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5G Enabled Transformative Co-design and
Co-simulation for Grid Decarbonization

Compute + Communication + Data

Devices/loT Access 5G Edge Network Core Data Center/Cloud/HPCC

5G for Grid Edge

» Edge Streaming Analytic
E j] * Asset Health
* Prosumer volatile
computing

* Private Zone
= Extreme grid device density

5G for Energy Zone
* Data reduction o
» Coordinated edge computing

5G-uRLLC

5G-eMBB & mMTC
Ultra-reliable Low-latency Communication

High Throughput & Connectivity, Network Slicing

©

5G for Grid Intercon- Region 5G for Regional Utility

Interconnection nection & Industry =

« Advanced sensing & » Prosumer Resilience
Low-latency Control * Trans. + Dist. + é

* Extreme events Edge Orchestration

emergency response
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5G Digital Continuum

S I
Pl loT/Edge | HPC/Cloud
I Size Nano Micro Milli Server Fog Campus Facility
Example égaa{rr]%i: PaBrgi;:(l)%io Array of Things Linux Box CoB-IIggaetsed 1038;?3;1‘9 Datacenter
Memory 256 256K 16GB 32GB 256G 32TB 16PB
Network BLE WiFi/LTE WiFi/LTE 1 GigkE 10GigkE 40GigkE N*100GigE
Cost S5 $30 $600 $3K S50K S2M $1000M
Count = 10° | Count = 10!
a Size = 101 Size = 10°
Sensors
New . X -
Programming 1 == A
Model and . ‘ /
Runtime :

)e\)ek 7E___——L/ﬁe R

Credit: DOE SC ASCR 5G-enabled Energy Innovation Workshop Report, 2020.
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forwest DG INNovation Studio @ PNNL AW C &
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* Online October 2020

» First National Lab with
Ultrawideband Verizon 5G

* Full R&D, modeling & simulation,
testing/eval, development and
demo capabilities

« Edge and cloud compute
resources

» 1,000 sq ft of testing & evaluation
space to support R&D, and
partner demonstration

 Multi-sponsor R&D funded
 Active industry engagement
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https://www.pnnl.gov/projects/awc/5g-innovation-studio

5G testbed 15t example from PNNL: AI/ML enabled
Grid Data Anomaly Detection

5G Studio testbed setup for conceptual
validation and preliminary testing:

Sensor Layer
* Windows OS in VMware
* PlayPDAT: PMU data player
provided by BPA
Communication Layer
* \erizon 5G core, antenna, and MiFi
hotspot.
Data Management Layer

e Windows OS in VMware
* Grid Protection Alliance OpenPDC
* Microsoft SQL Server

T m
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Sensor Layer Data Management Layer
-
sensor data generator QMED.C‘_* =
oy —= - ot
: Procgss ST Store structured
Archived PlayPDAT real—pme data data into database
PMU data (PMU data player) *  Archive and manage
PMU data
a2Tvmware &Y vmware
Simulated Sensor e CXEB  Rcal-time time-series
Environment Server w_ Data Control &
—— —— Management
1 |
7
Ethernet C37.118-2011, | Ethernet
Utility PDC stream

5G Communication Layer

“
5G Base Station

Wireless 5G
verizon’
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5G testbed 15t example from PNNL: AI/ML enabled
Grid Data Anomaly Detection

* Edge server through 5G base station
receives and processes the streaming
PMU data continuously (for 1-hr PMU
archive) from the sensor.

* Online Al/ML model is running at

Anomaly|event
detected

60

59.98

59.998

Zoom in 59.996

Data View 59.994
¥59.992
59.99 3
59.988|,
59.986

individual second, within it the past five
minutes parsed data is ingested to
predict grid frequency behavior of next
five seconds

* 5G hardware and Al/ML works
seamlessly to enable such online Al/ML
based detection implementation

w
o
©
=)

Frequency in Hz

—_— 46 48 50 52 54 56

-@- One step ahead forecast observations
Original observations

59.92 -&5~ Five step ahead forecast observations
—>¢— Historical record event

—f3~ 1dentified event by framework

59.9

0 20 40 60 80 100 120 140 160
Time in seconds
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5G testbed 29 example (in progress): Al/ML
enabled Distribution Grid Fault Detection & Contro

* Leveraged existing DOE EERE SETO funded
e tlot ottt
Feeder ! 5T ¢ - Caa_{

project 34233, adopting/testing their
m Breaker PV Site Bank T~

developed Al/ML algorithm as next 5G
testbed example.

...
Transmission

System

* 5G may enable Al/ML implementation, U Y > A c ?
providing high bandwidth and edge
Vi EPRI DPV J1 Feeder for _+ . |EEE 8500-node test feeder
connectivity, and seamless yet pOWEfoI Learning-based protection T 1\ e '"( with four 5G base station

computing continuum.

* Distribution system requires reliable and
distributed protection elements/algorithms,
to enable customer safety and reliable
operation, as well as supporting significant
new load and generation integration.
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Xiaoyuan Fan, PhD
Senior Engineer & Team Leader,
Power Elactronics
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xiaoyuan.fan@pnnl.gov

902 BATTELLE BLVD

Richland, WA 99354
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And welcome our panelists today:

o

Dr. Mauricio Subieta Dr. Yilu Liu Dr. Qiuhua Huang Dr. Luigi Vanfretti
Chief Technology Officer Governor’s Chair/Professor Associate Professor Professor
Nokia University of Tennessee Colorado School Rensselaer Polytechnic
of Mines Institute
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The reality and future of
5G for Power Utilities

Mauricio SUBIETA, PhD
Energy CTO
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Currently supported use cases

Distribution  ¢* Jll CCTV - Physical | ]
Automation (SCADA il Security and Safety jl Mobile Workforce Advanced Metering

- Traditional and Monitoring Voice, Data, Video Infrastructure (AMI)
IEC 61850) (NERC/CIP)

Superscript

SN Distributed e

Synchrophasors Generation and

and FLISR Storage, EV
Stations

Microgrids and
Home Area
Networks

Smart Poles and f
Sensors

@1 |LMR []
Fallen Power Line Upgrade/Migration Leased Line
Detection to Mission Critical Replacement

PTT/PTV

Drones and UAVs

P oy pE THE GRID EDGE



On the path to 6G... already?

56 56 6c

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

5G standardization

’ ?Iw

WRC-23 agenda item WRC-27 Commercial 6G
on new bands new bands deployment
First 3GPP
6G specification
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5G-Advanced is an evolution, not a revolution

5G-Advanced will deliver on the original expectations for 5G with
enhanced system performance and network efficiency

" EXCELLENCE

User-experienced rate
(Mbps)

1000 A E/\’PANS\O\*

Network energy
A1 efficiency

Peak data rate (Gbps)

6G

> | ocalization (cm)

5G-Advanced will prepare for 6G by bridging
performance, studying the key technology
concepts and supporting early 6G use cases

Reliability €

Connection de nssty\L
(dev/km2)
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5G-Advanced introduces new usage areas, New use Cases,
boosted resiliency and operability

Extending global 5G-Advanced reach for loT
and basic MBB

.

y We;_;ébles, Sensors
UAV traffic, NTN, HAPS forcontinbous

cameras health monitaring

Expansion to support positioning, Time Sync aaS
also without GNSS - enabling new use cases

N
\\~5
< N
e A
: ST
\\ ? 2 UAV Unmanned Aerial Vehicle
- 37 : NTN Non-Terrestrial Network
S{NSSW(‘BHEFHGUVE Rea|—time Asset tracklng, HAPS High Altitude Platform Systems _
=~ 8 : g Gl lobal Navigation Satell /ste .
16:( iency transaction® transportation GNSS Global Navigatio tellite System
solution
) J
cki®¥a | \  BIEE =
&7ESEDGE QIEEE  Cpis
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5G-enabled use cases for electric utilities

Ultra-low latency at scale 5G

<1ms; 99.999% reliability >
=
| Wireline Inherent security =]
Substation process automation connections by dedicated network slices ®
Resilient, secure low-latency comms today S|ngle company network
_ >90% for all kinds of industrial
@ applications
IE [ d— R Critical comms
Intrusion detection Overall costs # of sensors? $ RempVI_ng CO_St A
for greenfield E @ of cabling installation and -
Payback perioda £ maintenance o]
2 = 5 times lower ™ . : : o
= Less reconfiguration time =4
'a' Network Slicing @ Break ¢ R fi fi o |_ d . . =
= reak even for econfiguration 0
AR-enhanced r& wireline replacement cycle sg ® €ss pro uction CapaCIty

overprovisioning

maintenance -
1 year Payback periodN
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Thank youl!

Questions?
* Contact
Mauricio SUBIETA, PhD

Mauricio.Subieta@Nokia.com
linkedin.com/in/msubieta
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New Prospective %
on Grid Edge
Sensing

Yilu Liu, UT/ORNL Governor Chair
Liu@utk.edu
April 2023
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Deployed Grid Edge Monitors in US and World Wide

Icelend.

North
Atlantic
Ocean

Mali_ Niger Sudan
chad

Nigeria

RC.

Indonesia Papua New
Tonzania Eines.

Angola L
¢ {
Nerbia thdisn |
Madagasear
South Batswy Ocean |
Atlantic |
Ocean sou |
|
New |
|
|

Scotsdale

Tempe

@ In Service

Live data streaming

s https://fnetpublic.utk.edu/

@ Under Deployment
Q Desired Location

SHAPE THE GRID EDGE
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https://fnetpublic.utk.edu/

**  Edge Sensors for Transmission Level Dynamics

Florida Generator Trip Replay from Measurement

Flonda Blackout Movie.
Time: 18:09.4.4 UTC 60.000G Hz

L i : : 1 mUva ITYof
TENNESSEE 11 EEIJr RI])CI

Latitude, degrees.

Frequency, Hz

3
18:09.04 18:09:09 18:09:13 18.09:17 18.09.22 18:09:26
Time, UTC

- (37.2578,86. 979&)
EI Generator mp 640(MW)

Ay
= Y9

Event
location

£ oy
Y & Fwer

New York Continental Europe Saudi Arabia

] North

Central ' East
West & South v.s. cem o
. Central & East
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Oscillation
damping
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Grid Edge Needs High Speed Monitors

e PMU failed to capture high
N sosf frequency events
S
>
Q 596
3
= 59.51

£ |
i V I'““W "!IM‘;‘;',{“U,'H | b

59.2 -

1
15:30:47.500  15:30:48.000 15:30:48.500 15:30:49.000  15:30:49.500  15:30:50.000  15:30:50.500  15:30:51.000  15:30:51.500

UTC Time Nov 21, 2021

DFRs are trigger based, non-continuous data recording,
Will miss unknow events

SHAPE THE GRID EDGE

syn gen oscillation at ~30 Hz
mechanical triggered by LC
resonance on electrical side.

13 Hz oscillations at two
nearby wind plants.

19 Hz oscillation at island grid
from grid following IBRs.

PV inverter 20/80 Hz
oscillations

Example Oscillations




High-speed Recursive Algorithms Extremely Lo Computation Cost

P v ——

R

|0 second 1/60 second * * |

v/ Measurement rate: kHz vs typical 60 Hz

Sampling Wis?g:w Computation Time (second) .
Rate DFT Proposed
| (cyele) | Algorithm |  Algorithm
e —)  High-Res Algorithm 5 1279 0.002 650x
: 1440 Hz 10 2.396 0.002 1200x
I 20 4611 0.002 2300x
: r Point-on-wave grid signal 5 2.590 0.002 1300x
| 2880 Hz 10 4.870 0.002 2400x
:\ '};I "—‘ —‘ oo @” “ i 20 9.240 0.002 4600x
fi Freq | Freq """"Fre'ﬂ i v' ~ 3 orders of computation t'ime reduction compared
Bt Est B to popular DFT based algorithms.
I
I
|

____________________ 7

m Point-on-wave Frequency Estimation

3 | v Easy hardware integration into grid edge devices.
.
High Computational Low Measurement | Extreme Low Ultra-high . P .
Cost Rate ] Computational Cost Measurement Rate v" Enhanced grid edge visibility, high-frequency event
detection, accurate RoCoF, fast DER

\

control/protection, stability predication.

ﬁE SHAPE THE GRID EDGE
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UTK New Generation Grid Edge Monitor

e Continuous syn wave up to 36k s/s
* Voltage and current

e 1440 s/s phasor

* Ethernet or wireless

e GPS time synchronization

 5G communication possible

NS - * 5G time synchronization coming....

AL SHAPE THE GRID EDGE




Thanks
Attentio

DRNL Governor Chair
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IEEE GridEdge Technical Panel
5G-Enabled Grid Edge for Immersive Al
Applications

5G and Al For
Grid Emergency
Control

Qiuhua Huang
giuhuahuang@mines.edu

Glih;% @ IEEE
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Future grid demands intelligent and
faster emergency control

» Faster dynamics due to increasing penetration of inverter-
based resources (IBRs) and reduced system strength(e.qg.,
frequency response during South Australia blackout)

. ) . S : South Australia blackout [1
« Wide-area measurement is critical for achieving intelligent L

and effective grid emergency control

(c) Example PDF (tq.1)
02 T T T T T

e
&

* More delays to obtain wide-area measurements than local
measurements ol

» The challenge is to ensure acceptable delays even when 005
transmitting a large amount of data

0.055 0.06 0065 007 0075 008 0.085

[1] https://windintegrationworkshop.org/berlin2017/wp- t3a ()
content/uploads/sites/6/2017/11/WIW17_4B_1_Analysis_of_the_South_Australian_Blackout.pdf
[2] F. Wilches-Bernal, et al, “Time Delay Definitions and Characterization in the Pacific DC Intertie Wide Area Damping PMU Slgnal delays in PDCI [2]

Controller”, IEEE PES GM 2017,

ﬁ% SHAPE THE GRID EDGE
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The low-latency of 5G is critical for
time-sensitive emergency control

® latency ® °
351 e jitter ° - o
o]
30 b ®e
@0 237 ° o ° Performance of roundtrip latency and jitter,
€ ° %0 = .
£ 204 . . o ® ogd e . using DER VM as Client and internal
£ N o, ety g . ".. LibreSpeed speed test server [1].
[ J ) [ J
" ® . °
[ J
10 [ ] > ..0 .
° b o ®
S ) P
° e o
6 1'; 1'0 1'5 2l0 2l5 3'0 3'5
Iterations

[1] Fan X,, J.P. Ogle, J.V. Cree, D. Wang, Y. Chen, E.S. Peterson, and T. Fu, et al. 2022. Technical Characterization and Benefit Evaluation of 5G

T m
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Al-based wide-area grid emergency

control

% B 12500

10000

Better in
99.7%

Power system Power system 7500

» Look-up table

Pacific Northwest

NATIONAL LABORATORY

g -
TECHNOLOGIES

CONFERENCE & EXPOSITION

Google v&R Energy % PACIFICORP
SHAPE THE GRID EDGE

Measurements Control Signals Measurements Control Signals 5000
Energy Management System (EMS) Energy Management System (EMS) 2500 H
L . - 4 Y £ L scenarios |
3 ~ -
Q
gysterg( * Some key Y 250
tate J Apply Control Actions monitoring
Rl /' o)y Cortrol Action: | s [Le-e e 2
A z s
» > g ek Select, validate, & 150
|\ frequency, <
- . \ voltage, apply control actions 100
Decision-Making tie-line flows 50
Recommend control T '/
» Operators’ iiscadtoliciii 0 43000 7 /-ab00 -2000 [} 2000
& C" I'j memory & s oz, An Al based decision MSO Reward - UVLS Reward
Oxpariancs %o support tool for
@ a @ » Notebook - ;1\‘_;0 PP
-— — 1\ operators

Objective value (total reward)
differences (positive is better)




Demo in the PacifiCorp System

HADREC DEMO

Generation tripping
for angular transient
stability

70% reduction in
tripped generation
(300 MW vs 1000
MW)
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Challenge and opportunity: connect and
coordinate with resources at the grid edge

Transmission control
center

Focus of the

traditional power 100 to 1000
system operation
and control Utilities/Distribution System Utilities/Distribution System
Operators/ Substations Operators/ Substations
'ﬂ
1,000, 000

DERs/EVs ______________ DERs/ EVs/ DERs/EVs -------------- > DE Rs/EVs
/MGs MGs /MGs /MGs
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Qiuhua Huang
giuhuahuang@mines.edu

Gldi;&ﬂ @ IEEE

TECHNOLOGIES @ COLORADO SCHOOL OF

CONFERENCE & EXPOSITION Fowe & Energy Society M I N ES




®)Rensselaer ¢

A ML-Based Edge
Appliance for Detection of
Converter-to-Grid
Oscillations

<D KAUST

((((

Prof. Luigi Vanfretti

Rensselaer Polytechnic Institute
Troy, NY

http://ALSETLAB.com

Glih;% @ IEEE
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http://alsetlab.com/

Outline

Motivation ‘ l

« Exploiting ML Technologies: Lot e s o ot
 Data Acquisition into ML-hardware. P
» Exploiting Hardware using ;
Conventional (FFT-based) Methods | »-
« Exploiting ML Methods & Hardware W W W
for Classification for Detection AT Ry
4
* HW Testing: -
* Impact of DAQ Chain on ML
Appliance
. Conc|usion5 [ Source: NVIDIA ]
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Motivation

Problem:

Identify oscillations product of the
interaction between power electronic-based
converter controls and the grid (under
changing operating conditions and

topology).

Examples:

Previous Works:

~12 Hz Oscillation between the grid and a wind farm/turbines in Oklahoma [A]

(p.u.)

oz (c)
0.1
0.0 n
0.05
=0.05

08-2403 08-2406 082409 082412 082415 08-2418 08-24 21
Time (MM-DD hh)

Active Power

N
N
>

Wind turbine rotor controller rings
against grid when line in grid trips
(change of impedance) [A]

PV Inverter controller rings against grid
when operating in constant PF mode [B]

N
N
[N)

Reactive Power
(p.u.)
o
o
S

N
=
©

Frequency (Hz)
N
o

N
g
o

03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time (hh:mm)

Power Factor

FFT [A], statistical signal processing-based methods (e.g., energy-based detection [A]), spectral analysis [B], etc. Al/ML and

Pros: experience with “slower” oscillations (e.g., electromechanical mode estimation) = has gained trust from utilities.| 5/xG tech can
Cons: limited on-board computational capabilities on the edge, centralized data collection (e.g., PMU-to-PDC-to-X), help here! @
processing has inherited delays from filtering and RMS-energy computation, signal processing methods needs careful 2\ 1
parametrization/tuning from experts, decision making is slow (human operator driven)... (€

°
ERfl‘ % [A] L. Vanfretti, M. Baudette, J.L. Dominguez-Garcia, M.S. Almas, A. White, and J.O. Gjerde, “A PMU-Based Real-Time Oscillation Detection Application for
o EBG.E Monitoring Wind-Farm Dynamics,” Electric Power Components and Systems, Taylor & Francis, Vol. 44, Iss. 2, 2016.

TECHNOLOGIES
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[B] C. Wang, C. Mishra, K. D. Jones, R. M. Gardner and L. Vanfretti, "Identifying Oscillations Injected by Inverter-Based Solar Energy Sources," 2022 IEEE
Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 2022, pp. 1-5.




Data Acquisition to Exploit ML Edge Hardware

Goal: to exploit onboard edge capabilities of ML Edge HW l
(i.e., here only the NVIDIA Jetson family) to perform GPU- -
Windows PC

based computations (FFT) and deploy ML-based
classification/detection algorithm (after training offline).

Unmanage
Switch

Challenge: AI/ML boards mainly target apps outside power

grid, e.g., autonomous vehicles uses cameras/images. The . :

HW is not “plug-and-play” for our use case. P . i

- Need to develop analog DAQ and data ingestion pipeline : i
(e.g., can’t directly read low voltage/current signals). e

- Need to test components that will affect oscillation detection  sesas e sensi seneraen
at high frequencies, i.e., what is the impact of different
types of ADCs.

T
Ethe t
g

_12CBus |

NVIDIA Jetson TX2

Low-Cost Testing Setup (due to COVID!): ol
- From Win. PC the Waveforms SDK + Python control the AD2.
- The Analog Discovery 2 (AD2) then acts as a configurable
analog signal generator - sweep signal amplitude and freq. ol
- ADC Board couples the analog (test) signals via the 12C bus of
different ADCs to the NVIDIA Jetson TX2. - , , , , ,
- NVIDIA Jetson TX2 performs computations (FFT and ML-algos) O 10002000 30000 4000 5000

Time (10us)

Voltage

Gﬁlb% [C] J. Johnson and L. Vanfretti, “A Software Test Suite for Data Acquisition and GPU-Based Computations on loT Edge Devices for High Frequency Power
H=ldo Grid Monitoring,” 2023 IEEE Power & Energy Society (PES) General Meeting (GM) Orlando, Florida, 16 - 20 July 2023.

7T

"""EDGE Author’s copy: https://sites.ecse.rpi.edu/~vanfrl/documents/publications/conference/2023/CP225_JJLV_ADC_GPU_OSC_CUDA_Jetson.pdf
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https://sites.ecse.rpi.edu/~vanfrl/documents/publications/conference/2023/CP225_JJLV_ADC_GPU_OSC_CUDA_Jetson.pdf

Exploiting HW in FFT-based Methods [

FFT-Based Computations: with data being streamed to the

NVDIA Jetson TX2, we aim to quantify the benefit of using

onboard GPU for FFT computations for detection using two

C++ libraries: FFTW and cuFFT.

FFTW: Fastest Fourier Transform in the West, http://fftw.org/
* Used to FFT computations using the onboard CPU

« CPU: Dual-core NVIDIA Denver 2 64-bit CPU and quad-core

Arm Cortex-A57 MPCore

CUFFT: CUDA Fast Fourier Transform library, here
* Used to pefrom FFT computations using the onboard GPU
*  GPU: 256-core NVIDIA Pascal architecture

CUFFT vs FFTW

- Left lower figure: as more data samples are used (e.qg.,
higher frequency signal sampled faster), FFTW will become
slower while cuFFT will maintain acceptable performance ~

0.12 msec

- GPU-based capabilities: key enabler for high frequency

power grid monitoring at the edge.

T m

V//J /]
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T ===

Sample FFT Computed with cuFFT containing both a

60 Hz (fundamental) and 100 Hz Component

Experimental FFT

300000

250000

200000

ude

150000

Magnit

100000

S0000

=

-,

pu

jig

10° 107
freq (w)

1wt

0"

0"

FFT Execution Time (table in msec): cuFFT (GPU-based) vs FFTW (CPU-based) ]

10-2 4

10774

Seconds

10744

10-5 4

—— cuFFT
— FFTW

10%

107

10*
Number of Samples

TECHNOLOGIES
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10°

# of Samples cuFFT FFTW
128 0.062495 0.005344
256 0.066143 0.016448
512 0.064319 0.034720

1,024 0.063391 0.075807
2,048 0.080960 0.144447
4,096 0.065311 0.286462
8,192 0.061375 0.572155
16,384 0.109983 1.057940
32,768 0.107743 3.343330
65,536 0.111967 5.039600
131,072 0.107007 16.866400

[C] J. Johnson and L. Vanfretti, “A Software Test Suite for Data Acquisition and GPU-Based Computations on loT Edge Devices for High Frequency Power
Grid Monitoring,” 2023 IEEE Power & Energy Society (PES) General Meeting (GM) Orlando, Florida, 16 - 20 July 2023.
Author’s copy: https://sites.ecse.rpi.edu/~vanfrl/documents/publications/conference/2023/CP225_JJLV_ADC_GPU_OSC_CUDA_Jetson.pdf


http://fftw.org/
https://developer.nvidia.com/cufft
https://sites.ecse.rpi.edu/~vanfrl/documents/publications/conference/2023/CP225_JJLV_ADC_GPU_OSC_CUDA_Jetson.pdf

ML-Based Oscillation Detection

Data: build training and testing data sets from a wind farm in § CNN Model Optimization: after training and validating the

Oklahoma [A], manually labeled by utility expert. models, they need to be prepared for deployment in a target (i.e.,
Example: Vertical red dotted lines indicate the oscillation NVIDIA Jetson TX2) for real-time inference

event inset and offset, with samples labeled. - TensorRT is used to convert the TensorFlow models to CUDA-
‘ ‘ compatible code.
- Without optimization the average inference is of the same order in
the TX2 than in a Windows PC.
- With optimization the code runs approximately 10 times faster.
- The CNN capabilities of detecting oscillations in less than 10 msec,
this performance is approximately 3X faster than the state of the art
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ML-Based Oscillation Detection Experiments

Detection Experiments: two different experiments.

- Experiment 1 - Figures 1 and 2: real-world measurements from the wind farm [A] including both the oscillations and ambient data,
never seen neither during training or validation are played back as inputs.

- Experiment 2 - Figure 3: Waveforms emulating oscillations are created using the testing setup (shown previously [C]), labeled (from
Signal Generator). This aims to emulate end-to-end testing for real-time performance of the entire solution.

Detection Performance:

- Figs. 1 and 2: CNNs succeed at detection and provide correct predictions while the oscillation is active. However, accuracy is not
100%, as expected. A simple running window algorithm can be used to discard false positives by comparing with past predictions.
- Fig. 3: shows how oscillations can be detected with real-time data. Accuracy is superior compared to the real-world data experiment, as

the signal is less “challenging”. But more importantly, this shows that CCNs can learn the patters of an oscillation using data from one
“system” and then identify similar events in another system, i.e., transfer learning.

1D-CNN Real-Time Inference 2D-CNN Real-Time Inference 2D-CNN Real-Time Inference (from Signal Generator)
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Impact of ADC on ML-Based Osc. Detection Performance Q

Hypothesis: ADCs are the components that will affect oscillation detection at high
frequencies.

To understand their impact:

- We test two different ADCs, 8-bit PFC8591 and 12-bit ADC.

Experiment: to valuate the performance of the entire ML-based solution under inputs
from the two ADCs, we perform:

300 experiments varying the frequency of the signal from 1 to 300 Hz, keeping the

sinusoidal. Example signal in Fig. 1.

- CNN inferenceis performed on 1000 windows of the produced signal.
Half of the windows correspond to normal conditions, and the other half is a sustained
oscillation. After the NVIDIA TX2 computes 1000 inferences, a message is sent to the client
(host computer) to start the next experiment by varying the signal frequency.

Results:

- Figure 2 — y-axis: average accuracy for 1,000 inferences. PCF8591 performance degrades
rapidly ~ 100 Hz, while ADS7823 has acceptable accuracy up to ~ 250 Hz.

- Figure 3 — histogram, x-axis is accuracy. Both histograms lean towards 1.0 accuracy, they
are effective, however, PCF8591 have a larger distribution = larger uncertainty.

- The CNN model is unchanged: this emphasizes the importance of appropriate HW
selection at every stage when an ML solution is being developed and deployed for
real-world grid applications.

ciloi

V//4 /¥
ZZEEDGE

TECHNoLoGIEs 3, 2022. Online: https://ieeexplore.ieee.org/document/9770146

[F] S.A. Dorado-Rojas, S. Xu, L. Vanfretti, G. Olvera, M.I. Ayachi, and S. Ahmed, “Low-Cost Hardware Platform for Testing ML-Edge
Power Grid Oscillation Detectors,” 10th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, Milan, Italy,May

Voltage(V)
Q b—' l\.) t.u

Tume(s)

[

Average Accuracy for 1,000 Inferences

Accuracy

=
=)

°
o
T

o
=)
T

o
~
T

o
o

— PCF8591
0.5 — ADS7823

1

1 1 | I Il
0 50 100 150 200 250
Frequency(Hz)

[

Accuracy Histogram (PCF: red, ADS: blue) ]

Number of Hits (ADS7823)

200
175
150
125
100
75
50
25

0

0.94 0.96
Accuracy

Number of Hits (PCF8591)


https://ieeexplore.ieee.org/document/9770146

Conclusions

ML Edge Hardware. Can be used to exploit GPU-based computations
even if ML-based algorithms are not used, with substantial computational beneflts for oscnlatlon detectlon

Real-Time F.O. Detection using ML. Fast and accurate, can be deployed on the edge, outperforming 3X in detection speed
existing methods and with similar accuracy.

Not all data is created equal. Unless the data has the behavior that we want the AI/ML to recognize, even if you have
Terabytes, it is of relatively of low value. Real-world grid expert curated data sets are critical for development.

Labeling: Itis very time consuming and requires expert knowledge! However, it is the key for ML-based detection performance.

ML Models/Methods:

» Wealth of methods and technologies that need to be carefully adapted for power applications: seek power grid expertise.

« Transfer Learning: One can get very far using simulations data for training, but accuracy improvements require real data.

Inference at the Edge: ML HW/SW platforms have great potential for grid automation at the edge.

» Poses an entirely new paradigm for grid automation, protection and control based on Al/ML, with the ability to adapt to
changing grid conditions by updating deployed models with new data from the field.

* Engineering know-how, ML HW/SW and IT/Comm. infrastructure to deploy and train at scale is relatively more complex
and costly than in existing automation/protection/control engineering practice: it will be a challenge to "win hearts and
minds”, train and develop the process to maintain/operate the technology within the electrical power industry constraints.
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THANK YOU

Questions?

 Email: luigi.vanfretti@gmail.com
 Web: http://ALSETLab.com
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