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Although the gut microbiome plays important roles in host
physiology, health and disease1, we lack understanding of the
complex interplay between host genetics and early life environ-
ment on the microbial and metabolic composition of the gut. We
used the genetically diverse Collaborative Cross mouse system2

to discover that early life history impacts themicrobiome compo-
sition, whereas dietary changes have only a moderate effect. By
contrast, the gut metabolome was shaped mostly by diet, with
specific non-dietary metabolites explained by microbial metab-
olism. Quantitative trait analysis identified mouse genetic trait
loci (QTL) that impact the abundances of specific microbes.
Human orthologues of genes in the mouse QTL are implicated
in gastrointestinal cancer. Additionally, genes located in mouse
QTL for Lactobacillales abundance are implicated in arthritis,
rheumatic disease and diabetes. Furthermore, Lactobacillales
abundance was predictive of higher host T-helper cell counts,
suggesting an important link between Lactobacillales and host
adaptive immunity.

To decipher the respective contributions of host genetics, early life
history and diet on the gut microbiome we leveraged 30 independent,
genetically distinct Collaborative Cross (CC) mouse strains (Fig. 1a
and Supplementary Table 1), a large multi-parental panel of recom-
binant inbred strains with defined single nucleotide polymorphisms
(SNPs) that captures ∼90% of the known variation in laboratory
mice. Sixteen strains were maintained in a specific pathogen-free
(SPF) facility (Built Environment 1, BE1), and 14 additional
strains were maintained in a barrier facility that screens for
additional infectious agents, including Pasteurella pneumotropica
and Helicobacter (Built Environment 2, BE2). Mice were fed the
same water and food sources at both locations. Faecal samples
were collected at 12 weeks of age (Fig. 1a) and the gut microbiome
composition was characterized by sequencing 16S rRNA genes (V4
hypervariable region; Supplementary Table 2).

Unsupervised hierarchical clustering of the 300 most abundant
operational taxonomic units (OTUs) revealed two main clusters,
each associated with a specific BE (Supplementary Fig. 1a), indicating
a strong effect of BE on microbiome composition. We observed
differences in the relative abundances of specific microbial families

(Fig. 1b–d and Supplementary Table 3). Specifically, there were
higher relative abundances of Alcaligenaceae, Verrucomicrobiacae,
Erysipelotrichaceae and Deferribacteracea and lower relative abun-
dances of Clostridiales in BE1 compared to BE2. The consistency
of BE-specific microbial signatures across genetically diverse CC
strains strongly suggests that the BE influence on the gut microbe
composition is at least in part independent of genetic background.

Mice from the same 30 CC strains were then transferred to a
third SPF facility (BE3) to investigate the stability of the gut micro-
biome in response to a new environment where all mouse strains
were subjected to the same conditions of husbandry. Faecal
samples were collected from mice at 2, 4, 6 and 8 weeks after
arrival at BE3, and the faecal microbiome was profiled by 16S
sequencing (Fig. 1a). Principal coordinate analysis (PCoA) using
Bray–Curtis distance revealed that the microbiome was stable and
remained largely defined by the source BE, even after 8 weeks in
BE3 (Fig. 1e and Supplementary Fig. 1b). To further assess the per-
sistence of the source building effect on the microbiome, we per-
formed 16S rRNA gene sequencing of faecal samples from eight
CC strains born at BE3 (that is, second generation). PCoA con-
firmed that mice born at BE3 maintained their parents’ source
building microbial signature (Fig. 1e). We conclude that the gut
microbiome, at least partially shaped by early life history, is persist-
ent and shared between parents and their offspring, even when chal-
lenged with a new environment. Future studies need to be
conducted to investigate the stability of the source building
microbial signature across multiple generations.

One of our main aims was to determine the influence of host
genetics on the gut microbiome. Hierarchical clustering of OTUs
revealed that the majority of samples collected from the same
strains of mice at different time points clustered together, suggesting
that host genetics plays a role in determining the gut microbial com-
position (Supplementary Fig. 2). To identify genetic loci associated
with specific OTUs, we performed independent quantitative trait
loci (QTL) analyses by interrogating 50,107 SNPs across the
genome (Supplementary Table 4). This analysis identified 169
joint QTL intervals that were significantly associated with the abun-
dances of ten or more OTUs (−log10(P value) > 6) (Fig. 2a and
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Supplementary Table 5) and revealed a complex host genetic archi-
tecture of the gut microbiome composition (Supplementary Fig. 3).
These genetic linkages were predominantly driven by the most
abundant representative in the OTU data—a member of the
Clostridiales (family unknown, Fig. 2a, green track). Abundances of
other bacterial families were also controlled by multiple genetic loci
(Fig. 2 and Supplementary Table 6). Interestingly, the major histo-
compatibility complex (MHC) locus on chromosome 17 was signifi-
cantly (P < 0.0001) linked to the abundance of Lactobacillaceae
(Fig. 2b,c), consistent with an earlier report showing that MHC vari-
ation shapes microbial communities in the mouse gut, in particular
the genus Lactobacillus3. Our findings also support earlier reports
showing an association of the gut microbiota with host genetic
variations4–7. However, on leveraging the CC mice we identified
over a hundred novel genetic loci that impact the gut microbiome.

To investigate the association of the gut microbiome with host
phenotypes and behaviour, we measured body weight, rotarod per-
formance and immune cell abundance in the mice. Random forest
analysis indicated that Lactobacillaceae abundance was predictive of
T cell counts in peripheral blood (Fig. 3a; adjusted P = 0.02), driven
predominantly by T-helper cell levels (adjusted P = 0.00087) but not
T-suppressor cell levels (Fig. 3a). Modest associations were found
for B-cell counts, body weight and rotarod performance
(Supplementary Fig. 4). These results are consistent with reports

that (1) Lactobacillus consumption is associated with an increase
in CD4 counts in patients with HIV8,9, (2) Lactobacilli can regulate
behaviour in mice10 and (3) Lactobacilli can serve as natural enhan-
cers of cellular immune responses11. Our results, using a non-
targeted approach to assess the microbiome, extend these findings
by demonstrating that only Lactobacilli have statistically significant
associations with T cell counts, emphasizing the importance of
Lactobacilli for health of the host.

The QTL that were specifically associated with Lactobacillaceae
abundance in mice displayed significant enrichment for genes
implicated in autoimmune disorders such as diabetes and arthritis
(Fig. 3c). Examples of candidate genes in QTL linking
Lactobacillus QTL with human phenotypes (Fig. 2b) include
Prospero Homeobox 1 (Prox1) on chromosome 1 (associated with
type 2 diabetes, obesity and fasting glucose levels), Catenin Alpha 3
(Ctnna3) on chromosome 10 (associated with serum pyroglutamine
metabolite levels and arrhythmogenic right ventricular dysplasia,
familial 13) and Insulin Like Growth Factor 2 MRNA Binding
Protein 2 (Igf2bp2), Transformer 2 Beta Homolog (Tra2b) and ST6
Beta-Galactoside Alpha-2,6-Sialyltransferase 1 (St6gal1) on chromo-
some 16 (associated with type 2 diabetes and colon adenocarcinoma
and colorectal cancer)12–16. These results suggest an important
role for host regulation of Lactobacillaceae abundance in health
and disease and are concordant with recommendations for
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Figure 1 | Early life environment determines gut microbiome structure. a, Schematic of the study design. b, Normalized relative abundance of the most
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the use of probiotics containing Lactobacillus species as adjunctive
therapies for the treatment of rheumatoid arthritis and diabetes17,18.

Candidate genes located within the boundaries of the 169 ident-
ified QTL (2,699 genes; Supplementary Table 5) were analysed to

assess additional human relevance. We found that genes controlling
the abundance of specific members of the microbiome were signifi-
cantly enriched in human gastrointestinal cancer (1.02 × 10−7 < P <
3.17 × 10−19), inflammatory responses (1.75 × 10−3 < P < 7.15 × 10−6)
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and lipid metabolism (2.38 × 10−3 < P < 6.35 × 10−5) (Fig. 3b), pro-
viding further evidence for the involvement of both host genetics
and the gut microbiome in health and disease. Genome-wide associ-
ation (GWA) analysis was used to identify the genetic loci associated
with abundance of microbial taxa at the family level. We found 13 of
the taxa associated with QTL that contained >100 genes
(Supplementary Table 7), of which 7 were significantly enriched
for human genes implicated in gastrointestinal tract cancer
(Fig. 3c). Comparing the mouse genes to a previously compiled
list of human disease-related genes identified by GWA studies
(GWAS)19, a significant overlap was observed for genes associated
with Crohn’s disease, coeliac disease, ulcerative colitis and type 2
diabetes (Fig. 3d and Supplementary Table 8). We conclude that
candidate mouse genes within the loci identified as controlling
microbiome abundance exhibit significant overlap with human
genes previously linked to disease states, suggesting that the
microbiome may contribute to their aetiology.

Investigation of the faecal metabolite composition allowed us
to determine the influence of early life environment and diet on
the gut metabolome. For these analyses we focused on 24 CC
strains that were housed in BE1 and BE2 (fed Diet 2, Labdiet
Prolab 3500) and in BE3 (fed Diet 1, Labdiet Picolab 5053).
Although the two diets have similar macronutrient compositions,
the metabolite profiles are quite distinct (Fig. 4a, lower panel;
Supplementary Table 9). Extracts from the stool samples were

analysed by gas chromatography–mass spectrometry (GC–MS)
and metabolites were identified by comparison to a reference
library containing mass spectral and retention index information
for over 850 metabolites20. A total of 122 unique metabolites
were identified, including amino acids, sterols, mono- and disac-
charides, glycolytic and tricarboxylic acid cycle intermediates,
short- and long-chain fatty acids, and products of microbial
metabolism. An additional 110 peaks were detected but not
identified (Supplementary Table 10).

The metabolites significantly clustered by diet, with differences
in relative abundances of proteinogenic amino acids, mono- and
disaccharides, sterols and fatty acids driving the separation
(Fig. 4a,b and Supplementary Fig. 5a). To validate that the gut meta-
bolome is primarily influenced by diet, four CC strains were main-
tained on Diet 1 for one week, then on Diet 2 for one week, before
switching back to Diet 1 for an additional week. Fresh faecal samples
were collected at the end of each week for metabolome profiling
(Supplementary Table 11). Although only subtle changes were
observed in microbial abundance (Supplementary Fig. 5b; P = 0.273),
there was a major and reversible shift in the metabolome profile
that coincided with dietary changes (Fig. 4c), demonstrating that
the metabolome profile is largely influenced by diet.

We used a metabolic modelling-based framework, MIMOSA21,
to identify metabolites whose variation across samples is explained
by variation in the metabolic potential of the microbiome, based on
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Figure 3 | Association of microbial abundance with host phenotypes and their implications for human disease. a, Random forest analysis to assess the
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differences in species composition and estimated gene composition.
By applying MIMOSA to the pooled set of metabolome samples
from both diets, we found that variation in dietary metabolites
(compounds detected in chow pellets by metabolomics) was
poorly explained by microbial community composition
(Supplementary Tables 9 and 12). However, the variation in a
high proportion of non-dietary metabolites (47.6%; 10 out of
21 metabolites not detected in chow) was consistent with predicted
community metabolic potential (CMP), suggesting a substantial role
for microbial metabolism in metabolite synthesis and/or degra-
dation (Supplementary Fig. 6a). Specifically, the observed variation
in many gut metabolites was consistent with the predicted CMP,
including hypoxanthine, L-homoserine, 5-hydroxyindoleacetate
and cholate (Supplementary Figs 6 and 7). More metabolites

varied consistently with predicted CMP in samples from the nutri-
tionally simpler Diet 2, suggesting that the microbiome may have a
larger and more direct impact on the faecal metabolome in this
context. The predicted CMP was driven by the metabolic potential
of a diverse set of taxa, including OTUs from the phyla Firmicutes,
Bacteroidetes and Actinobacteria (Fig. 4d and Supplementary Figs 7
and 8). Interestingly, the measured concentrations of several metab-
olites present in one or both diets were negatively correlated with
predicted CMP (mostly on the basis of microbial degradation
enzymes; Supplementary Fig. 6b), indicating that food containing
these metabolites could drive the expansion of microbes that use
them efficiently. These findings highlight the combined impacts of
diet and microbiome composition on the gut metabolome and the
complex interactions between them.
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Figure 4 | Dietary and microbial influences on metabolite profiles. a, Top: diet is the main contributor to metabolite profiles. Bottom: GC–MS
chromatograms of diet 1 and diet 2. PCoA of metabolite profiles were measured in faecal samples of 24 CC strains maintained on two different diets
(P <0.001, R2 = 0.16597, ADONIS). b, Relative abundance of select metabolites in faecal samples from individual mice fed on different diets. Error bars indicate
mean ± s.e.m. c, Diet is a primary contributor to metabolite profiles and correlates strongly with principal coordinate 1. Metabolite profiles were measured in
faecal samples of four CC strains (males and females were analysed separately for each strain) maintained for one week on standard chow (Labdiet Picolab
5053; diet 1) or one week on autoclaved chow (Labdiet Prolab 3500; diet 2), followed by one week on standard chow (P < 0.001, R2 = 0.14237 between two
diets, ADONIS). d, Metabolic modelling-based taxonomic contributors to metabolite variation for mice on the autoclaved Labdiet Prolab 3500 chow (BE1 and
BE2). Individual OTUs shown (circles; coloured at the family level) are those whose metabolic capacity and variation across samples are consistent with the
metabolic potential of the entire community and with measured variation in the linked metabolites (squares). Green and orange clouds behind OTU
sub-networks indicate Clostridiales and Bacteroidales enrichment. Edge colour indicates whether a given OTU potentially impacts a certain metabolite variation
via synthesis (blue edges), degradation (green edges) or both (purple edges).
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Our studies using the CC mouse cohort and an integrated,
systematic analysis paradigm revealed how gut microbiome compo-
sition and function are shaped by interactions between host
genotype, early life environment and diet, and identified several
host genetic loci that regulate microbial abundance. Using multi-
variate analysis we quantified the relative influence of environment
and genetics on microbial abundance and determined that genetics
plays a larger role than environment (Supplementary Fig. 9). This
study provides a foundation for future investigations of how recipro-
cal interactions between host genotype, environmental factors, gut
microbiome and metabolome compositions contribute to a wide
spectrum of mammalian traits and disease susceptibility.

Methods
Mouse husbandry and faecal sample collection. Mice were obtained from the
Systems Genetics Core Facility at the University of North Carolina (UNC)22. Before
their relocation to UNC, CC lines were generated and bred at Tel Aviv University in
Israel23, Geniad in Australia24 and Oak Ridge National Laboratory in the USA25. All
studies were performed on young adult mice (age 9–15 weeks). For each of 30 strains
(for strain information and number of replicate samples see Supplementary Table 1),
two males and two females were housed separately and maintained on PicoLab
Rodent Diet 20 (5053). The number of CC strains used is sufficient to detect genetic
association. The investigators were not blinded in the analysis of the phenotypes
because the correct genotype of CC mice was needed to perform genotype–
phenotype and phenotype–phenotype association analysis. Mice from different
strains were always housed in different cages. We observed a subtle change in
microbial composition in samples collected 16 h after a cage change compared to
<2 h. However, to collect sufficient mouse faecal material for combined microbiome
and metabolomic analysis, all faecal samples were consistently collected from each
cage, avoiding areas clearly contaminated with urine, 16 h after cage change at 2, 4, 6
and 8 weeks after arrival at Lawrence Berkeley National Laboratory (LBNL). All
animal procedures were approved by the UNC Chapel Hill or LBNL Institutional
Animal Care and Use Committees.

Faecal samples were stored at −80 °C for downstream metabolite and microbial
analyses. Faecal samples from different strains were collected in the same way to
avoid collection and storage biases. Genotyping data for CC mice were obtained
from UNC (http://csbio.unc.edu/CCstatus/index.py).

Faecal samples were collected from a different cohort of genetically identical
young adult mice at UNC Chapel Hill (maintained on Labdiet Prolab 3500) to
determine the effect of environment on the faecal microbiome and metabolome.
Faecal samples were then manually homogenized on ice with a micropestle, 0.25 g
was used for DNA isolation, 0.05 g for metabolite extraction and the remainder
stored at −80 °C.

Microbiome analyses. Genomic DNA was extracted from 0.25 g of the
homogenized faecal samples using the PowerSoil DNA Isolation Kit (http://www.
mobio.com/) according to the manufacturer’s instructions. PCR amplification of the
V4 region of the 16S rRNA gene was performed using the protocol developed by the
Earth Microbiome Project (http://press.igsb.anl.gov/earthmicrobiome/
empstandard-protocols/16s/) and described in ref. 26 using updated primers
described in ref. 27. Amplicons were sequenced on an Illumina MiSeq using the
150 base pair (bp) MiSeq Reagent Kit v2 (http://www.illumina.com/) according to
the manufacturer’s instructions.

QIIME 1.9.1 was used to join, quality filter and demultiplex libraries from three
MiSeq runs28,29. VSEARCH 1.1.3 was used to dereplicate, sort by abundance, remove
single reads and then to cluster at 97% similarity. VSEARCH was also used to
check these clusters for chimaeras and construct an abundance table by mapping
labelled reads to chimaera-checked clusters30–32. Taxonomy was assigned to the
centroid of each cluster using the Qiime script assign_taxonomy.py and the
Greengenes database. The centroids were aligned to Greengenes with PyNast and a
phylogenetic tree was constructed using FastTree33–35.

Statistical analysis and visualization were performed in R using the packages
Phyloseq, DESeq2 and ggplot2. Both Bray–Curtis distances and UniFrac distances
were used to compare microbial communities36–39.

QTL mapping. 16S data from 30 strains (253 samples) were used in the analysis.
OTUs showing significant differences in abundance (t-test P < 0.01 or DESeq2
adjusted P < 0.01) based on source building were filtered from the data, leaving 644
OTUs (of a total of 3,786). These OTUs represented 15% of total sequencing data.
Genetic association was assessed for each OTU separately, and OTUs were merged at
the family level. Genotype data for 77,597 SNPs were obtained from the UNC
Systems Genetics Core website (http://csbio.unc.edu/CCstatus/index.py) and filtered
for minor allele frequency >4 of the 30 CC strains, leaving 50,107 SNPs. At each SNP,
normalized OTU counts from CC samples were assigned to their respective alleles.
We then used the Mann–Whitney U test40 to test the significance of associations
between OTU abundance and allele classes at each SNP. We used permutation to

ascertain the significance of our results on an individual OTU basis to obtain a
nonparametric estimate of the false discovery rate (FDR), as follows. For data
combined at the family level, 15 OTUs in the upper and lower quintiles of P value
sums across all SNPs (a proxy for signal of genetic association) and 15 OTUs with
the lowest sums of P values, we performed 1,000 permutations of strain identifiers
and then computed the same statistic at each SNP (Supplementary Fig. 10). This
confirmed that a cutoff of −log10(P value) > 6 was a conservative threshold with a
genome-wide FDR of <1%.

QTL were defined by merging SNPs with −log10(P value) > 6 within 1 Mb into
multi-SNP intervals. Those with only one SNP were removed, and the remaining
QTL boundaries were extended to the adjacent neighbouring SNPs. Putative
candidate genes were defined as those genes (gencode.vM741) partially overlapping
with or contained within a QTL locus. The list of candidate genes was analysed using
Ingenuity Pathway Analysis, converted into human homologues using the MGI
homology resources42 (downloaded October 2015) and compared to human GWAS
downloaded from www.ebi.ac.uk/gwas (ref. 19). The significance of overlap between
mouse and human candidate genes was calculated using ConceptGen (http://
conceptgen.ncibi.org/core/conceptGen/index.jsp). Visualization of genetic
association and QTL was performed in R using ggplot2 and ggbio and with
Circos39,43,44.

OTU association with host phenotypes. Whole blood was collected into
ethylenediaminetetraacetic acid-coated tubes at 12 weeks of age in a cohort of 267
mice across 16 CC strains. Complete blood cell counts were acquired using a
HemaVet950FS. Lymphocyte subpopulations were identified by fluorescence-
activated cell sorting (FACS) using cell- specific markers for B cells, T cells, T-helper
and T-suppressor cells. Antibodies (BD Biosciences) used for this analysis were rat
anti-mouse CD3-PE, rat anti-mouse CC45R/B220 PerCP, rat anti-mouse CD8a
antibody APC and rat anti-mouse CD4 antibody Alexa 488. The percentages of cells
in blood were determined on a BD FACS Calibur (Becton Dickinson) and data were
analysed with FlowJo software (Tree Star). Body weight and rotarod performance
were measured as described previously45 at 10 weeks of age for a cohort of 365 mice
across 16 CC strains.

We modelled data collected in mouse strains as statistically exchangeable to
enable analysis in cases where we collected phenotypic and normalized 16S data on
mice from the same strain, but not the same mice. Random pairs of phenotypic and
normalized 16S data (combined at the family level) were sampled 1,000 times and
each subjected to random forest regression analysis (microbial abundances as
predictors, phenotype as the response vector). Analysis was performed using the R
randomForest implementation46 (ntree = 1,000, all other parameters set to default).
It is necessary to resample 1,000 times to model variance associated with random
pairing under the exchangeability model. We then generated null distributions
(n = 1,000) by permutation of strain identifiers (after sampling to reproduce paired
data). For each taxonomic family, observed and null importance measures
(%IncMSE: % increase in mean squared error) were compared to determine
significance. P values were computed as the natural nonparametric estimate of the
likelihood of the observed distribution under the permuted distribution. Specifically,
for each observed score ui∈Q and the null distribution Q, we computed the rank of
ui∈Q, denoted rQ,i and the empirical quantile under the null pi = (1/n)rQ,i where
n = 1,001, then our final P value is given by P − value = ∑n

i=1 (1/n)pi. Note that
Pi = (1/n)rQ,i. This P value has the desirable property that it is bounded below by the
sample size simulated for the null (and of course bounded above by 1). Given that it
is nonparametric, it is conservative. Tukey boxplots of %IncMSE were generated
using the default method in ggplot2 (ref. 39).

To estimate the proportion of OTU variation explained by genetics and source
BE, SNPs were selected where sufficient statistical power exists for modelling (with
comparable allelic frequencies for source BE1 and BE2 (0.4 ≤ fraction of allele
frequency in BE1 and BE2 ≤ 0.6) from joint QTL intervals). SNPs with ambiguous
or heterozygous genotypes for any strain were filtered. For each interval, a
representative SNP with the lowest sum of Mann–Whitney U P values (across
OTUs) was selected. OTU counts were then modelled as a linear function of SNP
genotype (105 SNPs) and source BE using the glm() function in R. Data were
subsampled (leaving out 20% of the data) and the model was fitted 100 times. For
each OTU, mean percent deviance explained by BE and combined SNPs
was reported.

Extraction of metabolites from faecal homogenates. Metabolites were extracted
from mouse faecal samples using a methanol/sonication method (for strain
information and number of replicate samples see Supplementary Table 1)47. Briefly,
portions of the homogenized samples were weighed and extracted with cold
(−20 °C) methanol proportionally (1 ml solvent added per 100 mg homogenate) in a
microcentrifuge tube. The average weight of the homogenized faecal samples was
69.3 ± 26.3 mg (mean ± standard deviation, s.d.) and the methanol extracts
contained the same theoretical concentration of metabolites. A 100 µl volume of
each methanol extract was transferred to glass vials and dried in a speed-vac
concentrator (Labconco CentriVap Benchtop Vacuum Concentrator). Dried
metabolite extracts were chemically derivatized using a modified version of the
protocol used to create FiehnLib20. Briefly, dried metabolite extracts were dried again
to remove any residual water if they had been stored at −80 °C. To protect carbonyl
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groups and reduce the number of tautomeric isomers, 20 µl of methoxyamine in
pyridine (30 mg ml−1) was added to each sample, followed by vortexing for 30 s and
incubation at 37 °C with generous shaking (1,000 r.p.m.) for 90 min. At this point,
the sample vials were inverted once to capture any condensation of solvent at the cap
surface, followed by a brief centrifugation at 1,000g for 1 min. To derivatize hydroxyl
and amine groups to trimethylsilylated (TMS) forms, 80 µl of N-methyl-N-
(trimethylsilyl)trifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS)
were then added to each vial, followed by vortexing for 10 s and incubation at 37 °C
with shaking (1,000 r.p.m.) for 30 min. Again, the sample vials were inverted once,
followed by centrifugation at 1,000g for 5 min. The samples were allowed to cool to
room temperature and analysed the same day.

An Agilent GC 7890A coupled with a single quadrupole MSD 5975C (Agilent
Technologies) was used and the samples were blocked and analysed in random order
for each experiment. An HP-5MS column (30 m × 0.25 mm × 0.25 µm; Agilent
Technologies) was used for untargeted metabolomics analyses. The sample injection
mode was splitless and 1 µl of each sample was injected. The injection port
temperature was held at 250 °C throughout the analysis. The GC oven was held at
60 °C for 1 min after injection and the temperature was then increased to 325 °C by
10 °C min–1, followed by a 5 min hold at 325 °C (ref. 48). The helium gas flow rates
for each experiment were determined by the Agilent Retention Time Locking
function based on analysis of deuterated myristic acid and were in the range of
0.45–0.5 ml min–1. Data were collected over the mass range 50–550 m/z. A mixture
of fatty acid methyl esters (FAMEs) (C8–C28) was analysed once per day together
with the samples for retention index alignment purposes during subsequent
data analysis.

GC–MS raw data files were processed using the Metabolite Detector software,
version 2.5 beta (ref. 49). Briefly, Agilent .D files were converted to netCDF format
using Agilent Chemstation, followed by conversion to binary files using Metabolite
Detector. Retention indices (RIs) of detected metabolites were calculated based on
analysis of the FAMEs mixture, followed by their chromatographic alignment across
all analyses after deconvolution. Metabolites were initially identified by matching
experimental spectra to an augmented version of FiehnLib20 (that is, the Agilent
Fiehn Metabolomics Retention Time Locked (RTL) Library, containing spectra and
validated retention indices for over 700 metabolites), using a Metabolite Detector
match probability threshold of 0.6 (combined retention index and spectral
probability). All metabolite identifications were manually validated to reduce
deconvolution errors during automated data-processing and to eliminate false
identifications. We propose that this approach results in a metabolite identification
confidence of Level 1.5 (Level 1 is highest, Level 4 is lowest), according to the
guidelines recommended by the Metabolomics Standards Initiative Chemical
Analysis Working Group of the Metabolomics Society50. The library used to identify
metabolites was generated by an external laboratory, but this library contains both
retention indices and mass spectra from analyses of authentic chemical standards
and our analyses were performed using methods identical to those used to create the
library. The NIST 14 GC–MS library was also used to cross-validate the spectral
matching scores obtained using the Agilent library and to provide identifications of
unmatched metabolites (Level 2 identifications). The three most abundant fragment
ions in the spectra of each identified metabolite were automatically determined by
Metabolite Detector and their summed abundances were integrated across the GC
elution profile; fragment ions due to trimethylsilylation (that is, m/z 73 and 147)
were excluded from the determination of metabolite abundance. A matrix of
identified metabolites, unidentified metabolite features (characterized by mass
spectra and retention indices and assigned as ‘unknown’; Level 4 identifications) and
their abundances was created for subsequent data analysis. Features resulting from
GC column bleeding were removed from the data matrices before further data
processing and analysis.

Metabolic modelling-based taxonomic and metabolomic integration. We
produced a closed-reference OTU table using VSEARCH to align reads from all
77 samples with both sequencing and metabolomics data to the preclustered
Greengenes database. We rarefied the OTU table to 4,000 reads and used it as input
to MIMOSA (http://elbo.gs.washington.edu/software_MIMOSA.html), a
framework for integrating taxonomic and metabolomic microbiome data21.
MIMOSA uses genomic data, metabolic information and taxonomic composition to
predict the community-wide biosynthetic and degradation potential for each
metabolite in each sample and identifies metabolites whose variation across samples
is consistent with (and can be explained by) variation in this predicted metabolic
potential. Metagenome content was inferred for each sample using PICRUSt51 and
normalized using MUSiCC52. From these data, a community-wide metabolic model
was constructed for each sample and community metabolic potential (CMP) scores
were calculated, representing the relative capacity of the predicted community
enzyme content in that sample to synthesize or degrade each metabolite. We then
compared variation in these scores across samples to variation in measured
metabolite concentrations using a rank-based Mantel test, to identify metabolites for
which variation in concentration across samples is positively correlated (consistent)
with variation in community metabolism (as predicted by the CMP scores), using a
local FDR q-value less than 0.01 as the significance threshold. We similarly identified
metabolites for which variation in concentration across samples is negatively
correlated (contrasting) with CMP scores, with the same significance threshold. To

identify potential contributing OTUs for each metabolite, we calculated the Pearson
correlation between the CMP scores obtained for a given metabolite across samples
using the entire community and the CMP scores generated based on each species by
itself (that is, recalculating the metagenome content and CMP scores based solely on
the abundance of this species). OTUs for which this correlation coefficient for a
given metabolite was greater than 0.5 were classified as potential contributing OTUs
for that metabolite. Additional details about this computational framework have
been described previously21.

Data availability. Sequence data are available at the Qiita management platform
(https://qiita.ucsd.edu/study/description/10500). Scripts to replicate this analysis are
available at https://github.com/pnnl/jansson_snijders_collaborative_cross. All raw
GC–MS data are available via the MetaboLights metabolomics data repository
(http://www.ebi.ac.uk/metabolights/MTBLS345, ID MTBLS345).
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