Environmental Science Nano

Tatiana G. Levitskaia, Sayandev Chatterjee et al.

Inorganic tin aluminophosphate nanocomposite for reductive separation of pertechnetate

Volume 3 | Number 5 | October 2016 | Pages 929–1224
Inorganic tin aluminophosphate nanocomposite for reductive separation of pertechnetate

Tatiana G. Levitskaia,*a Sayandev Chatterjee,*a Natasha K. Pence,a Jesus Romero,a Tamas Varga,b Mark H. Engelhard,b Yingge Du,c Libor Kovarik,b Bruce W. Arey,a Mark E. Bowdenb and Eric D. Walterb

Pertechnetate (TcO₄⁻) is the most abundant chemical form of the radioactive contaminant ⁹⁹Tc present in legacy nuclear waste streams and in the subsurface of nuclear waste storage sites. One proposed remediation approach is reductive separation of TcO₄⁻ and sequestration in low-temperature waste forms. The development of relevant technologies has been slow due to the lack of reductive materials that retain their functionality and are otherwise suitable for application in multicomponent and aggressive media such as highly alkaline, brine-like solutions typifying nuclear tank wastes. In this work, a tin-based reductive material was prepared, and its potential utility for the separation of TcO₄⁻ from alkaline nuclear wastes was demonstrated. This material consists of Sn(II/IV) phosphate supported by a polycrystalline aluminophosphate matrix. The aluminophosphate matrix is inert to the reaction conditions and offers the benefits of high stability and low solubility in concentrated alkaline solutions. This Sn(II/IV)-based material exhibits a high loading capacity for Tc and selectively removes a major fraction of TcO₄⁻ from the tank waste supernatant simulant, which contains 7.8 M total sodium and 2.43 M free hydroxide concentrations. Observed Kₐ values for Tc are about 13 000 and 2200 mL g⁻¹ for simulant solutions containing no or 33 mM Cr(VI), respectively, positioning Sn(II/IV) aluminophosphate among the best-performing reductive sorbents for TcO₄⁻ developed to date. This advanced behaviour is attributed to the synergistic combination of the Sn(II/IV) aluminophosphate functionalities. The presence of Sn(II/IV)-rich fibres facilitates the reduction of TcO₄⁻ to Tc(IV), which is embedded along the fibre branches. Importantly, the Sn(IV)-containing inert polycrystalline matrix also incorporates Tc(IV) which triggers its crystallization to cassiterite SnO₂ phase and stabilizes Tc(IV) in the polycrystalline matrix.

Nano impact

Tc-99 is a radioactive contaminant of significant environmental concern. The total Tc inventory continues to increase worldwide due to generation of nuclear power, and methods are needed for its separation from multi-component matrices and stabilization for long-term storage. In order to address this need, we describe a novel redox active Sn(II/IV) aluminophosphate nanocomposite that can reductively separate TcO₄⁻, the most common chemical form of Tc, converting it to less mobile Tc(IV) and providing a robust platform for potential immobilization.

Introduction

Technetium-99 (Tc), a high-yield fission product of uranium-235 and plutonium-239, has been generated in significant quantities by nuclear weapon production during the Cold War.¹ The total Tc inventory continues to increase worldwide due to the generation of nuclear power, driving interest to advance the understanding of Tc chemistry and to reduce the uncertainty associated with its long-term environmental impact. Because of its long half-life (213 000 years),² Tc contributes significantly to the radiotoxicity of nuclear wastes (representative examples being the U.S. Department of Energy (DOE) Hanford and Savannah River Sites) and affects waste processing and remedial decisions. It exists predominantly in the liquid fractions of alkaline tank waste, generally in the anionic form of pertechnetate, TcO₄⁻. The high aqueous solubility of TcO₄⁻ coupled with its weak retention in soils and minerals results in its mobile behaviour in the subsurface,³
making immobilization of TcO_4^- in cementitious or mineral waste forms for long-term storage difficult. Reductive separation of TcO_4^- and the resulting sequestration of the much less soluble Tc(IV) product is a commonly considered remediation strategy. Despite extensive past investigations of the $\text{Tc(VII)}/\text{Tc(IV)}$ couple in presence of different reducing systems such as zero valent iron, $\text{Fe(II)}/\text{goethite}$, magnetite, Fe(II)-bearing oxides, and sulfides, limited progress has been achieved in developing reductive materials for practical separation and sequestration of TcO_4^- from solutions high in ionic strength and alkalinity typifying nuclear waste matrices.

Divalent tin, Sn(II), is known for its strong reductive character, and SnCl_2 is widely used for reduction of 99mTcO_4^- in physiological buffer media during the preparation of 99mTc-labeled radiopharmaceuticals. Similarly, SnCl_2 has demonstrated quantitative reduction of TcO_4^- and precipitation of the resulting insoluble Tc(IV) at high pH. A recent systematic investigation of the $\text{Tc(VII)}/\text{Tc(IV)}$ couple in chloride solutions of variable concentration concluded that SnCl_2 is an effective reductant for TcO_4^- and completely converts it to Tc(IV), even at high ionic strengths and a pH of 14.5. However, the applicability of SnCl_2 for separation purposes is limited because of its relatively high aqueous solubility, and the requirement of an additional step for the removal of the reduced Tc(IV).

In an effort to combine reductive and sorptive functionalities in one material,uint Sn(II) apatite $\text{Sn}_5(\text{PO}_4)_3(\text{F, Cl, OH})$ was designed, albeit through a complicated synthetic pathway. This material demonstrated quantitative removal of Tc from dilute solutions, even outperforming SnCl_2; however, its effectiveness was significantly reduced in the alkaline brine-like solution simulating nuclear waste, the diminished effectiveness attributed to the presence of Cr(III) interfering with the reduction of Tc(VII) by Sn(II). A similar approach has been explored using a nanoporous stannous phosphate material, which was shown to effectively reduce and sequester not only TcO_4^- but also other reductio-sensitive contaminants including Np(V), Th(IV), and Cr(VI) from dilute bicarbonate media. While this material is promising, it lacks selectivity for Tc(IV), which might disqualify it for application in the complex media that characterize tank waste supernatants.

In an effort to address the practical drawbacks of Sn-based materials while preserving their promising qualities, the objective of this work was to develop a Sn-containing composite material offering the synergistic benefits of reductive uptake of TcO_4^- from a complex, alkaline, high ionic strength matrix and selective association of reduced Tc(IV) with the material. It was well established that any precipitated Tc(VII) deposited on surfaces free to the atmosphere is highly susceptible to reoxidation back to the mobile TcO_4^- state. A way to prevent the reoxidation of Tc(VII) is to increase its oxidation potential either through a strong chemical association of Tc(VII) with the sorbent material or by incorporating it as a thermodynamically stable phase integral to the sorbent matrix, such that it is more resistant to oxidation compared to free Tc(VII). Recent work has demonstrated that Tc(VII) obtained from reduction of TcO_4^- by goethite-based Fe(II) in solution and subsequently incorporated in the octahedral site of goethite by substituting Tc(IV) for Fe(II) is resistant to reoxidation when exposed to oxidizing conditions. We hypothesize that a composite system containing mixed Sn-containing phases benefits from a two-in-one functionality, where Sn(II) serves as a reductant for TcO_4^- while the presence of an inert crystalline phase serves to integrate Tc(IV) in a way that limits the presence of Sn phases possessing high complementarity for Tc(IV) can be uniquely advantageous.

One such phase is cassiterite, SnO_2 with a rutile structure; literature data suggest that it is possible for Tc(IV) dioxides to (a) adapt a cassiterite structure as observed in the case of TiO_2 (ref. 18) or (b) be incorporated within a rutile structural framework as observed with TiO_2. In this work, to obtain a sorbent framework suitable for the separation of the sequestered Tc(IV), $\text{Sn(II)}/\text{(IV)}$ is combined with an aluminophosphate supporting matrix. The selection of this matrix is based on recent studies demonstrating that incorporation of substantial quantities of both Sn(II) and Tc(IV) within the aluminophosphate framework can be achieved (ref. 20 and the references therein). Additional considerations supporting this choice are the high stability and low solubility of the aluminophosphate phase in concentrated alkaline solutions as well as its lack of interfering redox activity. The obtained Sn(II)/IV) aluminophosphate-supported composite (referred to in the text as Sn-Al-PO_4) was structurally characterized before and after reductive uptake of TcO_4^-, and its selectivity over interfering redox species, most notably Cr(III), was evaluated using a multicomponent, brine-like, highly alkaline solution.

Experimental

Chemicals and materials

Radiation safety disclaimer! Technetium-99 has a half-life of 2.12 × 10^7 years and emits a low-energy (0.292 MeV) β particle; common laboratory materials provide adequate shielding. Normal radiation safety procedures must be used at all times to prevent contamination.

$\text{SnCl}_2\cdot2\text{H}_2\text{O}$ was purchased from JT Baker. All other chemicals (reagent grade) were purchased from Sigma Aldrich or Baker & Adamson Chemicals and used without further purification. Deionized (DI) water was used for the preparation of the aqueous solutions. NH_4TcO_4 was obtained from in-house stocks available at the Radiochemical Processing Laboratory at Pacific Northwest National Laboratory, WA, USA.

Solution preparation. The affinity of the Sn–Al-PO_4 composite towards TcO_4^- and the kinetics of its uptake initially were evaluated from stock solutions prepared by dissolving NH_4TcO_4 in an aqueous solution composed of 2 M NaOH and 2 M NaNO_3. As the composite exhibited favourable uptake of TcO_4^- from these media, uptake kinetics was further
monitored from a TcO$_4^-$-containing Hanford low activity waste (LAW) simulant solution. This simulant was developed based on component concentrations designed to match the output of Hanford Tank Waste Operation Simulator (HTWOS) model runs used previously in support of the River Protection Project System Plan Revision 6 (ref. 21) according to a protocol reported elsewhere. The simulant composition is listed in Table 1. In order to explore the influence of Cr(vi) on TcO$_4^-$ uptake, an alternate version of the same simulant was also prepared where chromate was excluded from the simulant composition.

Sn–Al–PO$_4$ composite synthesis. In a general procedure, 0.38 g (1.01 mmol) of Al(NO$_3$)$_3$·9H$_2$O and 1.48 g (12.34 mmol) of Na$_2$HPO$_4$·7H$_2$O were dissolved in ∼50 mL of deionized water. The solution was stirred for about 15 minutes followed by the addition of 0.68 g of SnCl$_2$·2H$_2$O (3.02 mmol) and 0.26 g of SnCl$_4$·5H$_2$O (0.75 mmol). To the resultant suspension, 0.5 M NaOH solution was added with stirring until a pH of 12.0 was achieved. It is to be noted that the composite chemistry is highly dependent on the pH of the reaction solution and the reaction conditions. Consequently, we observed some variability in the composite and the better performing specimens are reported here. The mixture was transferred to a Teflon-lined autoclave and kept at 140 ± 5 °C for 72 hours to yield the aggregate. The obtained off-white solid was gravity-filtered, washed with excess water until neutral pH of the rinse was achieved, and dried. The elemental analyses of the samples were obtained from electron dispersive spectrometry (EDS) and are summarized in a later section and in Table 2.

Batch contact experiments. The Sn–Al–PO$_4$ composite (25 mg) was suspended in 5 mL of a ∼20 μM (∼2.1 ppm) NH$_4$TcO$_4$ solution in 2 M NaOH/2 M NaNO$_3$ so that the ratio of the solution volume to the weight of the sorbent was 200 mL g$^{-1}$, agitated using a rotator shaker, and the liquid phase was periodically aliquoted after centrifugation (2000 rpm for 15 minutes) for analysis of 99Tc uptake. The batch contacts using LAW simulants were conducted by combining 25 mg of the composite and 25 mL of ∼40 μM NH$_4$TcO$_4$ solution in the LAW simulant (solution-to-sorbent ratio is 1000 mL g$^{-1}$).

Table 1 Composition of the LAW simulant

<table>
<thead>
<tr>
<th>Waste constituent</th>
<th>Average concentration, mol L$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.48</td>
</tr>
<tr>
<td>K</td>
<td>0.06</td>
</tr>
<tr>
<td>Na</td>
<td>7.80</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>0.06</td>
</tr>
<tr>
<td>CO$_3^{2-}$</td>
<td>0.43</td>
</tr>
<tr>
<td>F$^-$</td>
<td>0.05</td>
</tr>
<tr>
<td>NO$_2^-$</td>
<td>0.88</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>2.53</td>
</tr>
<tr>
<td>PO$_4^{3-}$</td>
<td>0.08</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>0.13</td>
</tr>
<tr>
<td>TOC total</td>
<td>0.12</td>
</tr>
<tr>
<td>Free OH</td>
<td>2.43</td>
</tr>
<tr>
<td>Cd</td>
<td>0.000025</td>
</tr>
<tr>
<td>Cr</td>
<td>0.033</td>
</tr>
<tr>
<td>Pb</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

Table 2 Elemental analysis of the marked regions in Fig. 3 for the untreated composite obtained from EDS analyses showing the respective atomic percentages of the elements

<table>
<thead>
<tr>
<th>Region</th>
<th>Atomic percent, %</th>
<th>Region</th>
<th>Atomic percent, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>O</td>
<td>Na</td>
</tr>
<tr>
<td>1</td>
<td>20.2</td>
<td>52.6</td>
<td>1.4</td>
</tr>
<tr>
<td>2</td>
<td>16.3</td>
<td>56.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3</td>
<td>11.3</td>
<td>70.5</td>
<td>0.95</td>
</tr>
<tr>
<td>4</td>
<td>12.6</td>
<td>69.3</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Two types of LAW simulants, containing either 0 or 33 mM Cr(vi), were tested. The kinetics of TcO$_4^-$ uptake was monitored for 24 and 72 hours from 2 M NaOH/2 M NaNO$_3$ and simulant solutions, respectively. At different time points post beginning of the experiment, batch contact samples were centrifuged, and 20 μL of the contact solution was removed for analysis. The concentration of TcO$_4^-$ in the subsamples was quantified by liquid scintillation counting (LSC). For each time point, the solution volume was corrected for the withdrawn aliquot. The distribution coefficient, K_d (mL g$^{-1}$), was calculated using eqn (1),

$$K_d = \frac{C_i - C_f}{C_i} \times \frac{V}{W_c}$$ \hspace{1cm} (1)

where C_i is the initial concentration of pertechnetate in the contact solution, C_f is the Tc concentration of Tc in the solution at time t, V is the volume of the contact solution in milliliters, and W_c is the weight of the dry composite material in grams.

Characterization techniques. The structural and morphological features of the composite materials before and after exposure to TcO$_4^-$ solution in DI water were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM) studies, while the vibrational structure of the composites were evaluated by infrared (IR) spectroscopy. Changes in the metal center chemical environment upon Tc uptake and the Tc oxidation state in the composite matrix were monitored through X-ray photoelectron spectroscopy (XPS), in situ TEM, and electron paramagnetic resonance (EPR) studies. To prepare Tc-loaded samples for diffraction, microscopy and spectroscopic studies, ∼50 mg of the composite material was brought into contact with 1 mL of the 10 mM TcO$_4^-$ solution in DI water under agitation at room temperature. After 24 hours the liquid phase was removed from the sample by centrifugation and decantation, and the loaded composite was rinsed with DI water (5 × 10 mL) and air-dried at room temperature until completely dry. LSC analysis indicated nearly quantitative uptake of Tc by the composite so that the Tc loading of the Sn–Al–PO$_4$ composite was estimated to be 0.2 mmol g$^{-1}$ or 20 mg g$^{-1}$.

FTIR measurements were conducted using a spectrometer (ALPHA model, Bruker Optics) operated with OPUS software (Version 6.5, Build 6.5.92). Samples were run directly on a diamond attenuated total reflectance (ATR) cell. For each
sample, 24 scans with a resolution of 4 wavenumbers (cm\(^{-1}\)) were averaged to give the final spectrum. A background of ambient air was used for all samples.

XRD patterns of the samples were recorded on a Rigaku Miniflex 600 Bragg–Brentano diffractometer equipped with a fixed Cu anode operating at 40 kV and 15 mA. XRD patterns were collected in the 5–100° 2θ-range with 0.02° steps at a rate of 4 s per step. The powders were packed in well in a zero-background plate held within a custom holder with Kapton X-ray windows to prevent spread of radioactive contamination. Phase identification was performed using JADE 9.5.1 from Materials Data Inc. and the 2012 PDF4+ database from ICSD.

XPS was used to identify the oxidation states associated with the solid composites before and after TcO\(_4^–\) uptake. Spectra were recorded using a Kratos AXIS Ultra DLD system equipped with a monochromatic Al Ka X-ray source (1486.7 eV) and a hemispherical analyzer. Samples were mounted using double-sided Scotch brand tape attached to a silicon substrate. The instrument work function was calibrated to give a binding energy (BE) of 83.96 ± 0.1 eV for the Au 4f\(_{7/2}\) line for metallic gold and the spectrometer dispersion was adjusted to give a BE of 932.62 ± 0.1 eV for the Cu 2p\(_{3/2}\) line of metallic copper. High resolution analyses were carried out with an analysis area of 300 × 700 microns using a pass energy of 40 eV with a step size of 0.1 eV. Surface charge was eliminated using a charge neutralizer and data were corrected through referencing the 285.0 eV C 1s peak. The percentages of individual elements detected were determined from the relative composition analysis of the peak areas of the bands on the basis of the relative peak areas and their corresponding sensitivity factors to provide relative compositions. XPS peak fitting was performed using CasaXPS.

SEM analysis was performed using an FEI Quanta 3DFEG Dual Beam microscope operated at 10–20 kV. The samples were prepared by two independent methods; in the first method, the sample particles were dispersed onto carbon tape and coated with ~5 nm of carbon to minimize charge effects. In the second method, samples were mounted on the tape and polished using typical metallographic techniques to avoid colloidal silica from polishing. Compositional analysis was performed using an Oxford 80 mm\(^2\) SDD EDS detector. For quantitative EDS analysis, calculated K\(_f\) factors provided by INCA software were used. No correction for absorption within the specimen was performed. Both secondary electron images (SE) and backscatter electron images (BSE) were recorded.

For TEM analyses separate instruments were used for non-radiological samples and radiological (Tc loaded) samples for ease of operation. The samples free of Tc were analyzed on an FEI Titan 80–300 kV transmission electron microscope at 300 kV. The microscope is equipped with a CEOS aberration corrector for the probe-forming lens, which allows imaging in scanning mode with sub-Ångstrom resolution. Images were acquired on a high angle annular dark field (HAADF) detector. The detection angle was kept 3 times higher than the probe convergence angle of 18 mrad. Compositional analysis was performed using an EDS using high collection angle SSD.
Results and discussion

Characterisation of the Sn–Al–PO₄ composite before TcO₄⁻ uptake

The IR spectrum of the solid Sn–Al–PO₄ composite showed strong bands at ~1065 and ~980 cm⁻¹, which are consistent with the symmetric and asymmetric Sn–O–P stretching vibrations, respectively, suggesting the presence of a mesoporous Sn-based phosphate framework (Fig. S1†). A broad asymmetric band at ca. 3440 cm⁻¹ is due to the νO–H stretching vibration of hydrogen-bonded geminal OH groups and water molecules, and that at 1634 cm⁻¹ corresponds to the bending of water. A similar band was observed by Huang and co-workers for nanolayered, 15 Å, tin phosphate composites. The band at 540 cm⁻¹ consistent with O–P–O bending vibrations that are characteristic of AlPO₄. The X-ray diffractogram of the Sn–Al–PO₄ composite indicates the poor crystallinity of this material (Fig. S2†). Only the SnO₂ (cassiterite) phase could be identified with any certainty, although there are clearly additional diffraction peaks present. These peaks could in part be attributed to an AlPO₄ phase, suggesting that the actual composition could be a combination of these phases. However, the poorly defined diffraction profile did not allow positive identification.

Photoelectron spectroscopy was used to confirm the oxidation states associated with the Sn centres. The Sn region of the photoelectron spectrum of Sn–Al–PO₄ before TcO₄⁻ exposure can be fit by two sets of doublets (Fig. 1). The two low binding energy peaks (3d⁵/₂) are centred at 486.9 eV and 487.9 eV and can be attributed to Sn(II) and Sn(IV), respectively. The intensities of the Sn(IV) peaks are significantly lower than those of Sn(II), indicating the surface of the composite to be primarily dominated by tin in the Sn²⁺ oxidation state. There is an additional low intensity doublet with a 3d⁵/₂ value of 489.1 eV, suggesting the presence of another high oxidation state chemical form of Sn in the composite. While XRD did not give a clear indication of any Sn(II) containing phases, XPS suggests it to be the dominant oxidation state in the material.

Representative SEM images (Fig. 2A) of the composite illustrate a highly amorphous material indicating a large surface area for uptake. A closer inspection of the materials through TEM (Fig. 3) indicates two distinct morphological features within the materials, the general material being characterized by an amorphous matrix impregnated with small islets of crystalline fibers. The amorphous matrix exhibits a highly diffused diffraction and is largely characterized by small two-dimensional lamellar particles, ranging from 30 to 60 nm in edge length. The EDS (Table 2) of the polycrystalline matrix shows the dominance of Sn, associated with a lower quantity of Al. There is a significant amount of P, presumably present as PO₄³⁻. The Sn : Al : P molar ratio in the polycrystalline matrix is 1 : 0.18 : 0.73. This is consistent with the Sn : Al molar ratio of 1 : 0.22 used in the preparation of the material, indicating that nearly all Al used in the synthesis comprises the polycrystalline matrix. The crystalline fibers are characterized by an aggregation of linear wires, each ranging from ~0.6 to 1 μm in length, and display a structured diffraction pattern with d spacing of 6.89 Å. The diffraction data do not match with any of the currently known Sn and/or Al phosphates in the crystal structure database, and further characterization of this phase is a focus of future work. The EDS analysis of the crystalline fibers shows that they are primarily composed of Sn and phosphate with a negligible quantity of Al, the Sn : Al : P ratio being 1 : 0.06 : 0.92.

The EPR spectrum of the powdered off-white composite shows no resonances at room temperature. Taken together,
these results suggest that the Sn–Al–PO₄ composite consists of a multi-component layered, microporous matrix containing a mixture of Sn(II) and Sn(IV) doped with Al, onto which highly crystalline fibers rich in Sn and phosphate are embedded.

Characterization of the Tc-loaded Sn–Al–PO₄ composite

The IR spectrum of the TcO₄⁻-loaded Sn–Al–PO₄ sample is similar to that of the untreated sample showing strong bands corresponding to the symmetric and asymmetric Sn–O–P stretching vibrations at ~1065 and ~980 cm⁻¹ (ref. 23), respectively, as well as the broad asymmetric ν₁SnO stretching vibration at ca. 3440 cm⁻¹ (Fig. S1†). Two noticeable differences in these spectra are (i) the appearance of a new band at 1435 cm⁻¹ in addition to the interlayer water bending band at 1634 cm⁻¹, and (ii) the splitting of the sharp single band at 550 cm⁻¹ into multiple bands.

While no significant differences are observed in the XRD profile of the Sn–Al–PO₄ composite prior and post loading with TcO₄⁻, small changes are seen, which resemble "erosion" of some and evolution of other phases (Fig. S2†). SnO₂ is still the dominant phase, while the other phases that were observed in the untreated composites, are still present. The phases are observed to have smaller crystallite sizes.

X-ray photoelectron spectroscopy measurements demonstrated that a sufficient quantity of Tc was incorporated into Sn–Al–PO₄ to allow quantification of its uptake (Fig. 1 with an estimated 47 mg incorporation of Tc per gram of composite. The Sn 3d region of the photoelectron spectrum of the Tc-loaded Sn–Al–PO₄ composite shows no prominent changes in the respective intensities of the Sn²⁺ and Sn⁴⁺ bands in comparison with unexposed material. This is to be expected because the small fraction of Sn(II) that can be oxidized to Sn(IV) by Tc(IV) is insignificant compared to the overall Sn concentration. It is worth noting that the low intensity doublet with a 3d₅/₂ value of 489.1 eV corresponding to an additional Sn(IV) species does not appear in the Tc-loaded composite. This result is consistent with the transformation of the Sn(IV) phases and enhancement of the cassiterite fraction upon Tc exposure demonstrated by the XRD and TEM measurements. While the exact origin of this Sn species is still under investigation, the fact that the exposure to TcO₄⁻ and its reductive uptake results in the consumption of a Sn species with a higher oxidation state is consistent with the TcO₄⁻ uptake by the composite not being a simple redox process but involving a more complex pathway. No noticeable changes are observed in the Al or P regions of the photoelectron spectra in going from the unloaded to the Tc-loaded sample.

A photoelectron spectrum of the solid NH₄TcO₄ salt was collected to serve as a Tc(VI) reference. The Tc 3d spectrum can be fit by a single doublet with a lower binding energy peak at 259.4 eV corresponding to 3d₅/₂. This value is in good agreement with the NIST standard for Tc(VI) at 259 eV.³²,³³ The Tc 3d spectrum of the Tc-loaded Sn–Al–PO₄ composite exposed to TcO₄⁻ exhibited a profile drastically different from that of the Tc(VII) reference. There are now two sets of doublets with lower binding energies centred at 255.9 eV and 258.2 eV, suggesting a reductive sorption that involves a complete reduction of TcO₄⁻. The doublet with 3d₅/₂ binding energy at 255.9 eV can be assigned to Tc(IV) species,³³ and the second doublet with 3d₃/₂ binding energy at 258.2 eV could arise from a species with an intermediate Tc(IV)/Tc(III) oxidation state as it is positioned between the reported binding energy ranges for Tc(IV) (259.5–259.9 eV) and Tc(III) (256.6–257.6 eV) species.³³,³⁴ The absence of adequate XPS spectral literature data on Tc(III) or Tc(IV) oxides or oxyanions precludes...
assignment of the exact oxidation state associated with this species. Overall, the generation of Tc as predominantly Tc(IV) along with minor Tc(V/VI) species, coupled with complete absence of Tc(III), does indicate the complete reduction of the sorbed TcO₄⁻. It is significant that the spectrum of the exact same sample of Sn-Al–PO₄ composite exposed to TcO₄⁻, taken six months after the exposure, still exhibits the Tc(IV) signal (lower binding energy ~256 eV) with no appearance of a Tc(III) band, suggesting the resistance of the species towards reoxidation to TcO₄⁺. This enhanced stability of the Tc(IV) species is an important observation, as free Tc(IV) is usually susceptible to oxidation to TcO₄⁺ under oxic conditions. It is also important to note that there is a significant loss in Tc photoelectron intensity, which might suggest the Tc migrating from the surface into the sample core.

Representative SEM images (Fig. 2B) of the TcO₄⁻-loaded Sn–Al–PO₄ composite illustrates little islets of aggregation of the crystalline fibers embedded within the matrix. A closer inspection of the exposed composite through TEM (Fig. 4) demonstrates changes in both the matrix and the fibers. Interestingly, representative TEM images of the matrix, which exhibited an amorphous character for the unexposed composite, show the formation of a new, cake-like structure. The selected area electron diffraction (SAED) of the matrix reveals a highly structured diffraction with well-defined d-spacings, indicating an enhancement of crystallinity of the matrix upon uptake of Tc (Fig. 4F). The diffraction pattern can now be accurately fit to a cassiterite SnO₂ crystal structure. However, the cassiterite phase is not the only phase present in the matrix; and (G) SAED of the fibers.

The EPR spectrum (Fig. 5A) of the TcO₄⁻-loaded Sn–Al–PO₄ composite shows no resonances at room temperature. On lowering the temperature to 125 K, a broad new spectrum appears with faint hyperfine resonances corresponding to two sets of equally spaced 10 hyperfine resonances (Fig. 5B); this is suggestive of two different chemical environments, each with a nuclear spin of 9/2. This corresponds to paramagnetic Tc species, and the broad nature of the spectrum with the faint hyperfine features is consistent with a Tc(IV) species. A
further temperature decrease to 2.5 K significantly increases signal intensity while preserving band energy and hyperfine profile (Fig. 5A and S5†). Further, faint hyperfine lines are observed in the low field section (more evident in the first derivative spectrum as shown in Fig. S5A†) which confirms the formation of Tc(iv). These lines are attributed to zero field splitting which is possible with a 3/2 spin of Tc(iv) and not in an S = 1/2 system such as Tc(vi). While observation of Tc(iv) spectra at temperatures higher than 6 K is rare, a prominent Tc(iv) EPR spectrum with resolved hyperfine profile has been reported for polycrystalline K₂[TcF₆]·K₂[PtF₆] mixed crystals at 77 K, which transformed into the broad unresolved signal at room temperature.³⁵

Overall the observed Tc(iv) spectrum is different from that exhibited by Tc(vi) species incorporated within SnO₂ rutile single crystals.³⁶ However, the faint hyperfine profile observed in the low field section resembles that of Tc(iv) in the SnO₂ rutile based on the comparison of the derivatives of our experimental 2.5 K spectrum and of the spectrum simulated using the parameters reported Tc(iv) in the SnO₂ cassiterite (Fig. S5B†).³⁶ The difference between these spectra is attributed to the dissimilar chemical nature of the Sn–Al–PO₄ composite and pure SnO₂ as well as dissimilar experimental protocols for the incorporation of Tc(iv) in these materials resulting in different Tc(iv) products. What is of significant importance is that EPR indicates the presence of two Tc(iv) environmental species, both are different from chemically pure TcO₂·xH₂O,³⁷ presumably due to the different modes of incorporation of Tc(iv) into the composite. This is consistent with the SEM/EDS and TEM results, which show the presence of Tc both in the crystalline fibers and in the bulk matrix. Further, the observation of a Tc(iv) spectrum at temperatures higher than 2.5 K is suggestive of a slower relaxation that can point to these Tc(iv) species having a lower symmetry than symmetric Tc(iv) species such as pure TcO₂·xH₂O.³⁷

Taken together, the diffraction, photoelectron spectroscopy, microscopy and EPR spectroscopy results reveal the ability of the Sn–Al–PO₄ composite to uptake and reduce TcO₄⁻ and to incorporate generated Tc(vi) into two different phases. It was concluded that surface precipitation of Tc(iv) plays only a minor role in this mechanism as no reoxidation of Tc(iv) to Tc(vi) was observed by XPS after storing the Tc-loaded Sn–Al–PO₄ composite for 6 months under ambient aerated conditions. The strong affinity of Sn- and P-rich fibers toward TcO₄⁻ is driven by the redox reaction of Sn(n) with Tc(vi) and the ability to incorporate Tc(vi) within the fibers. It is also worth noting that the observed enhancement of crystallinity of the composite matrix upon reductive TcO₄⁻ uptake as seen in the TEM analyses points to a structural reorganization or phase transformation process. This transformation of the polycrystalline matrix leading to the dominance of the cassiterite phase is not observed when the control composite is exposed to DI water alone but only when it is treated with an aqueous solution of TcO₄⁻. This transformation triggered by the incorporation of Tc is presumably suggestive of the cassiterite recognition of Tc(iv). It has been shown previously that TcO₂ can adapt a rutile structure.¹⁸ While the ionic radius of octahedral Tc(vi) (78.5 pm) is slightly lower than octahedral Sn(vi) (83 pm),²⁸ the highly polarizable nature of Tc(iv) makes it a likely candidate for structural incorporation within frameworks of moderately different sizes.³⁹ As a representative example, while similar differences exist between the ionic radii of Tc(iv) and Ti(iv) (74.5 ppm), the feasibility of Tc(iv) incorporation in the TiO₂

Table 3

<table>
<thead>
<tr>
<th>Region</th>
<th>Atomic percent, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>16.4</td>
</tr>
<tr>
<td>2</td>
<td>17.3</td>
</tr>
<tr>
<td>3</td>
<td>12.5</td>
</tr>
<tr>
<td>4</td>
<td>12.9</td>
</tr>
</tbody>
</table>

| Fig. 5 | (A) Temperature-dependent EPR spectra of the Tc-loaded Sn–Al–PO₄ composite at 125 K (red trace), 75 K (orange trace), 35 K (green trace), 15 K (sky blue trace), 4 K (Persian blue trace), and 2.5 K (black trace). (B) Hyperfine profile extracted from the spectrum obtained at 125 K showing two different sets of 10 resonances corresponding to Tc(iv) marked in black and red dashed lines. |
rutile structure has been demonstrated both by theoretical calculations and experimentally. The detailed investigation of such a mechanism is under way and may have implications for the fabrication of these materials as low-temperature waste forms for Tc. It is worth mentioning that while such recognition has played an important role in the detection of contaminants including the detection of TcO$_4^-$, to date its practical implementation for the reductive uptake of TcO$_4^-$ has not been realized in part because quantitative sequestration of Tc(IV) in such structures as goethite relies on in situ formation of Tc-bearing goethite in the contaminated solution stream and is hard to achieve in the multicomponent process systems. Application of the solid Sn–Al–PO$_4$ composite for Tc separation and sequestration can address this challenge and have implications in the selective reductive removal and long-term storage of TcO$_4^-$ in particular and other redox active contaminants in general.

TcO$_4^-$ uptake kinetics by Sn–Al–PO$_4$ from complex alkaline solutions

The performance of the Sn–Al–PO$_4$ composite for the Tc reductive sorption from high in ionic strength alkaline solutions was evaluated. The kinetics of the TcO$_4^-$ uptake from 2 M NaOH/2 M NaNO$_3$ was monitored for 24 hours. The composite exhibited fast kinetics and high efficiency of uptake, approaching the equilibrium Tc K_d value of \sim13 000 mL g$^{-1}$ at 24 hours and with near-quantitative TcO$_4^-$ uptake (98%) as shown in Fig. 6.

Subsequently, the Sn–Al–PO$_4$ composite was challenged under the LAW simulant conditions. The LAW simulant is a complex mixture of mostly sodium salts with a total Na$^+$ concentration of 7.8 M and a free OH$^-$ concentration of 2.34 M (Table 1). It contains several inorganic anions, which potentially could interfere with Tc incorporation into the composite matrix. A plot of K_d values for the composite, obtained using the LAW simulant in the absence of CrO$_4^{2-}$, is represented as a function of time in Fig. 6. The kinetics of the uptake appeared to be slightly slower in LAW simulant than in the 2 M NaOH/2 M NaNO$_3$ solution. Remarkably, the equilibrium K_d value observed in the LAW simulant (\sim13 000 mL g$^{-1}$) is very similar to that in the 2 M NaOH/2 M NaNO$_3$ solution. At equilibrium, 97% of TcO$_4^-$ was removed from the simulant. This uptake efficiency exhibited by the Sn–Al–PO$_4$ composite far exceeds that of Sn(n)-based hydroxyapatite or Sn(n)-based apatite composites that have been conventionally recommended for TcO$_4^-$ uptake under these LAW simulant conditions, which are representative of tank LAWs.

The observed K_d value is comparable to that shown by potassium metal sulphide (KMS), whose high K_d is attributed to the effectiveness of the sulfide reduction of Tc(VII) to Tc(IV). It should be noted that in the literature experiments the simulant-to-sorbent ratio of 100 mL g$^{-1}$ was employed compared to the much more challenging ratio of 1000 mL g$^{-1}$ utilized in this work.

Slower kinetics and about 6-fold reduction of the equilibrium K_d value to \sim2200 mL g$^{-1}$ are observed in the LAW simulant containing 33 mM CrO$_4^{2-}$ (Fig. 5). At equilibrium, 68% of TcO$_4^-$ was removed from the Cr(VI)-containing simulant. The diminished performance of the Sn–Al–PO$_4$ composite is due to the fact that the highly oxidizing CrO$_4^{2-}$ can disrupt the redox process. Consideration of the standard redox potentials in alkaline media for TcO$_4^-/TcO_2$, $E_0 = -0.74$ V; Sn(OH)$_5^{2-}/HSnO_2^-$, $E_0 = -0.93$ V; and CrO$_4^{2-}/Cr(OH)_3^-$, $E_0 = -0.13$ V (ref. 43) suggests that CrO$_4^{2-}$ can interfere with TcO$_4^-$ reductive sorption in two ways: (i) partially oxidize the Sn(n) centre to Sn(n) before it can react with TcO$_4^-$ and so diminish the overall reductive capacity of the composite or (ii) partially reoxidize the generated Tc(n) back to TcO$_4^-$. The observation that the LAW simulant solution changes color from yellow to green upon contact with the composite supports this hypothesis by indicating the reduction of CrO$_4^{2-}$ to Cr(OH)$_3^-$. Nevertheless, the K_d value of \sim2200 mL g$^{-1}$ determined in the presence of chromate is reasonable for practical removal of TcO$_4^-$.

![Fig. 6](image_url) (A) Kinetics of TcO$_4^-$ removal by Sn–Al–PO$_4$ composite from 2 M NaOH/2 M NaNO$_3$ (purple line and symbols), LAW simulant in the presence of CrO$_4^{2-}$ (blue line and symbols), and LAW simulant in the absence of CrO$_4^{2-}$ (yellow line and symbols). (B) Corresponding semi-logarithmic plots of the TcO$_4^-$ molar concentration in the contact solutions vs. time. Regression analyses for the plots: $\ln[TcO_4^-] = -1.34 \times 10^{-4} t - 3.10$, $R^2 = 0.9995$ (purple line); $\ln[TcO_4^-] = -4.5 \times 10^{-7} t - 3.15$, $R^2 = 0.9967$ (yellow line).
from tank supernatants containing Cr(Ⅵ). The overall observation validates our initial hypothesis that the selectivity of the Sn-based composites can be significantly improved by association of the reduced Tc(Ⅳ) with the composite structure.

Fig. 6B shows that the concentration of TcO₄⁻ in the contact solutions can be fit to a logarithmic behaviour with respect to time, suggesting a first-order process for TcO₄⁻ sorption. The first-order kinetic rate constant, obtained from the plot’s slope for the sorption of Tc from the LAW simulant performed in the absence of CrO₄²⁻ is ~1.34 × 10⁻⁴ s⁻¹ which is comparable to that obtained using the 2 M NaOH/2 M NaNO₃ matrix (~1.5 × 10⁻⁴ s⁻¹). As with the lowering of the Kₚ value upon the inclusion of CrO₄²⁻ in the LAW simulant, a similar reduction is observed in the slope as well, with the value of the slope obtained in the presence of chromate being ~4.5 × 10⁻⁵ s⁻¹. Again, this slower uptake kinetics is presumably due to the competing reduction of Cr(Ⅵ).

It should be noted that neither decomposition nor dissolution of the Sn–Al–PO₄ composite in the LAW simulant with or without the presence of Cr(Ⅵ) was observed within 72 hours of the batch contact experiment.

Summary

The diffraction and microscopy studies presented here illustrate that the Sn–Al–PO₄ composite obtained by a simple hydrothermal synthesis consists of structurally well-defined Sn(u-v)-rich fibers dispersed within a heterogeneous Sn–Al–PO₄ matrix. The composite consists of several crystalline and polycrystalline phases that prove to be beneficial for the reductive separation of TcO₄⁻. The composite’s effectiveness in removal of TcO₄⁻ is promoted by the Sn-rich fibers facilitating the reduction of TcO₄⁻ to Tc(Ⅳ) as supported by the XPS measurements and Tc(Ⅳ) subsequent deposition along the fiber branches. A cassiterite, SnO₂ with rutile structure is formed sumptuously due to the competing reduction of Cr(Ⅵ).

The Sn–Al–PO₄ composite is highly efficient for removing TcO₄⁻ not only from simple caustic matrices (2 M NaOH/2 M NaNO₃) but also from complex LAW simulants and appears to be suitable for practical reductive separation of TcO₄⁻ from tank waste streams. Significantly, this material offers improved selectivity over Cr(Ⅵ) over previously studied pertechnetate getters. Moreover, the uptake/removal is highly specific for TcO₄⁻ even in the presence of other interfering anions as illustrated by the high removal from LAW simulant containing Cl⁻, CO₃²⁻, NO₂⁻, NO₃⁻, PO₄³⁻, SO₄²⁻ and OH⁻ at concentrations significantly greater than that of TcO₄⁻. Future studies are warranted to evaluate the utility of the Sn–Al–PO₄ composite to improve the performance of cementitious waste forms with respect to their oxidative stability and ability to inhibit leaching of Tc(Ⅳ) incorporated into the composite matrix.⁴⁴

Acknowledgements

This research was supported by the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Part of this research was performed at EMSL, a national scientific user facility at PNNL managed by the Department of Energy’s Office of Biological and Environmental Research. The authors thank Drs. Nickola P. Qafoku and Nancy M. Washton for the useful discussions and Dr. James J. Neeway for preparing the LAW simulant solutions.

References

