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top-down proteomics, the analysis of intact proteins in their 
endogenous form, preserves valuable information about post-
translation modifications, isoforms and proteolytic processing. 
the quality of top-down liquid chromatography–tandem ms  
(lc-ms/ms) data sets is rapidly increasing on account of 
advances in instrumentation and sample-processing protocols. 
however, top-down mass spectra are substantially more 
complex than conventional bottom-up data. new algorithms 
and software tools for confident proteoform identification 
and quantification are needed. here we present informed-
Proteomics, an open-source software suite for top-down 
proteomics analysis that consists of an lc-ms feature-finding 
algorithm, a database search algorithm, and an interactive 
results viewer. We compare our tool with several other popular 
tools using human-in-mouse xenograft luminal and basal breast 
tumor samples that are known to have significant differences in 
protein abundance based on bottom-up analysis.

While mass spectrometry (MS)-based proteomics has been success-
ful for identifying and quantifying peptides and post-translational 
modifications (PTMs), the characterization of intact protein forms 
(i.e., proteoforms) remains challenging1–4. Intact protein (top-
down) proteomics is more challenging at almost every stage of the 
analytical process—sample preparation, liquid chromatography 
(LC) separation, fragmentation, and data analysis5,6. The challenges 
and lack of confidence in data analysis are major factors preventing 
proteomics researchers from adopting top-down studies7. Unlike 
traditional bottom-up proteomics, where numerous software tools 
are available, only a handful of tools are available for top-down 
characterization, and data analysis often requires laborious manual 
interpretation. Here, we present an open-source software suite for 
top-down data analysis named Informed-Proteomics (available at 
https://github.com/PNNL-Comp-Mass-Spec/Informed-Proteomics 
and as Supplementary Software).

In general, the top-down data analysis workflow consists of 
three steps—feature deconvolution, protein characterization via 
database search of fragmentation data, and validation. In every 
step, there are challenges that make top-down data analysis  
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substantially more difficult than bottom-up data analysis. First, 
the size of intact proteins means that they typically have higher 
and more diverse charge states following electrospray ionization. 
This distributes the ion signal over a broader number of charge 
states with increasingly large isotopomer envelopes, which sub-
stantially reduces the signal-to-noise ratio. Detecting ion signals 
and accurately calculating precursor mass is essential to proteo-
form identification and quantification. Existing deconvolution 
tools such as THRASH8, Xtract9, and MS-Deconv10,11 adopt 
spectrum-centric approaches and create a simplified spectrum 
of singly charged monoisotopic ion species.

The second challenge in top-down analysis is determining  
how to explore the search space of potential proteoforms. 
Because most proteins are post-translationally modified (e.g., 
through proteolytic cleavage, acetylation, etc.), the number of 
possible proteoforms is exponentially greater than the number 
of genes; for example, there are over a billion combinatori-
ally possible proteoforms in humans. Popular top-down data  
analysis tools ProSightPC12,13 and MS-Align+ (recently 
renamed to TopPIC)14,15 address this challenge using different 
approaches. ProSightPC restricts the search space to a limited set 
of proteoforms in a ‘proteome warehouse’, a curated collection  
derived from known PTMs, splice variants, and single- 
nucleotide variants. While this approach has the advantages of 
being able to confirm known variants and accurately characterize  
proteoforms, it is effective only for organisms that have a 
well-annotated genome and a well-characterized proteome. In 
contrast, MS-Align+ allows ‘blind’ modifications accounting 
for any and all PTMs and mutations, and it uses the spectral 
alignment algorithm to efficiently score multiple proteoforms 
simultaneously. Although this blind search approach is valu-
able for discovering unknown PTMs and mutations, it may 
produce a substantial amount of false-positive proteoform 
spectrum matches (PrSMs). Recently, another top-down analy-
sis software, pTop, has been developed16. In pTop, the search 
space is restricted by taking only expected modifications into 
account; however, the current version of this software cannot 
find cleaved or truncated proteoforms.
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As a result of these two challenges, proteoform identifications 
are error prone and frequently mislocalize PTMs, identify false 
cleavages, or erroneously compute precursor mass. Thus, it is 
often necessary for users to manually validate and refine results. 
Additionally, quantification studies may require researchers to 
examine the features or extracted ion chromatogram (XIC) of 
precursor ions of different charge states, or even different regions 
of the isotopic peak distributions for protein ions. Therefore, there 
is high demand for top-down proteomics visualization tools to 
assist with such data curation12,13,16–18.

Informed-Proteomics contains a new LC-MS feature-finding  
algorithm (ProMex), a new database-search algorithm 
(MSPathFinder), and an interactive results viewer (LcMsSpectator) 
(Supplementary Fig. 1). We demonstrate both the identification 
and quantification capabilities of Informed-Proteomics and com-
pare it with other existing tools. Key advantages of Informed-
Proteomics over existing software include high accuracy in 
LC-MS features detection by ‘smart’ aggregation and summation 
of features from the same species (which, e.g., enhances meas-
urement sensitivity); an efficient algorithm for high-throughput 
searching proteoforms with combinations of PTMs and trunca-
tions by reducing redundancies to minimize the search space; and 
an interactive visualization tool for easy and fast manual validat-
ing and refining the results.

results
informed-Proteomics workflow
The first component of the Informed-Proteomics software suite, 
ProMex, finds and characterizes putative proteoforms in LC-MS 
data. An LC-MS feature represents a group of isotopomer enve-
lopes corresponding to the same putative proteoform ion across 
all charge states and LC elution times. Because ions are dispersed 
widely across LC times, charge states, and isotope species, indi-
vidual isotope envelopes typically have poor shape compared with 
the shape of expected profiles (Supplementary Fig. 2). ProMex 
incorporates two key innovations to improve accuracy of feature 
detection (see Fig. 1). First, ProMex both aggregates signals across 
different charge states and explicitly uses the LC dimension to 
aggregate features over elution time. Some existing tools (e.g., 
Xtract in specific commercial implementations) also use the LC 
dimension by periodically averaging a fixed number of spectra 
at chromatographic peaks to increase the signal-to-noise ratio. 
ProMex explicitly looks for all isotopomer envelopes distributed 
over 3D LC-MS data and dynamically determines the elution time 
spans for every candidate mass.

Second, rather than examining individual isotopomer enve-
lopes separately, ProMex measures the likelihood of detected LC-
MS features based on the aggregated isotopomer envelope. The 
score is calculated by a likelihood scoring function which takes 
into account the aggregated isotopomer envelope shape, intensity, 
charge distribution, and the correlation of elution profile at dif-
ferent charge states (see details in Online Methods). The output 
of ProMex is a list of LC-MS features defined by monoisotopic 
mass, range of charge states, elution time span, abundance, and 
likelihood scores.

Detected LC-MS features are fed into the database search tool, 
MSPathFinder, to characterize proteoforms from MS/MS spectra. 
MSPathFinder operates much like bottom-up proteomics tools; 
it allows users to specify a set of post-translational modifications  

and the maximum number of allowable modifications in a 
sequence. MSPathFinder also provides the statistical signifi-
cance of PrSMs with E-values computed by the generating func-
tion approach19,20; and it provides the false discovery rate (FDR), 
which is estimated using the target–decoy approach21.

MSPathFinder efficiently explores the combinatorial proteo-
form space using a graph-based approach called the sequence 
graph (see Fig. 2 for illustration), which allows quick exploration 
of the vast number of possible proteoforms when considering 
variable PTMs. There are two important motivations behind the 
sequence graph. First, because many proteoforms differ only by 
the location of PTMs, the number of unique elemental composi-
tions is much smaller than the number of possible proteoforms. 
Using histone H4 as an extreme example, the number of pro-
teoforms possible when applying five modifications (acetylation, 
methylation, and dimethylation of Lys and Arg; trimethylation 
of Arg; and phosphorylation of Ser, Thr, and Tyr) is about 50 
trillion; but the number of their unique elemental compositions 
is only 2,344. Second, many fragment compositions are shared 
by proteoforms with the same composition. Therefore, it is inef-
ficient to score these proteoforms independently. The goal of the 
sequence-graph approach is to effectively remove such redundan-
cies. MSPathFinder, pTop, and MS-Align+ all use similar spec-
tral alignment algorithms14,22–25 based on a parametric dynamic 
programming algorithm to find the best scoring proteoform in 
a sequence. However, MSPathFinder uniquely uses node in the 
sequence graph to represent a composition of atoms (mostly C, H, 
N, O, S) rather than a combination of modifications. Since some 
combinations of modifications have exactly the same atomic com-
positions (e.g. tri-methylation vs methylation + di-methylation),  
atom-centric graphs tend to be smaller, which leads to a faster 
running time in general.

MSPathFinder uses a second technique to efficiently explore 
the vast search space of intact proteoforms. As many proteoforms 
are enzymatically cleaved or truncated forms of proteins, allow-
ing both N-terminal and C-terminal truncations are necessary to 

34+

Initial cluster

Intact protein ion signal
in LC-MS data

Refinement

Determine charge states

Aggregation across
elution time span
at each charge

Determine elution time span

XIC

Evaluation

m/z

Theoretical 
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Clustering isotopic envelopes
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26+

Figure 1 | LC-MS feature finding in ProMex. An LC-MS feature refers to 
a group of isotopomer envelopes corresponding to the same proteoform 
species across all charge states and LC elution times. The ProMex 
algorithm begins with clustering isotopomer envelopes across adjacent 
time and charge state. The initial cluster is refined to accurately 
determine its elution time span and range of charge states. After 
refinement, ProMex calculates the likelihood that the final cluster is a true 
LC-MS feature.
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identify the mature processed proteoform, but this substantially 
increases database search time. In order to reduce the number of 
possible sequence candidates which serve as query sequences in 
the search mode of multiple internal cleavages, we implemented a 
de novo sequencing algorithm to find short amino acid sequences, 
called sequence tags, as similar to a previous approach26. Once 
a protein matches to a sequence tag, MSPathFinder searches 
multiply cleaved proteoforms of the protein using two sequence 
graphs toward opposite terminals (Supplementary Fig. 3). While 
this tag-based approach is helpful for restricting the search space 
significantly, it may fail to find correct proteoforms when a suf-
ficient number of consecutive fragment ions are not detected in 
MS/MS spectra.

For visualizing and analyzing top-down proteomics data, we 
created LcMsSpectator as a stand-alone desktop application that 
is fully integrated with both ProMex and MSPathFinder. This 
allows maximum data exploration by interacting with both the 
LC-MS features and MS/MS identifications. The spectral and 
chromatographic evidence for the search results are delivered 
instantly upon completion of the search for comparison with the 
original identifications. Sequences can also be edited in the appli-
cation and scored on the fly, which makes it easy to find evidence 
for proteoforms that were not found in the original database 
search. LcMsSpectator utilizes a floatable and dockable tabbed- 
document interface that lets users customize various data grids 
and spectrum and chromatogram views (see Supplementary  
Fig. 4). It supports both automatic and assisted revision of results 
and identifications (see an example in Supplementary Fig. 5).  
All of the views and data plots can be exported to high-resolution, 
publication-ready images.

lc-ms feature detection using Promex
We assessed the accuracy of our feature-detection algorithm by 
benchmarking ProMex against other MS1 feature-detection algo-
rithms including ICR-2LS (http://omics.pnl.gov/software/icr-2ls) 

and MSDeconv+10,11 (see details in Online Methods). For this 
benchmarking test, we created ten replicate LC-MS/MS data files 
from an ovarian tumor sample. The average running times of 
ICR-2LS, MSDeconv+, and ProMex were 180, 23, and 35 minutes, 
respectively. The metric for accuracy in this test was two-fold. 
Because they are replicates runs, we anticipated that true features 
would be present in most files and at similar retention times with 
similar intensities. As shown in Figure 3, ProMex had a signifi-
cantly higher number of features detected in all ten replicates. 
MSDeconv+ had an overwhelming number of detected features 
present in only one or two data sets, and this pointed to a high 
variability in the data deconvolution; only 0.04% of features were 
found in eight or more data sets. ICR-2LS is an early implemen-
tation of the THRASH deconvolution algorithm8. Although it 
performed substantially better than MSDeconv+, it still had only 
6% of features appear in eight or more data sets. ProMex showed 
the best performance in reproducible detection of LS-MS features 
in these replicate data sets, with 34% of features identified in eight 
or more data sets.

The second metric for determining the accuracy of LC-MS fea-
ture detection is quantitative reproducibility, as this ultimately 
defines the utility of the methodology for interrogating changes 
in a system of interest. Figure 4a shows the abundance correlation 
plots for ProMex identified features for ten replicate analyses. The 
high reproducibility of the platform is demonstrated by Pearson 
correlation coefficients that vary from 0.93–0.95 across all runs. 
Furthermore, when we applied our workflow to the ovarian tumor 
replicates, we were able to achieve coefficients of variation similar to 
those obtained in label-free bottom-up proteomics27–30 (Fig. 4b).

Proteoform identification using msPathFinder
Next, we compared the performance of MSPathFinder to that of 
other top-down database search tools MS-Align+ (i.e., TopPIC 
v0.9.1)14,15, pTop v1.2 (ref. 16), and ProSightPC v3.0 (ref. 13) (see 
details in Online Methods). We ran each program on the same 
computer against an ovarian tumor replicate run containing 3,696 
MS1 spectra and 4329 MS2 spectra. A human proteome sequence 
database (UniProt Release 2015_10) which contains 20,209 protein  

C0H0N0O0S0

No modification

1 methyl

1 oxidation

2 methyls

2 oxidations

1 methyl, 1 oxidation

C6N12N2O2S0 C12H24N6O3S0

K R A T Q K T R A M

Figure 2 | Illustration of the sequence graph for ‘KRATQKTRAM’. The 
sequence graph compactly represents all possible proteoforms of a 
single atomic composition and facilitates efficient scoring of the search 
space. In this example, oxidized methionine and methylated lysine 
are considered as dynamic modifications, and up to two modifications 
are allowed per sequence. The graph is constructed from left to right, 
with the leftmost vertex (source) corresponding to C0H0N0O0S0. The 
vertically aligned vertices correspond to fragments created by cleaving 
ith and (i + 1)th amino acids. The horizontally aligned vertices represent 
the fragments with the same modifications. The black, green, and blue 
edges correspond to unmodified amino acids, oxidized methionine, and 
methylated lysine, respectively. Each vertex corresponds to a composition, 
and several compositions are shown for illustration. Each of the right-
most vertices (sink) is called a precursor vertex and represents a unique 
elemental composition of proteoforms with the specified combination of 
modifications. Thus a path from source to sink represents a proteoform.
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MS features present in the sample. For each tool, features were aligned 
across replicate data sets and merged. The chart shows how often each 
LC-MS feature was observed within the set of replicates. True features are 
expected to be present in a majority of the replicate data sets.
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sequences was used for MS-Align+, pTop, and MSPathFinder; 
while ProSightPC was run against the annotated human pro-
teoform databases (2014_07 version). PrSMs identified by MS-
Align+, pTop, and MSPathFinder were controlled at FDR 1% using 
the same target–decoy databases. Since pTop v1.2 is not able to 
search cleaved proteoforms, we compared pTop and MSPathFinder 
separately, and we disabled internal cleavages in MSPathFinder.  
There was no option to run ProSightPC against user-provided 
target–decoy databases; we therefore used an E-value cutoff of 
1 × 10−4, which is the default cutoff to distinguish good and bad 
matches in the software.

Since each tool explores different regions of the proteoform space, 
it is difficult to directly compare the results. Moreover, we believe 
the searches are complimentary and can be used in combination to 
achieve the best results. MS-Align+ has the greatest search space 
and consequently identified the greatest number of unique proteo-
forms (Fig. 5a). ProSightPC has the most restrictive search space and 
therefore identified the fewest; this indicated that even for human 
samples, the annotation of known proteoforms is often incomplete. 
MSPathFinder showed dramatically faster run time (11.3 h) than  

MS-Align+ (92.2 h) and comparable run time with that of ProSightPC 
(14.8 h) (Fig. 5b). The slower run time for MS-Align+ was expected 
because it has a larger search space. In the comparison with pTop, 
MSPathFinder found 10–20% more proteins, proteoforms, and  
protein-spectrum matches (PrSMs) than pTop (Supplementary 
Table 1). While the total running time of MSPathFinder was 
longer than that of pTop because of the running time of ProMex, 
MSPathFinder showed a faster running time in database search than 
pTop. Finally, when we look at the number of annotated peaks in 
an identified spectrum as a proxy measure for the quality of iden-
tifications, MSPathFinder annotates significantly more peaks per 
spectrum than either TopPIC or ProSightPC (Fig. 5c).

label-free quantification
Lastly, we applied our top-down proteomics workflow for label-
free quantification of human-in-mouse xenograft breast tumor 
samples31 previously characterized by the Clinical Proteomic 
Tumor Analysis Consortium32. Two subtypes of breast cancer 
tumors, basal like (WHIM2-P32) and luminal B (WHIM16-P33), 
were analyzed. We created five technical replicate analyses for 
each subtype. First, the LC-MS features detected across all ten 
replicates runs were quantified and aligned, and then statistical 
significance tests were performed to find differentially expressed 
LC-MS features in the two breast tumor subtypes, WHIM2 and 
WHIM16 (see Online Methods). There were a total of 7,300 dif-
ferentially expressed LC-MS features at adjusted P value of <0.01 
and a fold change of >1 (one-way ANOVA, Benjamani-Hochberg 
adjusted, n = 17,870) (Supplementary Fig. 6). Next, we quanti-
fied the differential expression of identified proteoforms (Fig. 6).  
Among a total of 3,207 proteoforms identified in WHIM2  
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and WHIM6 samples, 1,636 proteoforms were found to be  
differentially expressed with adjusted P value of <0.01 and fold 
change of >2.

Recently, an integrated approach of bottom-up and top-down 
proteomics to detect differentially expressed protein and proteo-
forms was reported for this same tumor comparison33. In both 
LC-MS feature- and proteoform-level analysis, we found ten 
times more differentially expressed entities than were found by 
the approach described in ref. 33. Furthermore, we achieved this 
characterization using only 30 h of instrument time as compared 
to the 200 h reported in ref. 33.

We reanalyzed the same data set used in one of the studies in ref. 
33 using Informed-Proteomics. Using the same statistical model, 
we found 412 differentially expressed proteoforms mapping to 
280 proteins with adjusted P value of <0.01 and absolute log2 fold 
change of >1. Our analysis pipeline found 2.7 and 2.4 times more 
differentially expressed proteoforms and proteins, respectively, 
compared to those found in ref. 33 (Supplementary Fig. 7).

discussion
Informed-Proteomics includes an LC-MS feature-finding algo-
rithm (ProMex), a database search algorithm (MSPathFinder), 
and an interactive results viewer (LcMsSpectator). Our open-
source software suite is designed for sensitive and compre-
hensive high-throughput analysis of complex mixtures of  
intact proteins. We demonstrate how our tools can identify  

differently expressed LC-MS features and proteoforms from 
breast cancer samples.

ProMex aggregates signals not only across different charge 
states, but also over LC time, such that it measures the likelihood 
of detected LC-MS features based on the aggregated isotopomer 
envelope. It relies on isotopically resolved peaks and is designed 
for high-resolution LC-MS data. Therefore, it does not currently 
work for data with only a charge envelope or for data without an 
LC separation. We demonstrated that ProMex accurately recov-
ers more common features and less uncommon (irreproducible) 
features across multiple replicate runs than do other existing 
algorithms. We also showed that our database search algorithm 
efficiently explores the combinatorial proteoform space using a 
graph-based approach called the sequence graph. MSPathFinder 
operates in a manner similar to that of most common bottom-
up proteomics algorithms, requiring users to enumerate specific 
post-translational modifications of interest. It does not discover 
unknown modifications, which can be done with complementary 
algorithms for open PTM search.

methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Intact protein extraction and preparation for LC-MS/MS analysis.  
Ovarian tumor sample. Ovarian tissue used in this manuscript was 
from a pool of five female patients; the samples were collected with 
the oversight of the Institutional Review Board at Oregon Health 
and Science University and the patients gave informed consent. An 
approximately 20 mg portion of fresh frozen tissue was taken from 
each patient to create a pooled sample. Tissue aliquots were homog-
enized with a pellet pestle in 1 mL of homogenization buffer (8 M  
urea, 50 mM ammonium bicarbonate, 1 mM PMSF, and 1% Sigma 
phosphatase inhibitor cocktail II and III). The resulting homoge-
nate was then incubated at 37 °C for 30 min to facilitate protein 
extraction, and it was spun for 10 min to pellet insoluble debris. 
All centrifugation steps were carried out at 4 °C, to further limit 
potential enzymatic activity, and 15,000 r.p.m. The supernatant 
was then transferred to an Amicon ultra 100K MWCO filter 
(EMD Millipore) prerinsed with 500 µL homogenization buffer. 
Samples were then centrifuged for 30 min to obtain minimum 
volume. A 450 µL aliquot of homogenization buffer was added  
to the filter and spun for an additional 30 min to maximize  
protein recovery. The filtrate was then transferred to an Amicon 
ultra 10K MWCO filter and spun for 40 min to obtain mini-
mum volume. Buffer exchange was achieved using three washes 
with 450 µL of buffer A (3% acetonitrile, 0.2% formic acid in 
MilliQ water). The protein concentration was determined using 
a Coomassie assay (Thermo Fisher). The final protein concen-
tration was adjusted to 0.5 µg/µL for analysis. Ten replicate LC-
MS/MS data sets were acquired.

Breast tumor xenograft sample. We created top-down LC-MS/
MS data sets for two subtypes of breast cancer tumors, basal like 
(WHIM2-P32) and luminal B (WHIM16-P33). The source and 
provenance of the xenograft material is described in ref 32. For 
each subtype, six process replicates LC-MS/MS runs were cre-
ated. Tumors were cryopulverized, distributed into six aliquots 
for each tumor, and stored −80 °C until use. The six aliquots were 
processed independently for each tumor as described above. All 
samples were block-order randomized. Each sample was then 
analyzed by a single 180 min LC-MS/MS run. The first injection 
from each tumor was used to passivate the new LC column, and 
these files were not included in later analyses.

LC-MS/MS analysis. A dual-pump Waters nanoACQUITY 
UPLC system (Millford, Massachusetts) in combination with a 
Velos Orbitrap Elite mass spectrometer (Thermo Fisher, San Jose, 
California) was used for these analyses. A 5 µL sample injec-
tion was loaded on a solid phase extraction (SPE) column for 
rapid trapping and desalting prior to separation. The analytical 
column was prepared in house by slurry packing 3 µm diameter 
C2 stationary phase (Separation Methods Technology, Newark, 
Delaware) into a 50 cm length of 360 µm o.d. × 100 µm i.d. fused 
silica capillary column (Polymicro Technologies Inc., Phoenix, 
Arizona). The SPE column (360 µm outer diameter × 150 µm 
internal diameter) of 5 cm length was similarly prepared. Mobile 
phases consisted of 0.2% formic acid in water (phase A) and 0.2% 
formic acid in acetonitrile (phase B). Sample was loaded for 30 
min on the SPE column and then separated by the analytical col-
umn using a 190 min gradient from 99% A to 35% A in 180 min 
at a flow rate of 0.3 µL/min. The LC column was interfaced with 
the mass spectrometer using a home-made nano-electrospray  

ionization source with a chemically etched 150 µm o.d. × 20 µm 
i.d. fused silica emitter. A spray voltage of 2.3 kV and an ion trans-
fer tube temperature of 325 °C were used for ionization and des-
olvation. Precursor spectra were acquired from m/z 500 to 2,000 
at a resolution of 240,000. Data-dependent product spectra of the 
top four ions were isolated in a 4 Da window and subjected to CID 
and HCD fragmentation modes at normalized collision energies 
of 35% and 30%, respectively. All product ions were detected in 
the Orbitrap at a resolution of 120,000.

Data format for LC-MS/MS spectrometry. For fast data access, 
MSPathFinder and ProMex use an internal file format for LC-MS 
data called a pbf file. This file stores LC-MS data as a collection of 
3D data points, called peaks, defined as: scan number, m/z, and 
intensity. To support quick retrieval of both spectra and chroma-
tograms, the PBF format indexes peaks in two ways: (i) a spec-
trum-centric way—get all the peaks for a certain scan number, 
and (ii) chromatogram-centric way—get all the peaks within a 
specified m/z range.

ProMex, LC-MS feature extraction. ProMex was developed to 
detect isotopomer envelopes of intact protein ions and determine 
their monoisotopic masses and abundances. The ProMex algo-
rithm takes a range of monoisotopic mass and a mass tolerance 
as an input; it then outputs a collection of LC-MS features, each 
of which is specified by monoisotopic mass, charge states, elution 
time span, and abundance. The basic idea is that an individual 
isotopomer envelope of one charge state in one spectrum has 
poor ions statistics, especially as molecular weight increases (see 
Supplementary Fig. 2). Therefore, we evaluate an isotopic profile 
grouped across time and charge. The set of peaks attributed to a 
single proteoform species (across time and charge state) is referred 
to as an LC-MS feature. The process of determining which peaks 
belong to the same LC-MS feature is shown graphically in Figure 1  
and described in the subsequent paragraphs.

To identify which peaks in LC-MS data should be grouped, a list 
of potential masses is created using the user-specified mass range 
and tolerance. For each potential monoisotopic mass M (Da), a 
theoretical isotopomer envelope EM is generated from Averagine 
model34; then, using the input charge range, various m/z values 
are calculated for EM. ProMex then scans all MS1 spectra to iden-
tify peaks corresponding to these isotopomer envelopes. The col-
lected peaks are grouped by their charge states and elution times, 
and thus an observed isotopomer envelope at charge state ci and 
elution time tj is denoted as Eij.

The second step is to cluster isotopomer envelopes indicating 
the same proteoform species across charge states and LC elution 
time. ProMex gathers envelope peaks in adjacent charges and elu-
tion times using a greedy algorithm. It starts with seed isotopomer 
envelopes selected based on their similarity scores against EM 
and statistical significances. Here the similarity score S(E1, E2) 
between two envelopes E1 and E2 is computed by the Pearson cor-
relation. The statistical significance is determined by Wilcoxon 
rank-sum test and hypergeometric test as previously described35. 
Both tests are performed within a local range (5 m/z) of the spec-
trum encompassing the seed envelope. Seed envelopes must have 
P values that are less than 0.01 for both tests and similarity scores 
larger than specified thresholds. The increasing number of charge 
states and the increasing size of isotopomer envelope lower the 
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chance of observing isotopomer envelopes highly similar to the 
theoretical one. Thus, we use different thresholds depending on 
the mass M—0.7 for M < 10,000 Da; 0.6 for 10,000 < M < 15,000; 
0.5 for 15,000 < M < 30,000; 0.4 for 30,000 < M.

The clustering process starts with the seed envelope having the 
highest similarity score among the seed set. The greedy algorithm 
iteratively explores observed envelopes in adjacent charge states 
and elution times. Adjacent envelopes are added to the cluster if 
they enhance the similarity between the aggregated isotopomer 
envelope in the cluster against EM When there is no adjacent 
isotopomer envelope improving the cluster, the algorithm stops 
exploration. This process continues until all seed envelopes are 
assigned to clusters.

Detected clusters are refined to accurately determine their elu-
tion time spans and ranges of charge states. The elution time span 
is determined based on elution profile (EP). The EP is constructed 
by peaks in the clustered isotopomer envelopes and smoothed by 
Savitzky–Golay filter using nine adjacent points with quadratic 
polynomial. The first and last elution times having intensities 
equal or greater than 1% of the apex intensity are set to elution 
start (tmin) and end time (tmax), respectively. To determine the 
range of charge states, at each possible charge state ci, the algo-
rithm examines not only individual isotope envelopes Ei,j in the 
elution time span (tmin ≤ j ≤ tmax)) but also aggregated isotopic 
envelop Ei over the span. If either any single Ei,j or Ei has similarity 
score higher than 0.7, the charge state is included into the cluster. 
Thus, the minimum (cmin) and maximum (cmax) charge states 
define the range of charge states. The final monoisotopic mass of 
LC-MS feature is determined by selecting the median value from 
all the clustered isotopomer envelopes.

The abundance of LC-MS features is measured by the area 
under EP. In order to avoid outlier peaks caused by signal inter-
ference or noise, it only includes peaks in isotopomer envelope 
Ei,j where 

S E E E E

c i c t j t
ij M ij M( , ) min( . , , ) |

,min max min ma

>

≤ ≤ ≤ ≤

0 7 median({(S

xx}).
 

The area under smoothed EP is calculated and set to the abun-
dance of LC-MS feature.

The quality of each feature is evaluated by a likelihood ratio 
scoring function. Features that fail the likelihood test are rejected 
and deleted. We devised a Bayesian network that models LC-MS 
features to determine the probability of observing aggregated iso-
topomer envelopes Ei given mass M (Supplementary Fig. 8). A 
series of isotopomer envelopes detected in the elution time span at 
a charge are described by four parameters— Ai, Si, Ii, and Xi. Here 
Ai is the ratio of abundance at charge ci to total abundance, and Si 
is the similarity score S(Ei, EM) of aggregated isotopomer envelope 
Ei. At each spectrum, the intensity of isotopic peaks is scaled by 
dividing them the highest intensity in a window of width 5 m/z 
around the isotope envelope. Ii is the sum of scaled intensities of 
the most abundant isotopic peaks within the elution time span. Xi 
is elution profile score, which is the average Pearson’s correlation 
coefficient of EP at charge ci against EPs at other charge states. 
Thus, the likelihood scoring function can be represented as 

Likelihoodscore
obs

null= log
( , , | )

( , ,
,

,

p C A S I X M

p C A S I X
i i i i i

i i i i iici c

c

M| )min

max

=
∑

where Pobs is the probability of a particular state (Ci, Ai, Si, IiXi|M) 
observed in a sample of known LC-MS features, and Pnull is the 
probability of the same state in a null hypothesis model where 
peaks are randomly shuffled over 3D LC-MS space.

Considering conditional dependencies of parameters as defined 
in Supplementary Figure 8 and applying Bayes’ theorem, the 
likelihood scoring function can be rewritten as 

ProMex’s likelihoodscoring function
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 The detected LC-MS features often overlap and share  
peaks with each other, because a cluster of observed peaks can 
be well matched to different theoretical isotopomer envelopes 
(see Supplementary Fig. 9). To eliminate redundant, false LC-
MS features, ProMex selects only the best scoring features itera-
tively and removes them from the LC-MS data. For this, ProMex  
constructs an undirected acyclic graph where each vertex rep-
resents an LC-MS feature. Two vertices are connected by an 
edge if they share peaks in their collected isotopomer envelopes. 
Vertices are grouped such that two vertices in a group are con-
nected to each other by paths. In each group, the best scoring 
LC-MS feature is selected, and peaks associated with the feature 
are removed from the LC-MS data. If there are LC-MS features 
with a difference of ±1 Da from the best scoring feature, they are 
selected together to maximize the chance of identifying correct 
proteoforms. Whenever peaks are removed from the LC-MS data, 
other remaining features are rescored. This process is repeated 
until the best score in the group is less than a certain likelihood 
score cutoff.

MSPathFinder, proteoform identification. MSPathFinder 
takes an LC-MS feature file generated by ProMex, a protein 
FASTA database, and a set of search modifications as an input 
and outputs PrSMs with E-values. A search modification is 
defined as a pair consisting of a PTM and a target amino acid. 
The maximum number of allowable modifications is also given 
as input. For each sequence present in the protein database, 
MSPathFinder constructs a sequence graph (described below) 
and scores proteoforms against MS/MS spectra through graph 
searching. The statistical significance of individual PrSMs (e.g., 
E-values) is also evaluated. Lastly, MSPathFinder estimates the 
false discovery rate.

Enumerating protein substrings. MSPathFinder supports three 
search modes, depending on the number of internal cleavages 
allowed. Search mode 2, similar to the nontolerable termini 
(NTT) 2 in bottom-up proteomics, does not allow any internal 
cleavage except the single amino acid cleavage at the N-terminus. 
Search mode 1, similar to NTT 1, additionally allows single inter-
nal cleavage; and search mode 0, similar to NTT 0, allows multiple 
internal cleavages. The numbers of sequences to be searched are 
different depending on the search mode. Also, the lowest and 
highest masses of detected LC-MS features also provide lower and 
upper bounds in sequence lengths.
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MS/MS spectra deconvolution. MSPathFinder uses a fitting 
method similar to THRASH algorithm8 to deconvolute MS/MS 
spectra. The deconvolution algorithm moves a window of a cer-
tain m/z width along the peaks (here, 2.2 m/z was used). The most 
intense peak in the window is selected, and a few average masses 
are calculated using the observed m/z for a range of charge states 
(here, charge states of 1–20+ were used). For each average mass, 
a theoretical isotopomer envelope is generated from Averagine 
model34. Then, it identifies observed isotope peaks corresponding 
to the theoretical isotope envelope. Pearson’s correlation coeffi-
cient between observed and theoretical isotopomer envelopes is 
computed. If the correlation coefficient is higher than a certain 
threshold (here, 0.7 was used), the observed isotopomer envelope 
is converted to a deconvoluted peak defined by monoisotopic 
mass, charge state, and intensity.

Sequence graph. The sequence graph is a directed acyclic graph 
(DAG) that represents all possible PTM-modified forms of a pro-
tein sequence (see Fig. 2). Each vertex of the sequence graph 
represents a unique fragment and corresponds to an elemental 
composition. Two vertices are connected by an edge if their differ-
ence in compositions equals to a composition of an amino acid and 
optionally a PTM. For example, C6H12N2O2S0 and C12H24N6O3S0 
are connected by an edge representing Arg (C6H12N4O1S0). In the 
sequence graph, the leftmost vertex (called the source) represents 
the ‘zero’ fragment with a composition C0H0N0O0S0, and each 
of the rightmost vertices (called precursor vertices) represents 
proteoforms with the same modifications. Each path in the graph 
corresponds to a proteoform.

Once the sequence graph is constructed, MSPathFinder selects 
a precursor vertex vp one by one, and repeats the following proce-
dure. It considers a subgraph from the source to vp. This subgraph 
represents the proteoforms with the same composition, and each 
internal vertex represents a fragment of these proteoforms. For the 
precursor mass of vp, MS/MS spectra are retrieved from the LC-
MS look-up table. For each recruited MS/MS spectrum and each 
internal node v, MSPathFinder finds evidence of the ions generated 
by a fragment with a composition v and assigns a score to v. Edge 
scores are also assigned as necessary (e.g., consecutive fragment ion 
score). The score of a path is defined as the sum of scores of vertices 
and edges in the corresponding path. MSPathFinder finds the best 
scoring proteoform by backtracking the sequence graph.

MSPathFinder scoring. We designed a scoring function, 
MSPathScore(P,S) to evaluate a PrSM of a proteoform P and a spectrum 
S. The MSPathScore utilizes five characteristics of matched fragment 
ion peaks—intensity, isotopomer envelope shape, mass measurement 
error, existence of complementary fragment ion peak, and existence of 
consecutive fragment ion peaks, which can be written as: 

MSPathScore

match intensity dist error
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where ′a  and â are sets of prefix and suffix fragment ion peak 
matches, respectively. Ii, Di, and Ei are normalized intensity, iso-
topomer envelope similarity score, and mass error of matched 
fragment ion i. The normalized intensity is calculated by dividing 
the peak’s intensity by the highest intensity in the spectrum. The 
envelope similarity is determined by Pearson’s correlation coeffi-
cient between observed and theoretical isotopomer envelopes. The 
mass error is measured in p.p.m. IsComple(i,j) is an indicator func-
tion to denote whether the fragment ion pair (i, j) is a complemen-
tary fragment ion pair. IsConse(i,j) is also an indicator function 
describing whether the ions (i, j) are consecutive fragment ions.  
The weight parameters in MSPathScore were determined by a 
logistic regression method with a training set of 30,000 PrSMs. 
The training set was obtained by scoring PrSMs as the number of 
matched fragment ion peaks.

Sequence-tag-based search. MSPathFinder uses sequence tags 
to filter the search space of multiply cleaved protein sequences. 
Sequence tags are short amino acid sequences that are found by 
combining consecutive fragment ions in protein sequences26. 
MSPathFinder generates all possible sequence tags with a 
minimum length and finds multiply cleaved protein sequences 
containing the sequence tags. Here a minimum length of five 
residues is chosen, as it gives a good balance between the number 
of identifications and the size of search space. Given a protein 
sequence matched to a sequence tag, two sequence graphs origi-
nating from the both ends of sequence tags are generated toward 
opposite directions as shown in Supplementary Figure 3. The 
flanking mass of sequence tags and the mass of LC-MS features 
are used to constrain candidate proteoforms to be searched.

Statistical significance of protein–spectrum Match. The sta-
tistical significance such as a P value or E-value is estimated by 
the generating function approach as previously described19,20. 
The implementation of the generating function for bottom-up 
proteomics is not directly applicable to top-down proteomics, 
because the underlying dynamic programming table grows to be 
exceptionally large with the large masses of intact proteins and the 
increased mass accuracy and resolution of typical top-down data. 
In order to minimize the number of integer masses to be consid-
ered in the generating function while accommodating the high 
mass accuracy, we discretize the real mass space with a window 
of a constant mass tolerance (e.g., 8 p.p.m.). In addition, masses 
within mass regions that cannot be reached by combinations of 
amino acid with allowable PTMs masses are removed.

Estimating false discovery rates. The false discovery rate (FDR) 
is estimated using the target–decoy approach21, where a decoy 
database was constructed by reversing the protein sequences and 
applying three amino acid mutations at random positions.

LcMsSpectator, visualization and refinement tool. LcMsSpectator  
is a Windows desktop application that facilitates visualization and 
refinement of top-down proteomics analysis results reported by 
ProMex and MSPathFinder and features interactive spectral and 
chromatographic data plots as shown Supplementary Figure 4.  
All of the views and data plots can be exported to high-resolution, 
publication-ready images. LcMsSpectator supports the commu-
nity standards for both spectrum data (mzML36) and spectrum 
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annotation (mzIdentML37). See https://github.com/PNNL-Comp-
Mass-Spec/LCMS-Spectator for details.

Software evaluation. All the experiments were performed on a 
Windows computer with a 3.5 GHz CPU (Intel Xeon E3-1270) 
and 32 GB memory.

Comparison of LC-MS feature-detection algorithms. We ran 
ProMex, MS-Deconv+, and ICR-2LS against a total of ten replicate 
runs. MS-Deconv+ and ICR-2LS reported monoisotopic masses, 
charges, elution times, and intensities for each MS1 spectrum. We 
clustered these deconvolution results into LC-MS features if two 
monoisotopic masses were within the mass tolerance and elution 
time window. The abundance was computed by summing intensi-
ties of cluster members. We repeated this clustering procedure to 
group LC-MS features detected from multiple replicate runs. Here 
we used 10 p.p.m. mass tolerance and 1 min elution time window. 
Parameter settings used in ProMex, MS-Deconv+, and ICR-2LS 
are described in Supplementary Table 2.

Comparison of proteoform identification algorithms. We 
benchmarked MSPathFinder against TopPIC v0.9.1 (available 
at http://proteomics.informatics.iupui.edu/software/toppic/)14, 
ProSightPC v3.0 (ref. 13), and pTop v1.2 (available at http://
pfind.net/software/pTop/index.html)16. For MSPathFinder, pTop, 
and MS-Align+, we used a fasta file of human and mouse from 
UniProt database for target database (2011_12 version). The same 
decoy database was used for three tools, and PrSMs were collected 
at 1% FDR. For MS-Align+, the raw spectra files were converted 
to .msalign file format using msconvert tool in ProteoWizard soft-
ware package38 and MS-Deconv10 as specified in TopPIC manual. 
Since pTop v1.2 is not able to search cleaved proteoforms, we 
compared pTop and MSPathFinder separately, and we disabled 
internal cleavages in MSPathFinder. For ProSightPC, we used the 
annotated mouse and human proteoform databases (2014_07 ver-
sion). We tested ProSightPC based on the absolute mass search 
mode with mass tolerance of 10 p.p.m. for precursor and frag-
ment ions. We tried to use shuffled database search option to 
calculate FDR at ProsightPC. But there were very few PrSMs for 
shuffled sequences even though E-value cutoff increased to 10. 
Also, as the downloaded databases are encoded in binary for-
mat, we were not able to apply our target–decoy approach. Thus 
PrSMs were collected with E-value cutoff of 1× 10−4 (default cut-
off for good matches in ProSightPC). Parameter settings used in 
MSPathFinder, MS-Align+, ProSightPC, and pTop are described 
in Supplementary Table 3.

Statistical analysis for label-free quantification. LC-MS features 
are not always detected in all replicate runs. For missing LC-
MS features, we integrated background signal intensities in the 
appropriate elution time spectra. Here we assumed that median 

intensity in each spectrum is equal to background-signal inten-
sity. Grouped LC-MS features were associated with proteoform 
identification results by MSPathFinder. Each group of LC-MS 
features is assumed to be a single proteoform species. If there 
are multiple different proteoforms matched to a LC-MS feature 
group, the best scoring proteoform (i.e., the lowest E-value PrSM) 
was selected as a representative proteoform of the LC-MS feature 
group. Informed-Proteomics does not provide a separate tool for 
this postprocessing step, but implemented source codes for LC-
MS feature grouping were included in the package.

As a preprocessing step for normalization, we normalized the 
abundance values by equalizing the median of abundances across 
replicate runs. Conventional ANOVA analysis was performed and 
P values were adjusted by Benjamini–Hochberg (BH) procedure. 
All statistical analyses including ANOVA analysis and principal 
component analysis (PCA) were performed within MATLAB 
2014b (The MathWorks, Inc., Natick, Massachusetts).

Software availability. MSPathFinder’s home page is https://omics.
pnl.gov/software/mspathfinder. All source codes were written 
in Microsoft C# with .NET framework 4.5 and are available at 
GitHub, https://github.com/PNNL-Comp-Mass-Spec/Informed-
Proteomics and https://github.com/PNNL-Comp-Mass-Spec/
LCMS-Spectator and as Supplementary Software. Each reposi-
tory has a readme and wiki to describe installation and usage. 
Binary executables and installers are available at: https://github.
com/PNNL-Comp-Mass-Spec/Informed-Proteomics/releases and 
https://github.com/PNNL-Comp-Mass-Spec/LCMS-Spectator/
releases. A tutorial is available at https://github.com/PNNL-
Comp-Mass-Spec/Informed-Proteomics/wiki/MSPathFinder-
Tutorial and as a Supplementary Protocol.

A Life Sciences Reporting Summary for this paper is available.

Data availability statement. All data sets are available in the 
MassIVE proteomics repository under identifier: MSV000080257. 
Source data files are available for Figures 3–6.
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Author Correction: Informed-Proteomics: open-source software package for  
top-down proteomics
Jungkap Park, Paul D Piehowski   , Christopher Wilkins, Mowei Zhou   , Joshua Mendoza, Grant M Fujimoto,  
Bryson C Gibbons, Jared B Shaw, Yufeng Shen, Anil K Shukla, Ronald J Moore, Tao Liu, Vladislav A Petyuk   , Nikola Tolić, 
Ljiljana Paša-Tolić, Richard D Smith   , Samuel H Payne    and Sangtae Kim   

Correction to: Nature Methods 14, 909–914, https://doi.org/10.1038/nmeth.4388 (2017), published online 7 August 2017.

In the version of this article initially published, the authors erroneously reported the search mode that was used for ProSightPC 3.0 in 
the Online Methods and in Supplementary Table 3.

The results presented in Fig. 5 were obtained with ‘absolute mass’ search mode, not ‘biomarker discovery’ search mode. The ‘bio-
marker discovery’ search mode of ProSightPC 3.0 looks for subsequences of those contained in the annotated proteoform database  
(e.g., truncated forms from degradation and/or cleavage). This search mode is expected to generate similar numbers of identifications as 
Informed-Proteomics, but is also expected to take dramatically longer (~480 CPU hours). Unfortunately, because of these heavy compu-
tational requirements, the authors were unable to complete an analysis using this search mode. They chose to use ‘absolute mass’ mode 
to illustrate the effect of search mode and database choice on the results. ‘Absolute mass’ mode is the most restrictive of the search modes 
illustrated in Fig. 5, as it searches only for proteoforms explicitly listed in the proteoform database within a user-defined mass tolerance.

In addition, in the supplementary information originally published online, Supplementary Table 3 incorrectly stated that ProSightPC 
v3.0 was used in ‘biomarker discovery’ mode. ‘Absolute mass’ mode was the mode actually used in this comparison. These errors have 
been corrected in the HTML and PDF versions of this article and in the associated supplementary information.
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