical approach

to determine the transmission coefficient (κLZ) for electron
transfer. We map their idea to our classical description of a
negative charge (anion) transferring from the CIP state to the
SSIP state and show that κLZ→1 in the strong coupling limit and
κLZ ≪1 in the weak coupling limit. In this theory, we need to
determine the probability (P) of the ion pair systems actually
undergoing the reactive transitions through the crossing region.
Different passages involving different states or species (n1*, n2*, n1′,
and n2′) near the crossing region on the eigen free energy surfaces
are depicted in Figure 3b. Now, following Landau−Zener
theory,65−68 we can obtain P that will depend on the coupling
strength and the traversal velocity in coordination number (vn)
space:

π= − −
ℏ | − |

⎡
⎣⎢

⎤
⎦⎥P

C
v S S

1 exp
2

n

2

2 1 (15)

Here, S1,2 are the slopes of the Marcus parabolas at n*

( | = *
dW n

dn n n
( ) ). Also, vn at n* can be obtained from phase space

trajectories (vn vs n, see Figure S3 in SI for example trajectories).
According to Newton and Sutin,68 the relation between the
transmission coefficient and P depends on whether Marcus
parabolas cross at the “normal region” or “abnormal region” as
follows:

κ =
+

−⎪

⎪⎧⎨
⎩

P P

P P

2 /( 1) for “normal region”

2 (1 ) for “abnormal region”
LZ

(16)

The values ofC at the crossing point and κLZ are listed in Table
1. As gleaned from the case of the “abnormal region” in Figure 3b
and eq 15, P∼ 1 for going from n1 to n2′ through n1* for Li+-F− due
to the large value of C. Therefore, the improbable event (1 − P)
of hopping to higher energy states (n1′, n2*, or n2) causes κLZ ∼ 0
(eq 16), and thus, the paired state of Li+-F− persists. In the case of
Li+-I− and Rb+-F−, the couplings are large enough to cause the
adiabatic transitions between n1 and n2 through the “normal
region” with a probability close to 1, resulting in κLZ ∼ 1. The
extremely small value of C for Rb+-I− leads to κLZ ≪1.
The semiclassical transmission coefficient is justifiable from

the perspective of classical adiabatic dynamics on a lower eigen

free energy surface in terms of the kinetic energy, = vKEn Z n
1

2
2

n
,

and the approximate mass-weighted-curvature of the surface,

Ω ∼ ∂
∂

∂
∂

⎡⎣ ⎤⎦Z Zn n n
W n

n
( ) . Here, the values of Zn should be

extracted from the plateau of Zn vs q profile in Figure S4 of the SI.

The classic works of Marcus,69 Miller,70 Levine,71 and Truhlar72

addressed the utility of KEn and Ω. Especially, the reaction
pathway curvature at the transition state (crossing region) is
crucial because it dictates whether the transmission coefficient is
unity (zero curvature) or much less than unity (large curvature).
For Li+-F−, KEn is 3.5 kcal/mol andΩ is extremely small at the

crossing region as shown in Figure 3c. This allows to cross the
barrier on the lower free energy surface (Table 1) but forbids
access to the higher surface (>4.5 kcal/mol). Therefore, κLZ ∼ 0
for the CIP-SSIP transition. For Li+-I− and Rb+-F−, κLZ ∼ 1
because of much greater KEn (25.9 and 0.2 kcal/mol,
respectively) than the barriers and vanishingly small Ω. Finally,
although KEn (5.5 kcal/mol) is greater than the barrier for Rb+-
I−, the extremely small κLZ arises due to the large curvature-
induced barrier recrossing. The link between the semiclassical
Landau−Zener method and this classical approach is feasible
through the relation between the coupling strength C and the
curvature Ω; a large (small) value of C causes extremely small
(large) Ω, directly governing the transmission coefficient.
The eigen state picture and the transmission coefficients have

now clarified that the solvent rearrangement-based Marcus-like
mechanism of ion pairing, which were originally proposed for
Li+-F− (Figure 1f), is transferable to ion pairs that are separable in
water. The CIP-SSIP transition rates can be obtained by
correcting the Marcus rates with the Landau−Zener trans-
mission coefficient. Additionally, a correction may be required if
the solvent rearrangement-induced activation in coordination
number does not trigger a spontaneous separation or association

of ion pairs due to an existing barrier along q (ΔWn*
q† in eq 14,

Table 1, and Figure 2). Thus, based on eqs 13 and 14, the
prescription for an actual ion-pairing rate calculation is given by

κ β

κ
β

β λ
λ

β

= − Δ

= − + Δ − Δ

*

*

†

†⎡
⎣⎢

⎤
⎦⎥

k k W

h
W

W

exp[ ]

exp
( )

4
exp[ ]

n
q

n
q

actual LZ Marcus

LZ
2

(17)

Structure and Switching Dynamics of the Solvent.
Solvent rearrangement not only triggers ion-pairing but also
encodes the ion-specific nature of the pairing process. This is due
to the unique solvation structures and dynamics around different
ions that result in different PMFs. When two ions are far from
each other and their solvation shells are well separated, one may
expect the solvation shells to be isotropic. In the SSIP
environment or beyond, the solvent exchange dynamics involves
a smooth change in coordination state driven by thermal

Table 1. Coupling Strength (C) at Crossing Point (n*) of
Marcus Parabolas and Corresponding Landau−Zener
Transmission Coefficient along with Barrier ΔWq1

n*a

Ion pair
ΔWq1

n*
(kcal/mol)

ΔWq1
n1*

(kcal/mol)
ΔWn*

q†

(kcal/mol)
C

(kcal/mol) κLZ

Li+-F− 6.20 2.50 5.00 3.50 0.000
Li+-I− 2.90 1.55 2.00 1.90 0.990
Rb+-F− 0.25 0.04 0.07 0.50 0.990
Rb+-I− 1.39 1.39 0.58 0.01 0.002

aThe coupling between these parabolas generates a lower eigen free

energy surface with a reduced barrier (ΔWq1
n1*) on which the adiabatic

dynamics take place. A spontaneous dissociation of ion pairs after
activation of the coordination number may require overcoming an

additional barrier (ΔWn*
q† ) along the q.
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fluctuations. This picture breaks down when two ions are in the
close proximity of each other. Here, the overlapping solvation
shells and the underlying dynamics of the change in coordination
state lead to anisotropic water distribution around the paired
state.
One of the advantages in casting the multidimensional rate

problem into the form of eq 3 is that it allows us to analyze the
effect of solvation structure on ion pairs formation that is
encoded in Zqn (eq 5). Here, Zqn is a measure of the degree of
isotropic solvation of ions in ion pair systems. Figure 4 displays

that Zqn approaches zero in the solvent separated state for all ion
pairs, indicating isotropic solvation. If both the cation and anion
are small (e.g., Li+-F−), the CIP state results in large anisotropic
values of Zqn due to a frustrated overlapping solvation shells. For
the combinations of small/large cations/anions or vice versa,
(e.g., Li+-I− and Rb+-F−), the CIP state is significantly less
perturbed yielding smaller values of Zqn. Finally, Zqn is vanishingly
small when both the cation and anion are large (e.g., Rb+-I−) and
is nearly independent of q. Note that Zn (eq 4) is also affected in a
similar fashion due to ion-pairing (Figure S4, SI), but it has a
nonvanishing limit for isotropic solvation.
Thermal fluctuations of the positions of water molecules

projected along the ion pair distance introduces fluctuations in
Zqn. Since the water molecules near the boundary between the
first and second solvation shells contributes the most to Zqn, their
switching dynamics across the boundary control the time-
dependent behavior of Zqn. To illustrate this further, we have
presented the time correlation function CZqn

(t) in Figure 5 (left
panel) for the Li+-F− pair defined as

δ δ δ δ= ⟨ ⟩ ⟨ ⟩C t Z t Z Z Z( ) ( ) (0) / (0) (0)Z qn qn qn qnqn (18)

We calculate CZqn
(t) in the CIP or the SSIP state where δZqn(t) =

Zqn(t)−⟨Zqn⟩. A biexponential behavior of CZqn
(t) is observed for

both Li+ and F− in the left panel of Figure 5. There is a rapid drop
on femtosecond time scale followed by a slower decay on
picosecond time scale. A simple fit with a biexponential function
shows that the fast time scale dominates the correlation function
(∼70%). Mechanistic insight can be achieved by identifing the
location of water molecules that contribute to the observed
dynamics in CZqn

(t). To this end, we construct the distribution,
P(θ), where θ is the angle between the center of mass location of
water molecules with the largest f ′ and the vector pointing

between the cation and anion, namely, q ⃗ and− q ⃗, respectively. In
Figure 5 (middle panel), P(θ) is shown. Here, the region of the
solvent where water molecules are shared between Li+ and F− is
more densely populated than the region where water molecules
are not shared. From P(θ), we can construct the relative free
energy profiles W(θ) = −kBT ln (P(θ)/sin θ) that identfies the
precise location of the water molecules that exhibit the fast and
slow dynamics (right panel, Figure 5). Here,W(θ) confirms that
the water molecules shared by Li+ and F− are in the most likely
state and thus dominate the switching dynamics. The salient
picture is that water molecules at this minimumW(θ) are bound
to Li+ and can rapidly switch to the state where they are bound to
F− and vice versa. In the unshared region (θ > 45°), water
molecules switch across the boundary between the first and
second solvation shells at a slower rate. In the SSIP state,
significantly more water molecules populate the neighborhood of
the boundary than in the CIP state (middle panel, Figure 5),
increasing the availability of partner water molecules that
participate in the switching dynamics. Thereby, CZqn

(t) decays
faster in the SSIP state than in the CIP state. These findings about
CZqn

(t) for Li+ and F− are consistent with those for the larger ions
Rb+ and I− (Figure S5, SI).

■ CONCLUSIONS
In conclusion, we have shown that we canmap the process of ion-
pairing to a Marcus-like picture where the solvent rearrangement
around ion pairs leads to an activated coordination state. Once in
this activated state, ion pair separation or association is triggered
followed by further rearrangement of the solvent to the final
state. Our research found important dynamical corrections to the
spontaneous dissociation of the activated state that were found to
be ion specific. Specifically, the transmission coefficient was
shown to depend directly on the coupling between the Marcus
parabolas representing the CIP and SSIP states and is related to
the reaction path curvature. Strong couplings lead to a
vanishingly small curvature of the reaction path and provide
κLZ ∼ 1, while weak couplings that lead to a large curvature
provide κLZ ≪1.
Our analysis is general enough to describe the limits of

strongly associating (insoluble) and dissociating ion pairs,
namely, that Li+-F− is predicted to persist in the CIP state.
Moreover, significant dynamical corrections are also assigned to

Figure 4. Collective mass element Zqn as a function of ion-pair distance.
Red corresponds the reaction coordinate involving q and coordination
number of cation, while blue corresponds the same involving q and
coordination number of anion.

Figure 5. Time correlation function for the collective mass element Zqn
in the CIP and SSIP states of the Li+-F− ion pair (left panel).
Distribution of water molecules that govern the switching dynamics
(middle panel). Free energy associated with the orientation distribution
of such water molecules with respect to q ⃗ (indicated by green for Li+)
and − q ⃗ (indicated by magenta for F−) (right panel).
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soluble salts, such as RbI, that is attributed to the reaction path
curvature of solvent reorganization. This is consistent with Peters
and co-workers’ finding53 that dynamical recrossing may never
be eliminated for certain ion pairs, especially for the large cation−
large anion combination. However, we expect to find many
examples of salts with intermediate ionic size that will obey a
perfect Marcus-like mechanism with κLZ ∼ 1. In addition, we
predict that the rates of association and dissociation follow a
picture that is consistent with the inverted region of Marcus
theory. Having reduced the multidimensional rate problem to
two-dimensions allows us to easily ascertain mechanistic insight
through studying the correlations of the mass element associated
with the collective q−n motion. Future research will focus on
detailed studies of comparing between other formulations of rate
theory that utilize the full 3N degrees of freedom to maximize
reactive flux for model electrolytes. Furthermore, investigating
special cases where Morse-type free energy surfaces are expected
instead of parabolic ones will be pursued, which may require
developing new kinetic models.73,74 We are also interested to
employ our self-consistent theory to explore the utilities of other
reaction coordinates such as dipole moment rearrangement
because dipole fluctuations can potentially be a good
representation of solvent fluctuations. These future investiga-
tions will complement our current findings and will further
ascertain the accuracy of our simple reduced picture of the
complex ion-pairing dynamics.
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