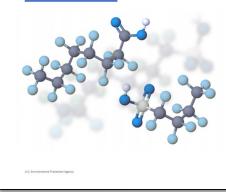


EPA Office of Research and Development Human Health Toxicity Assessment Products on PFAS

Andrew Kraft

Center for Public Health and Environmental Assessment (CPHEA) Chemical and Pollutant Assessment Division (CPAD) Office of Research and Development (ORD)

> RemPlex Summit November 12, 2021


The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

EPA PFAS Plans

EPA's Per- and Polyfluoroalkyl Substances (PFAS) Action Plan

As part of EPA's effort to address widespread environmental PFAS contamination and ubiquitous human exposure, EPA's Office of Research and Development (ORD) is developing various human health assessment products to characterize the evidence on the potential human health effects of these substances.

The **2019 EPA PFAS Action Plan** outlines a multimedia, multi-program, national research plan to address the challenge of PFAS (<u>https://www.epa.gov/pfas/epas-pfas-action-plan</u>).

PFAS Strategic Roadmap: EPA's Commitments to Action 2021–2024

The **2021 Strategic Roadmap** (announced October 2021) extends and reaffirms EPA's commitment, including finalizing ORD toxicity assessments (<u>https://www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-</u>action-2021-2024)

 Amongst other actions, EPA plans to establish a national primary drinking water regulation for PFOA/PFOS and designate certain PFAS as hazardous substances to require reporting of releases, etc.

EPA Needs More PFAS Toxicity Information

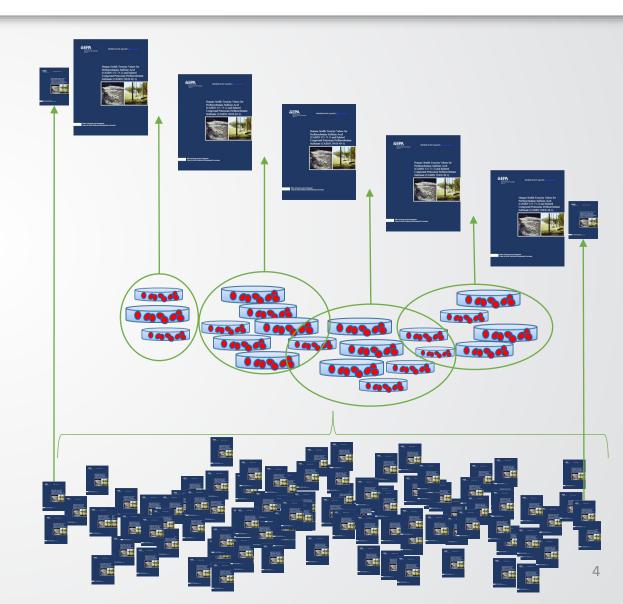
- Decision-making on PFAS is hindered by a limited number of available human health toxicity assessments
- ORD is developing federal, peer-reviewed toxicity assessments for priority PFAS
 - ORD assessments are used by EPA Programs and Regions in combination with nationwide- or sitespecific exposure information and other considerations to set clean-up and regulatory values
- Developing assessments on individual PFAS cannot address the timing and extent (thousands of PFAS) of the need, but grouping of PFAS is hindered by lack of data
 - ORD tiered toxicity testing aims to fill data gaps and inform decisions on grouping and prioritization (not discussed in detail today, but see: <u>https://www.epa.gov/chemical-research/pfas-chemical-lists-and-tiered-testing-methods-descriptions</u>)
 - ORD systematic evidence maps collect and inventory the current data on thousands of PFAS

EPA-ORD Efforts on PFAS and Human Health

Individual Toxicity Assessments (Part 1)

SEPA

- For PFAS with more robust datasets
- Toxicity values support regulatory decisions and can serve as index values in read-across for data-poor PFAS in their "group"


Tiered Toxicity Testing

(not discussed in detail)

- New approach methods (NAMs) to fill data gaps
- Testing structurally diverse PFAS using in vitro toxicity and toxicokinetic assays
- Aids grouping for read-across and informs prioritization decisions

Systematic Evidence Mapping (Part 2)

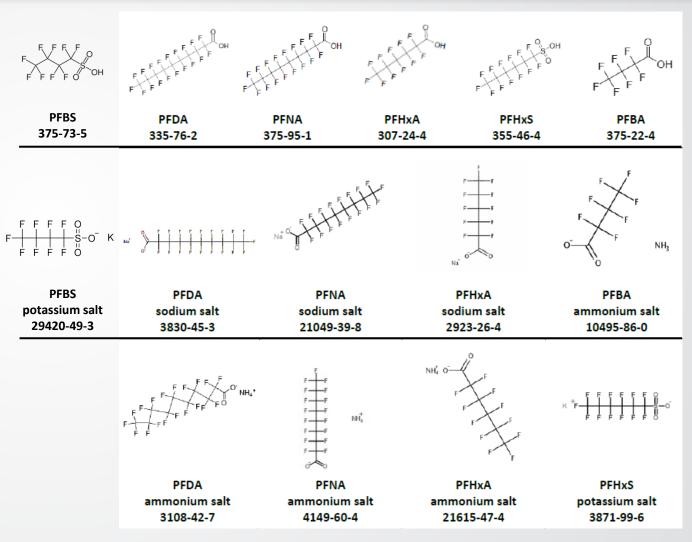
- Inventories available toxicity data across the broader PFAS class
- Parallels PFAS tiered toxicity testing
- Highlights data gaps and fit-for-purpose assessment opportunities for emerging PFAS of concern

ORD Toxicity Assessments

SEPA

Prioritizing EPA PFAS Toxicity Assessments

Toxicity assessments include hazard identification (judging the potential for exposure to cause various health effects) and dose-response analyses (estimating levels of exposure at which these effects are not expected to occur) based on review of the available research


Prioritized PFAS (n=7) for EPA toxicity assessments (other than PFOA and PFOS):

- PFBS, GenX chemicals (developed by Office of Water, OW), PFBA, PFHxA, PFHxS, PFNA, and PFDA
- Selected based on:
 - 1. Identified as a priority to inform decision-making for EPA program or regional offices, tribes, or state departments of environmental protection (all 7 PFAS had multiple interested parties)
 - 2. Include studies of in vivo exposure in animals that could possibly be used to derive toxicity values
 - 3. Quantifiable in the environment using standardized analytical methods to allow for site-specific application of toxicity values to regulatory decision-making
- Now-final PFBS (ORD) and Gen X chemicals (OW) were prioritized due to the existence of draft assessments

EPA

ORD Human Health Assessments

- PFBS & PFHxS are perfluoroalkane sulfonic acids (<u>PFSAs</u>); PFDA, PFNA, PFHxA, & PFBA are perfluoroalkyl carboxylic acids (<u>PFCAs</u>)
- PFBA, PFBS, and PFHxA are considered <u>short-chain</u>; the others are <u>long-chain</u> PFAS
- PFBS was introduced as a short-chain substitute for PFOS; PFBA and PFHxA were introduced as substitutes for PFOA
- Shorter chain PFAS generally have faster elimination from the body and thus are generally presumed to be less toxic

SEPA

Methods and Key Science Issues

November 2019 Systematic Review Protocol for the 5 ORD (IRIS) PFAS assessments (ORD's PFBS assessment, drafted prior to this protocol, used different, but parallel, approaches)

https://cfpub.epa.gov/ncea/iris drafts/recordisplay.cfm?deid=345065

Outlines the availability of human health assessment-relevant studies

• For these PFAS, data are not currently available to inform estimation of an RfC from inhalation exposure and the data are inadequate to evaluate the potential for carcinogenicity

Describes the assessment methods to be applied across the separate IRIS assessments

• Uses systematic review methods to transparently identify, evaluate, and synthesize studies

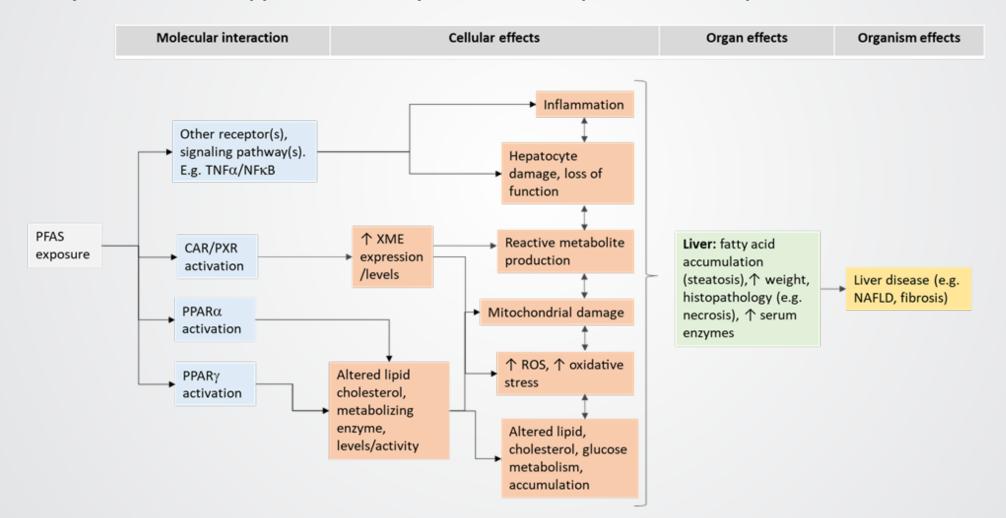
Identifies 5 key science issues the assessments will address (2 examples presented below)

- Addressing toxicokinetic differences across species and sexes
- Interpreting the human relevance of hepatic effects in animals that involve PPARα receptors

Key Issue: Toxicokinetics

Preliminary serum half-life estimates across species and sexes presented in protocol (Darker shading indicates longer half-life)

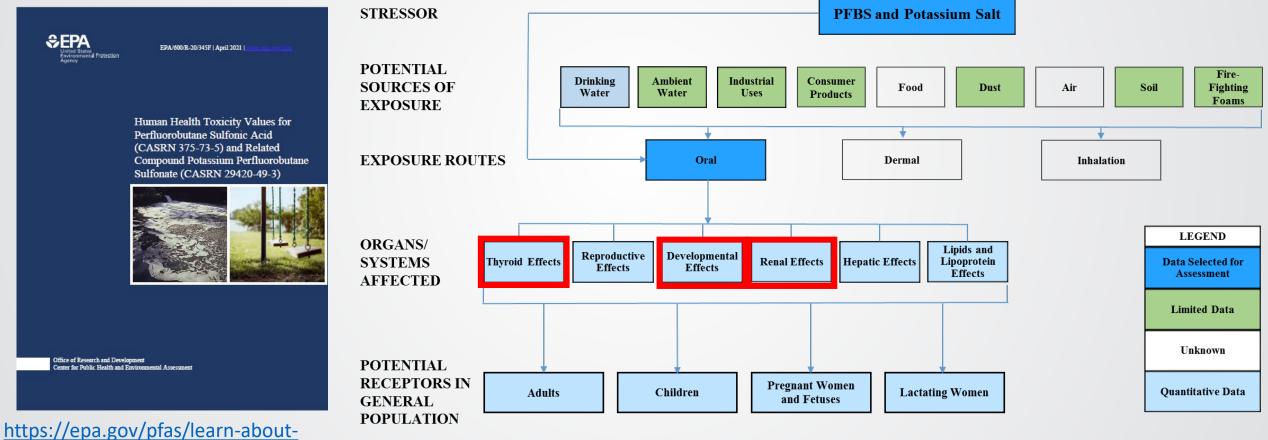
	PFBA (C4)		PFHxA (C6)		PFHxS (C6)		PFNA (C9)		PFDA (C10)	
	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male
Rat	1.0-1.8 hours	6-9 hours	0.4-0.6 hours	1.0-1.6 hours	1.8 days	6.8 days	1.4 days	30.6 days	58.6 days	39.9 days
Mouse	3 hours	12 hours	~1.2 hours	~1.6 hours	24-27 days	28-30 days	26-68 days	34-69 days	ND	,
Monkey	1.7 days		2.4 hours	5.3 hours	87 days	141 days	N)	ND)
Human	3 day	/S	3 da		8.5 yeai		4.: yea		12 уеан	


Importantly, for this and other key assessment decisions (e.g., UFs), there is a preference for data-derived adjustments and extrapolations over defaults, when such data are available and deemed reliable.

Data from Lau, C. (2015) Perfluorinated compounds: An overview. Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances 9

Key Issue: Influence of PPARα

Preliminary AOP-informed Approach for Analysis of PPARα-dependence for Hepatic Effects Presented in Protocol


SEPA

\$EPA

Final Toxicity Assessment of PFBS

Final ORD PFBS Assessment released in April 2021

human-health-toxicity-assessment-pfbs

Final Toxicity Values for PFBS

- The thyroid (specifically, <u>decreased thyroid hormone [total T4]</u>) in newborn mice was identified as the critical effect from a single generation <u>developmental study</u> (Feng et al. 2017) for both the lifetime (chronic) RfD and the subchronic RfD
 - Decreased T4 was not associated with reflex increases in TSH; this is consistent with a human clinical condition known as "hypothyroxinemia".

Thursd Effects		POD	Uncertainty Factors						RfD
Thyroid Effects		(BMDL _{HED})	UF _A	UF _H	UFL	UFs	UF_D	UF _c	mg/kg-d
Developmental	Subchronic RfD	0.095	3	10	1	1	3	100	1 × 10 ⁻³
decreases in TH (T4) in mice	Lifetime (chronic) RfD	0.095	3	10	1	1	10	300	3 × 10 ⁻⁴

 UF_A – interspecies variability; UF_H – intraspecies variability ; UF_L – LOAEL to NOAEL uncertainty; UF_S – subchronic to chronic uncertainty; UF_D – database uncertainty

Set EPA

Draft Toxicity Values for PFBA

- Organ-specific RfDs (osRfDs) were estimated for thyroid, liver, and developmental hazards.
- From these osRfDs, an overall RfD of 1 × 10⁻³ mg/kg-day based on increased liver hypertrophy and decreased T4 in adult rats was selected.
- From the subchronic osRfDs, an overall subchronic RfD of 7 × 10⁻³ mg/kg-day based on <u>developmental</u> <u>delays</u> in mice was selected

			RfD (lifetime)			Subchronic RfD (less-than-lifetime)		
System	Basis	Point of Departure	Composite Uncertainty Factor	osRfD (mg/kg-d)	Confidence	Composite Uncertainty Factor	osRfD (mg/kg-d)	Confidence
Hepatic	Increased hepatocellular hypertrophy in adult male S-D rats	BMDL _{HED} Butenhoff et al. (2012)	1,000	1 × 10 ⁻³	Medium	100	1 × 10 ⁻²	Medium
Thyroid	Decreased total T4 in adult male S-D rats	NOAEL _{HED} Butenhoff et al. (2012)	1,000	1 × 10 ⁻³	Medium-low	100	1 × 10 ⁻²	Medium-low
Developmental	Developmental delays after gestational exposure in CD1 miceª	BMDL _{HED} Das et al. (2008)	100	7 × 10 ⁻³	Medium-low	100	7 × 10 ⁻³	Medium-low

^a POD based on delayed vaginal opening used to represent three developmental delays observed in the study

Preliminary Hazard Cross-view

				i	
Potential Effects	PFBA	PFHxA	PFDA	PFHxS	PFNA
Developmental*					
Hepatic					
Endocrine*					
Immune					
Reproductive					
Hematological					
Nervous System					
Renal*					
Cancer					
Respiratory					
Gastrointestinal					
Inhalation					

*Health effects of primary concern (i.e., developmental delays; thyroid hormone disruption; and renal hyperplasia) in the final PFBS assessment (2021)

EPA Toxicity Values (OW and ORD)

PFAS	RfD (mg/kg-d)	Critical Effect (Study)
PFBS (ORD; '21; final)	0.0003	Decreased serum <mark>total T4</mark> in PND1 (<mark>developmental</mark>) F ₁ mice (Feng et al., 2017; gestational exposure study)
GenX chemicals (OW; '21; final)	0.000003	Constellation of <mark>liver</mark> lesions in F ₁ female mice (DuPont, 2010; reproductive and developmental toxicity study)
PFBA (ORD draft)	0.001 (draft)	Decreased serum total T4 and liver hepatocellular hypertrophy in adult rats (Butenhoff et al., 2012; subchronic study)
PFOS (OW; '16; final)	0.00002	Decreased pup weight (developmental) in rats (Luebker et al., 2005; 2-generation reproductive toxicity study)
PFOA (OW; '16; final)	0.00002	Skeletal effects (developmental) and accelerated puberty in males (Lau et al., 2006; gestational exposure study)

\$EPA

Current Status on Assessments Next Steps

	Executive Review (ORD)	Agency Review	Interagency Consultation	Public Comment	External Peer Review
PFBS	Complete	Complete	Complete	Complete	Complete Q3 FY21
PFBA	Complete	Complete	Complete Q3 FY21	Public comment ended 11/8/21	QI FY22
PFHxA	Complete	Complete Q2 FY21	Complete QI FY22	Q2 FY22	-
PFDA	Complete	QI FY22	-	-	-
PFHxS	Ongoing	Q2 FY22	-	-	-
PFNA	Q2 FY22	-	-	-	-

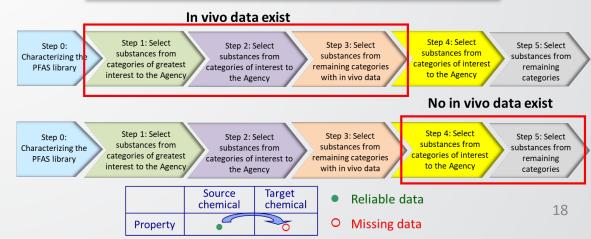
See IRIS Program Outlook (updated 3x/year) for current timing on public steps: <u>https://www.epa.gov/iris/iris-program-outlook</u>

ORD PFAS Systematic Evidence Maps (SEMs)

SEMs Complement ORD Tiered Testing

- Tiered toxicity testing is being conducted by ORD using a suite of in vitro and toxicokinetic assays: <u>https://www.epa.gov/chemicalresearch/pfas-chemical-lists-and-tiered-testing-methods-descriptions</u>
- "PFAS 150": 75 PFAS (and later 75 more) initially selected for testing: <u>https://comptox.epa.gov/dashboard/chemical_lists/epapfas75s1;</u> <u>https://comptox.epa.gov/dashboard/chemical_lists/EPAPFAS75S2</u>
- "PFAS 430" library of procurable, unique, DMSO-solubilized PFAS: <u>https://comptox.epa.gov/dashboard/chemical_lists/EPAPFASINV</u>
- More than 9000 PFAS have been identified ("PFAS 9000")

Goal 1 of Testing: develop/use toxicity data on "source" PFAS to infer (read-across) missing information for "target" PFAS


Goal 2: characterize biological activity of the PFAS landscape

Environmental Health Perspectives HOME CURRENT ISSUE ARCHIVES COLLECTIONS > 中文翻译 > AUTHORS > Brief Communication ③ Open

A Chemical Category-Based Prioritization Approach for Selecting 75 Per- and Polyfluoroalkyl Substances (PFAS) for Tiered Toxicity and Toxicokinetic Testing

Grace Patlewicz, Ann M. Richard, Antony J. Williams, Christopher M. Grulke, Reeder Sams, Jason Lambert, Pamela D. Noyes, Michael J. DeVito, Ronald N. Hines, Mark Strynar, Annette Guiseppi-Elie, and Russell S. Thomas

Published: 11 January 2019 | CID: 014501 | https://doi.org/10.1289/EHP4555

Systematic Evidence Mapping

What are Systematic Evidence Maps?

- <u>Pre-decisional</u> analyses that use systematic review methods to compile and summarize the available evidence
- Front end compilation of evidence does not include hazard ID or toxicity values
- Highly visual and interactive data summaries that are publishable in journals
- Generally, can be quickly developed (≤ 1 year), depending on the evidence base and available resources, using standardized templates and tools

How are they used?

- Prioritization and Scoping: determine the extent to which the evidence supports an assessment, and of what type
- Problem Formulation: characterize the extent and nature of the evidence and reveal science issues/research needs
- Updating: rapidly characterize new evidence to update an assessment or decide whether an update is warranted

PFAS SEM Approaches

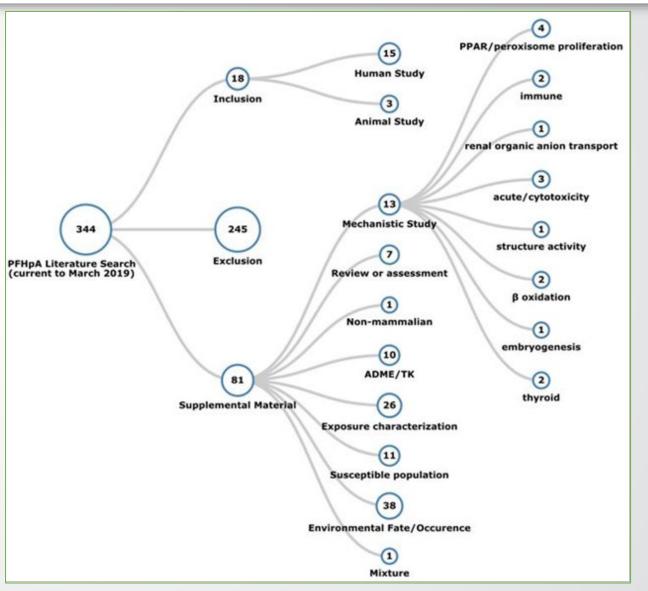
Identify and summarize animal bioassay and epidemiological evidence for ~9000 PFAS

- Searched in batches complementing tiered testing (PFAS "150", "430", "9000")
- List of 9,000 substances and structures includes most PFAS in the EPA CompTox chemicals dashboard (<u>https://comptox.epa.gov/dashboard/chemical_lists/PFASSTRUCT</u>)

Systematic review methods used to search for, screen, and compile the literature

- Use of machine-learning and automated approaches
- Summarize in vivo study methods (including critical evaluation of key methodological features), design, and findings
- ADME studies, PBPK models, in vitro studies, and exposure-only human studies tracked as supplemental for future use

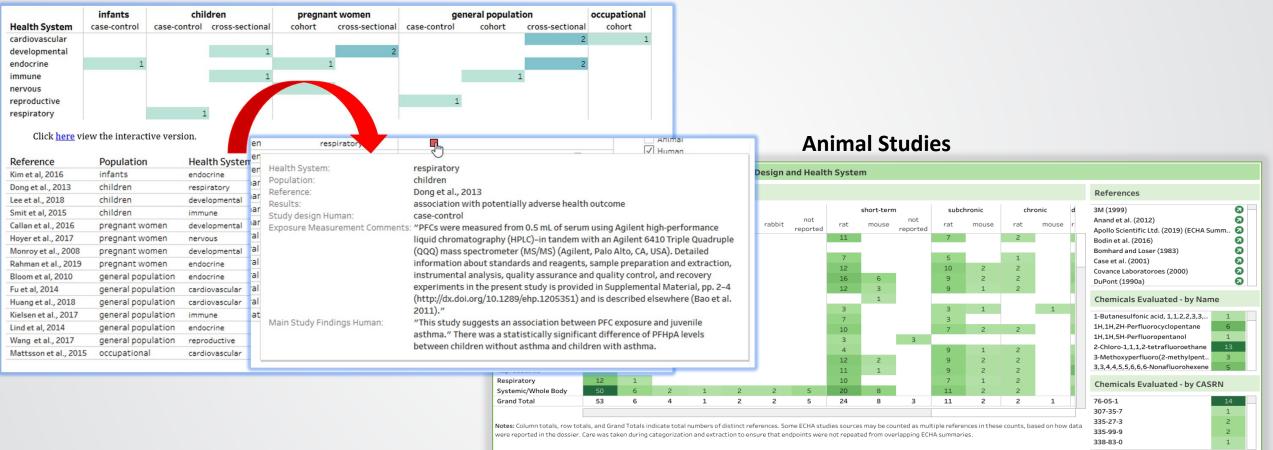
Anticipated uses


- Identify evidence to inform ORD tiered testing efforts and quickly address emerging PFAS assessment needs
- Create a repository that is easily updated, web-based, and shareable to characterize the available evidence and data gaps

When used together with the screening-level toxicity data being generated, these SEMs can help identify data gaps and sources of toxicity information to inform EPA decisions to group and prioritize the thousands of PFAS that exist

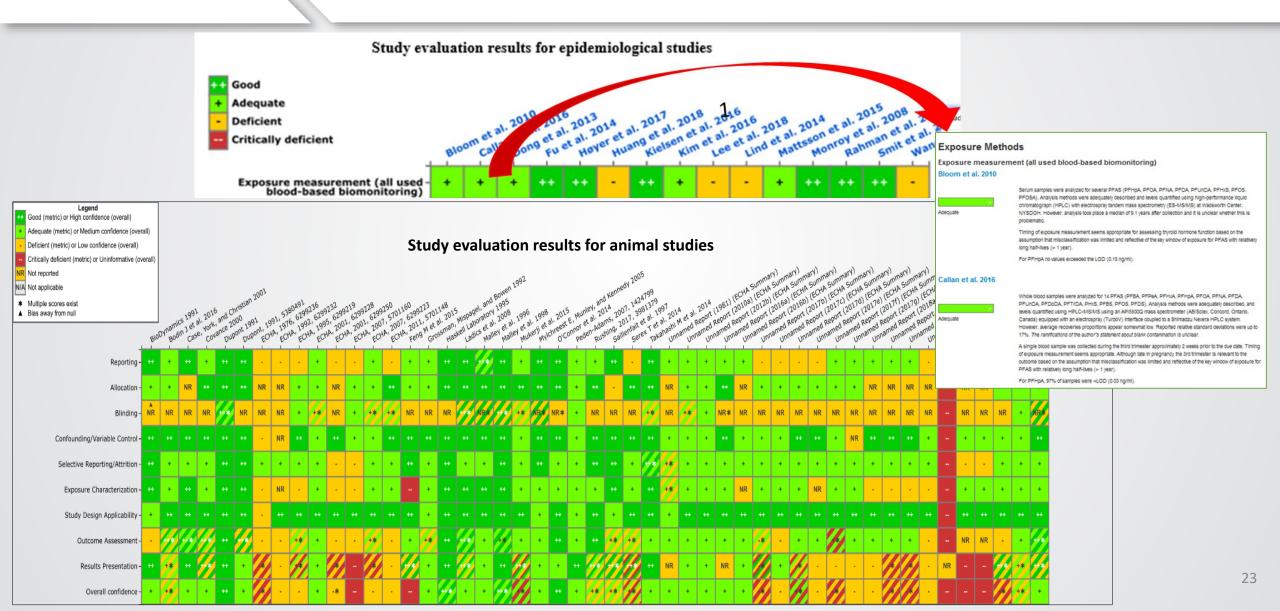
Interactive Displays: Categorize Studies

Health Assessment Workspace Collaborative [HAWC] Literature Flow Diagrams (Interactive, *click* to see more)


EPA

Interactive Displays: Literature Inventory

Epidemiological Studies


SEPA

Study Details						Chemicals Evaluated - by D	TXSID	
Health System	Study Design	Route	Species	Sex	Short Citation	DTXSID3038939	2	
Cancer	chronic	inhalation	rat	both	Haskell Laboratories (1995)	DTXSID3047558	8	
					Malley et al. (1998)	DTXSID5027140	1	

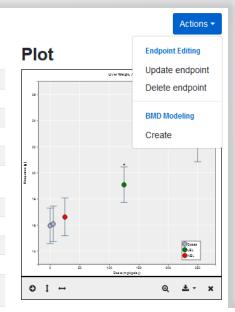
22

Interactive Displays: Study Evaluation

EPA

Interactive Displays: Data Extraction

Animal studies data extraction (example)


Chemical	Endpoint	Study	Animal Description	Route	Exposure Duration	
2 Fluorotelomer alcohol	Liver Weight, Absolute	Mukerji et al. 2015	P0 Mouse, Crl:CD-1(ICR)BR (우)	oral gavage	14d pre-mating, 14d mating, gestation, lactation	•
			P0 Mouse, Crl:CD-1(ICR)BR (්)	oral gavage	109 d (premating-sacrifice)	••••• (
		Serex T et al. 2014	Rat, Crl:CD(SD) (♀)	oral gavage	90 d	
			Rat, Crl:CD(SD) (ீ)	oral gavage	90 d	•• <u>^</u>
		Unnamed report (2005a) (ECHA summary)	Rat, Crl:CD(SD) (ೆ⊋)	oral gavage	28 d	++
	Liver Weight, Relative	Mukerji et al. 2015	P0 Mouse, Crl:CD-1(ICR)BR (♀)	oral gavage	14d pre-mating, 14d mating, gestation, lactation	••
			P0 Mouse, Crl:CD-1(ICR)BR (්)	oral gavage	109 d (premating-sacrifice)	▲
		ECHA, 2007, 5701160	Rat, Crl:CD(SD) (♀)	oral gavage	28d (1dose/d)	*• •••
		Serex T et al. 2014	Rat, Crl:CD(SD) (♀)	oral gavage	90 d	•• <u>A</u>
		ECHA, 2007, 5701160	Rat, Crl:CD(SD) (♂)	oral gavage	28d (1dose/d)	** *
		Serex T et al. 2014	Rat, Crl:CD(SD) (ீ)	oral gavage	90 d	<u> </u>
2 Fluorotelomer methacrylate	Liver Weight, Absolute	ECHA, 2007, 6299223	Rat, Crl:CD(SD) (♀)	oral gavage	28d (1dose/d)	**
			Rat, Crl:CD(SD) (ீ)	oral gavage	28d (1dose/d)	••
	Liver Weight, Absolute, Recovery	ECHA, 2007, 6299223	Rat, Crl:CD(SD) (♀)	oral gavage	28d (1dose/d)	••
			Rat, Crl:CD(SD) (්)	oral gavage	28d (1dose/d)	++
	Liver Weight, Relative	ECHA, 2007, 6299223	Rat, Crl:CD(SD) (♀)	oral gavage	28d (1dose/d)	++
			Rat, Crl:CD(SD) (්)	oral gavage	28d (1dose/d)	••
	Liver Weight, Relative, Recovery	ECHA, 2007, 6299223	Rat, Crl:CD(SD) (♀)	oral gavage	28d (1dose/d)	++
			Rat, Crl:CD(SD) (්)	oral gavage	28d (1dose/d)	++
rifluoroacetic acid	Liver Weight, Absolute	Unnamed Report (2010a) (ECHA Summary)	P0 Rat, Crl:CD(SD)IGS BR (♀)	oral gavage	GD 6-19	+++ 🔺
		Unnamed Report (2012b) (ECHA Summary)	P0 Rat, Crl:CD(SD)IGS BR (♀)	oral gavage	up to 57 d (premating-lactation)	•••
			P0 Rat, Crl:CD(SD)IGS BR (්)	oral gavage	38 d (premating-termination)	+• 🔺
		Saillenfait et al. 1997	P0 Rat, Sprague-Dawley (2)	oral gavage	GD 10-20	• <u> </u>
			F1 Rat, Sprague–Dawley (♂♀)	oral gavage	GD 10-20	→→→
		Unnamed Report (2016a) (ECHA Summary)	Rat, Wistar Rj:Wi (lops Han) (♀)	oral diet	90 d	•
			Rat, Wistar Rj:Wi (lops Han) (♂)	oral diet	90 d	•
	Liver Weight, Relative	Unnamed Report (2012b) (ECHA Summary)	P0 Rat, Crl:CD(SD)IGS BR (우)	oral gavage	up to 57 d (premating-lactation)	•••
			P0 Rat, Crl:CD(SD)IGS BR (්)	oral gavage	38 d (premating-termination)	•• 🔺
		Saillenfait et al. 1997	P0 Rat, Sprague-Dawley (♀)	oral gavage	GD 10-20	• <u> </u>
			F1 Rat, Sprague–Dawley (ở♀)	oral gavage	GD 10-20	••••
		Unnamed Report (2016a) (ECHA Summary)	Rat, Wistar Rj:Wi (lops Han) (우)	oral diet	90 d	•
			Rat, Wistar Rj:Wi (lops Han) (♂)	oral diet	90 d	•••

SEPA

	Liver We	eight, Absolute				
	Endpoint D	Details				
no apparent trea	hdpoint name	Liver Weight, Absolute				
treatment-related	System	Hepatic				
V treatment-related	Organ	Liver				
	Effect	Clinical Observation				
_	Effect subtype	Organ Weight				
	Diagnostic description	Liver, Weight				
	Observation time	90 d				
_	Data reported?	✓				
_	Data extracted?	✓				
	Values estimated?	-				
	Location in literature	Table 5				
	Expected response adversity direction					
-	NEL	25 mg/kg-day				
-	LEL	125 mg/kg-day				
_	Monotonicity	-				
	Trend result	not reported				
→ -▲	Results notes	"Following 90 days of dosing, effects on organ weights were present in the testes, liver and kidney of males (Table 5) and in livers and kidneys				
						

400 500 600 700 800 900 1,0001,100

Dose (mg/kg-day)

Dataset

Dose (mg/kg- day)	Number of Animals	Response (g)	Standard Deviation
0	10	15.94	1.9
5	10	16.09	1.9
25ª	10	16.62	2.02
125 ^{b,c}	10	19.09	1.89
250 ^b	8	22.84	2.39
3 10 10 10 10 10			

^a NEL (No effect level) ^b Significantly different from control (p < 0.01)

^c LEL (Lowest effect level)

Summary of SEM Findings to Date

Many PFAS are data poor

30 FM

- PFAS 150: 136 animal studies for 35 PFAS, 166 human studies for 11 PFAS
- PFAS 430: searched 341 unique chemicals (not in PFAS 150); 142 had data
- PFAS 9000: 9,266 PFAS chemicals were searched; 416 have records

Very few inhalation toxicity studies available for any PFAS

• ORD exploring approaches for extrapolating from oral administration studies

Current Status on SEMs Next Steps

PFAS 150: Manuscript submitted September 2021

PFAS 430: Manuscript planned for late FY22

- 119 animal bioassay studies undergoing extraction and study evaluation; 48 human studies identified
- Animal bioassay results will be included in CCTE Chemicals Dashboard

PFAS 9000: Screening underway

• 26,000 records being screened at title and abstract level

Set EPA

Contributors

Andrew Kraft, PhD, IRIS PFAS Team Lead

Senior Science Advisor, CPHEA/CPAD/ORD Kraft.andrew@epa.gov

Kris Thayer, PhD Director, CPHEA/CPAD/ORD Thayer.kris@epa.gov

Subscribe for updates:

https://www.epa.gov/risk/how-subscribe-health-and-environmental-risk-assessment-bulletin https://www.epa.gov/iris/how-subscribe-integrated-risk-information-system-bulletin

ORD PFAS Assessment Product Leads

PFBA Chemical Managers	Allen Davis	Michele Taylor
PFBS Chemical Managers	Beth Owens	Jason Lambert
PFHxA Chemical Managers	Michelle Angrish	Laura Dishaw
PFDA Chemical Managers	Luci Lizarraga	Phillip Kaiser
PFHxS Chemical Managers	Ingrid Druwe	Xabier Arzuaga
PFNA Chemical Managers	Pam Noyes	Johanna Congleton
Epidemiology Lead	Beth Radke	
Pharmacokinetics Lead	Paul Schlosser	
Dose-Response Leads	Allen Davis	Jay Zhao
Systematic Evidence Maps	Avanti Shirke	Beth Radke
	Laura Carlson	Amanda Persad
Project Manager	Vicki Soto	