
Page 1

University of Washington Hydrology Group

Session 1: Creation of Input Files

Download the tutorial.tar.gz file from the dhsvm ftp site

 ftp://ftp.hydro.washington.edu/pub/dhsvm/

 To access through netscape, type:
 unix% netscape &

 Select tutorial.tar.gz and save it to your working directory.

Unzip and untar the file
 unix% gunzip tutorial.tar.gz
 unix% tar -xvf tutorial.tar

 This should expand into the following directory structure:

 tutorial/
 arcinfo.tar.gz
 configfiles/
 metfiles/
 output/
 GMTscripts/
 programs/
 source/
 mwm/
 dhsvm_2.0.1.tar.gz

Unzip/untar the files in the arcinfo database
 unix% cd tutorial
 unix% gunzip arcinfo.tar.gz
 unix% tar -xvf arcinfo.tar

 This should expand into the following directory structure:
 arcinfo/
 rainysoil/
 rainyveg/
 rainydem/
 rainymask/
 roads/
 rainy10m/
 amlscripts/
 info/

Run arc/info and view database files

Page 2

University of Washington Hydrology Group

 Arc/Info only runs on one of our computers (plane2), so here are our system-specific
commands for running Arc/Info.

 unix% xterm & <switch to new window>
 unix% ssh plane
 plane% cd tutorial/arcinfo/
 plane% /usr/local/bin/setup owclient arcinfo81
 plane% arc

 View database files: rainysoil, rainyveg, rainydem & rainymask

 The mask file requires data in character format. Because -9999, the standard no data
designation, does not fit in the storage space allotted for a character, it must be replaced with
zero for no data.

 Convert NODATA from -9999 to 0 in the mask file:

 Arc: grid
 Grid: rainymasks = con (isnull (rainymask) , 0 , rainymask)
 Grid: quit

Export soil, vegetation, mask and dem files as ascii grids
 Arc: gridascii rainysoil rainysoil.txt
Repeat this command for each of the four files. Note: the
mask grid is now named rainymasks
 Arc: quit

Convert grids to binary
 Since Arc/Info runs on a SUN and we are running on pc's (different byte order), you must
convert the grids to binary on your local machine (i.e. go back to your home window).

 Remove the headers from the ascii files:

 unix% cd tutorial/arcinfo

 If necessary, make the following script executable:
 unix% chmod 755 ../programs/rmhdr.scr
unix% ../programs/rmhdr.scr

 Only use this script once. Multiple uses will cause errors, as it removes the first six lines of
each file.

 Compile the utility program myconvert.c:

 unix% cd tutorial/programs/

Page 3

University of Washington Hydrology Group

 unix% gcc myconvert.c -lm -o myconvert

Find the number of rows and columns in the input files:

unix% more rainyhdr.txt

This command opens the header removed from the ArcInfo files. The first two columns are
the number of rows and columns in the file.

 Use myconvert to create dhsvm binary input grids:

 usage: myconvert source_format target_format source_file target_file number_of_rows
number_of_columns

 unix% myconvert ascii char ../arcinfo/rainymask.txt
../arcinfo/rainymask.bin 52 67

Repeat for each of the map files, changing the target format as follows:
 mask = char
 dem = float
 soil = char
 veg = char

You have now created a .bin file corresponding to each input file within the tutorial/arcinfo/
directory.

Create model states
 Compile the MakeModelStateBin.c:

 unix% make -f Makefile.ModelState

 Usage: MakeModelState <infofile>
 The info file MUST contain the following information:
 - path for output file
 - date for the model state, in mm/dd/yyyy-hh
 - number of rows (ny) and number of columns (nx)
 - maximum number of vegetation layers
 - rain interception in m for each vegetation layer
 - snow interception in m for top vegetation layer
 - snow cover mask
 - number of days since last snow fall
 - snow water equivalent in m
 - liquid water content in m of bottom layer of snowpack
 - temperature in C of bottom layer of snow pack
 - liquid water content in m of top layer of snowpack
 - temperature in C of top layer of snow pack

Page 4

University of Washington Hydrology Group

 - cold content of snow pack
 - maximum number of root zone layers
 - volumetric soil moisture content for each layer
 (including the layer below the lowest root zone layer)
 - temperature in C at soil surface
 - soil temperature in C for each root zone layer
 - ground heat storage
 - runoff

 InititalState.txt provides a sample input file set up for Rainy Creek, assuming no
interception storage, no snow for 210 days and 35% volumetric soil moisture in all layers.

Run the program
 unix% MakeModelStateBin InitialState.txt

 This will create the Interception, Snow and Soil state files for the date specified in
InitialState.txt
 unix% mv *State* ../modelstate

Page 5

University of Washington Hydrology Group

Session 2: Stream, Soil and Road Inputs

 Go back to your plane2 window:

 Compile required programs (fixroads.c and AddAat2.java)
 plane% cd /tutorial/programs/
 plane% gcc fixroads.c -lm -o fixroads
 plane% javac AddAat2.java Aat.java AatError.java
 plane% cd ../arcinfo/
 plane% arc

 Set the path for aml scripts:
 Arc: &amlpath amlscripts/

Within the amlscripts/ directory are scripts that create
stream and soil input files for DHSVM.

Create stream and soil inputs

The first script we will run is the createstreamnetwork script which creates a soil depth grid
and stream network files.

The usage of the script is as follows: STREAMNETWORK <dem> <wshed> <soildepth>
<stream network> <MOUTH|MASK> {source area} {min depth} {max depth}

 Arc: &run createstreamnetwork rainydem rainymask soild streams
MASK 100000 .76 1.5

 Note: all grids should have same domain and resolution

dem: a grid of basin elevations
wshed: EITHER a basin mask file, or a grid designating the location of the basin mouth,
as indicated by the keyword MOUTH | MASK, if MOUTH is specified, the mask file
will be created.
soild: grid of soil depth, if it doesn't exist it will be created as a function of cumulative
drainage area and slope, min and max depth must then be specified.
streams: an arc coverage of stream locations, if it doesn't exist the coverage will be
created using the specified constant threshold area (source area)
{min depth} and {max depth} are the minimum and maximum soil depths for the soil
depth file.

 You will be prompted to see if you want to continue. Type y.

Page 6

University of Washington Hydrology Group

 This step creates the files stream.network.dat and stream.map.dat needed by DHSVM.

Create road inputs
 This step creates the files road.network.dat and road.map.dat that are needed by DHSVM.

 usage: ROADNETWORK <dem> <soildepth> <road network>

where <dem> is the dem grid, <soildepth> is the soil depth grid created in the previous step,
and <road network> is an existing arc coverage within the arcinfo directory.

 Arc: &run createroadnetwork rainydem soild roads

 You will be prompted to see if you want to continue. Type y.

Designate stream save indicator

We want to save the output at the final stream segment within the stream network. This is
designated within the file /arcinfo/stream.network.dat with a value of -1 in the sixth column.
 Routing results for this stream segment will be placed in the stream output file if the
keyword SAVE appears in the last column. Add SAVE "RAINY CREEK" following the last
column of Rainy Creek, stream segment 1. To properly run the model, the value of -1 in the
stream.network.dat file should be replaced with 0.

 unix% xemacs &

Within xemacs, open stream.network.dat and make the required
changes. Save the file and exit xemacs.

Export soildepth grid and convert to binary

The soil depth file is required to run DHSVM. Therefore, we need to output the ArcInfo grid
to a text file and convert it to binary. This is done in the same manner as with the dem, soil,
veg, and mask files in Session 1.

export the grid to a text file
 Arc: gridascii soild soildepth.txt

Remove the header
 On freebsd machine:
 unix% cd ../arcinfo
 unix% tail +7 soildepth.txt >! temp1
 unix% rm soildepth.txt
 unix% mv temp1 soildepth.txt

Page 7

University of Washington Hydrology Group

Convert to binary
 unix% ../programs/myconvert ascii float soildepth.txt
soildepth.bin 52 67

Create road and stream class files
 These are ascii files that contain look-up tables of channel hydraulic properties for each
road or stream class. The following columns are necessary for each channel class:
 <Channel Class> <Hydraulic Width (m)> <Hydraulic Depth (m)> <Manning's friction
coefficient> <Max Infiltration (m/s)>

 The channel hydraulic width and depth are currently hard-wired in the createroadnetwork
and createstreamnetwork scripts, as follows:

Roads:
 #Class Width Depth
 1 0.5 0.5
 2 0.5 0.5
 3 0.25 0.25
 4 0.25 0.25
 5 0.25 0.25
 6 0.25 0.25
 7 0.25 0.25
 8 0.25 0.25
 9 0.25 0.25

 Streams:
 #Class Width Depth
 1 1.5 1.0
 2 2.0 1.5
 3 3.0 5.0
 4 5.0 7.5
 5 2.0 1.5
 6 5.0 4.0
 7 7.5 7.0
 8 10.0 10.0
 9 15.0 13.0

 Edit these tables (road.class.dat and stream.class.dat) in emacs to add the friction and
infiltration columns.

 unix% xemacs &

Open each file within xemacs and add the needed values.

Page 8

University of Washington Hydrology Group

 The maximum infiltration rate is not used for the stream class file, but it must be specified
as a place holder. Manning's roughness can vary from 0.025 to 0.15 for natural channels.
Infiltration into the roads may be assumed to be 0 m/s for a starting point (i.e. 100%
impervious).

Create initial channel state files
 If necessary, make the script MakeChannelState.scr executable:

 unix% chmod 755 MakeChannelState.scr

 usage: MakeChannelState.scr <StreamNetworkFile> <InitialDepth> <Output Date String:
MM.DD.YYYY.hh.mm.ss>

 To run the script (calculates volume of water in each channel segment, given an assumed
uniform initial depth in meters):

 MakeChannelState.scr ../arcinfo/stream.network.dat 0.25
10.01.1990.03.00.00

Session 3: Running the model

Untar and compile the source code
 unix% cd source/
 unix% gunzip dhsvm_2.0.1.tar.gz
 unix% tar -xvf dhsvm_2.0.1.tar
 unix% cd dhsvm_2.0.1/
 unix% make

Complete the configuration file
 unix% xemacs &

The input file resides in the /configfiles/ directory and is
named INPUT.rainycr. Open this with xemacs and edit the
required parameters.

Look through the file and fill out:
path names
DHSVM requires path names for all of the input files that were just created. Therefore, edit
all of the path names to the binary files created such as rainydem.bin.

Model Start = 10/01/1990-03
Model End = 10/01/1994-03
Number of Model States: 1

Page 9

University of Washington Hydrology Group

Model State Date 1 = 10/01/1994-03

Run the model

From the /source/dhsvm_2.0.1/ directory, type the following command to run DHSVM:
unix% DHSVM ../../configfiles/INPUT.rainycr

At this point, if you missed one or two of the proper path names within the INPUT file,
DHSVM will inform you that a file was not found and exit. If this happens, simply change
the path name in INPUT.rainycr of the file DHSVM is missing and re-run the program.

Page 10

University of Washington Hydrology Group

Session 4: Model Output and Calibration
We will now make another model run. This would normally overwrite the output from the
previous run; therefore we will copy the files from the previous run to a new directory,
output1.

Copy the model state files and backup previous output

unix% cd tutorial/
unix% cp output/*1994* modelstate/
unix% mv output output1
unix% mkdir output
unix% mkdir output/GMTscripts
unix% mv output1/GMTscripts/* output/GMTscripts

For the next run, we will output maps of variables of your choosing. We also want to output
the model state for 10/01/1995-03.

Edit the configuration file

unix% xemacs &

Change:
Model Start = 10/01/1994-03
Model End = 10/01/1996-03
Model State Date 1 = 10/01/1995-03

This will output the model state on November 1, 1995 at 3 a.m.

Next, fill out the Model Maps Section. Refer to the list of model variable reference
numbers at
http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM/output_varid.htm for the
Map Variables. (Map 512 is not working.) Choose the number of variables to output, the
date that you wish to output, and the variable number. At least one of them should be soil
moisture for the following exercise.

Run the model
unix% cd source/dhsvm_2.0.1
unix% DHSVM ../../configfiles/INPUT.rainycr

Use GMT to view output hydrographs/basin average time series
 unix% cd ../../output/GMTscripts

 unix% plot_flow.scr # Produces a graph of the Rainy Creek flow

(plot_flow.ps)
unix% ctrl-c <to close ghostview window>

Page 11

University of Washington Hydrology Group

unix% plot_precip.scr # Produces a graph of precipitation over the basin
(plot_precip.ps)

 unix% plot_SWE.scr # Produces a graph of snow water equivalent
(plot_swe.ps)

Each of these can also be viewed in ghostscript, e.g.:

 unix% gs plot_flow.ps

Use GMT or ArcInfo to view output spatial images
 The script plot_modelmap.scr allows you to plot maps, by changing the script slighty. It
works if you designated only one date per map number. For each map you need to designate
the map name, the name of the output file, the name of the input file and the name of the
color plot table (cpt). Create the Soil Moisture Map first.

unix% xemacs &

Edit plot_modelmap.scr so that the Soil Moisture map name, output file, input file and cpt
file do not have a “#” in front of it. Add a “#” in front of all the other map file names. Save
the file, but leave it open. The paths to each file may require modification.

 unix% plot_modelmap.scr
unix% ctrl-c <to close ghostview window>

Repeat these steps for any other maps for which you created files.

 Each of these can also be viewed in ghostscript, e.g.:

 unix% gs Map.1.Soil.Moist.ps

Experiment with adjusting calibration parameters and re-run
 Open the configuration file in emacs and edit the parameters
unix% xemacs &

Run alternate road or vegetation scenario

Scenario 1: No Roads
 Open configuration file in emacs and edit Road Network Section by commenting out the
three path and file names (place a # before each Road). Note: you must comment out the
entire line containing the path name. Otherwise, DHSVM will not run.

unix% xemacs &

Page 12

University of Washington Hydrology Group

Scenario 2: New Vegetation Scenario
Open the rainyveg.txt in emacs and change all the vegetation to type 7 (Woodland Grass) or

type 8 (Closed Shrub).
unix% xemacs &

Remove the header:
 unix% cd /arcinfo
 unix% tail +7 rainyveg.txt >! newrainyveg.txt
Convert to binary:
 unix% /programs/myconvert ascii char newrainyveg.txt
rainyveg.bin 52 67
 Open the configuration file in emacs and edit the file names
unix% xemacs &

Save the previous output and rerun DHSVM
unix% mv output output2
unix% mkdir output
unix% cd ../../source/dhsvm_2.0.1
unix% DHSVM ../../configfiles/INPUT.rainycr

 Save the output and rerun DHSVM with a different scenario.

