Low-Current Arcing Detection and Location for Wildfire Mitigation

> Jhi-Young Joo, Ph.D. joo3@llnl.gov Lawrence Livermore National Laboratory

Office of Electricity

PNNL is operated by Battelle for the U.S. Department of Energy

Fires caused by electric equipment

• **Impacts** can be catastrophic

Causes

- Foreign object (e.g., vegetation) contact
- Conductor slapping
- Broken conductor
- Equipment failure

Challenges

- Traditional fault detection and protection scheme
- Complex distribution systems

Mitigations

- Vegetation maintenance
- Fire monitoring
- Covered conductors/undergrounding
- Novel fault detection strategies

Dixie Fire, 2021

Detect early signs of failure (arcing) with highresolution measurements

Digital fault recorder at a distribution substation Photo courtesy of Southern California Edison Data source: DOE Grid Event Signature Library (GESL) https://gesl.ornl.gov

Collaborative effort

Lawrence Livermore National Laboratory

Lead

Power engineering and data analytics

Lab partner

analytics

- DOE National Laboratories
- Utility
- Vendors

An EDISON INTERNATIONAL[®] Company

Utility partner

Data analytics and field expertise

Vendors

Signal processing and

Simulations; Advisory

Classification of arcing segments ~90% accuracy tested with ground-truth datasets

Application to utility data

 Training datasets from GESL

t-SNE plot of the feature vectors (GESL data, **15,360 Hz** samples)

t-SNE plots of the feature vectors (SCE data, 9,600 Hz samples)

Thank you

Office of Electricity

