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5G Enabled Transformative Co-design and 
Co-simulation for Grid Decarbonization

[*] Fan X., J.P. Ogle, J.V. Cree, D. Wang, Y. Chen, E.S. Peterson, and T. Fu, 
et al. 2022. Technical Characterization and Benefit Evaluation of 5G-
Enabled Grid Data Transport and Applications. PNNL-33221. 



Sensors



5G Innovation Studio @ PNNL

[*] PNNL Advanced Wireless Communications 5G Innovation Studio, 
learn more: https://www.pnnl.gov/projects/awc/5g-innovation-studio

https://www.pnnl.gov/projects/awc/5g-innovation-studio


5G Studio testbed setup for conceptual 
validation and preliminary testing:

Sensor Layer
• Windows OS in VMware
• PlayPDAT: PMU data player 

provided by BPA
Communication Layer

• Verizon 5G core, antenna, and MiFi 
hotspot.

Data Management Layer
• Windows OS in VMware
• Grid Protection Alliance OpenPDC
• Microsoft SQL Server

5G testbed 1st example from PNNL: AI/ML enabled 
Grid Data Anomaly Detection



Anomaly event
detected

5G testbed 1st example from PNNL: AI/ML enabled 
Grid Data Anomaly Detection

[*] The PMU archive was provided by Bonneville Power Administration (BPA).
[**] H. Ren, Z. Hou and P. Etingov, "Online Anomaly Detection Using Machine 
Learning and HPC for Power System Synchrophasor Measurements," 2018 
IEEE PMAPS, Boise, ID, USA. doi: 10.1109/PMAPS.2018.8440495

• Edge server through 5G base station 
receives and processes the streaming 
PMU data continuously (for 1-hr PMU 
archive) from the sensor.

• Online AI/ML model is running at 
individual second, within it the past five 
minutes parsed data is ingested to 
predict grid frequency behavior of next 
five seconds 

• 5G hardware and AI/ML works 
seamlessly to enable such online AI/ML 
based detection implementation

Zoom in 
Data View



5G testbed 2nd example (in progress): AI/ML 
enabled Distribution Grid Fault Detection & Control
• Leveraged existing DOE EERE SETO funded 

project 34233, adopting/testing their 
developed AI/ML algorithm as next 5G 
testbed example.

• 5G may enable AI/ML implementation, 
providing high bandwidth and edge 
connectivity, and seamless yet powerful 
computing continuum. 

• Distribution system requires reliable and 
distributed protection elements/algorithms, 
to enable customer safety and reliable 
operation, as well as supporting significant 
new load and generation integration. 

IEEE 8500-node test feeder 
with four 5G base station 

EPRI DPV J1 Feeder for 
Learning-based protection 

[*] T. E. McDermott, N. Shepard, S. Meliopoulos, M. Ramesh, J. D. Doty, J.  T. 
Kolln, et al. 2021. "Protection of Distribution Circuits with High Penetration 
of Solar PV: Distance, Learning, and Estimation-Based Methods". PNNL-
32230, United States. https://www.osti.gov/biblio/1834373/
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Deployed Grid Edge Monitors in US and World Wide
17

https://fnetpublic.utk.edu/

Live data streaming

https://fnetpublic.utk.edu/


18 Edge Sensors for Transmission Level Dynamics  

Event 
location

Oscillation 
damping



Grid Edge Needs High Speed Monitors

PMU failed to capture high 
frequency events

• syn gen oscillation at ~30 Hz  
mechanical triggered by LC 
resonance on electrical side.

• 13 Hz oscillations at two 
nearby wind plants. 

• 19 Hz oscillation at island grid 
from grid following IBRs.

• PV inverter 20/80 Hz 
oscillations

Example Oscillations
DFRs are trigger based, non-continuous data recording,
Will miss unknow events 



High-speed Recursive Algorithms

✓ ~ 3 orders of computation time reduction compared 
to popular DFT based algorithms.

✓ Measurement rate: kHz vs typical 60 Hz

✓ Easy hardware integration into grid edge devices.

✓ Enhanced grid edge visibility, high-frequency event 
detection, accurate RoCoF, fast DER 
control/protection, stability predication.



UTK New Generation Grid Edge Monitor

• Continuous syn wave up to 36k s/s

• Voltage and current

• 1440 s/s phasor

• Ethernet or wireless

• GPS time synchronization

• 5G communication possible

• 5G time synchronization coming….
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Future grid demands intelligent and 
faster emergency control 
• Faster dynamics due to increasing penetration of inverter-

based resources (IBRs) and reduced system strength(e.g., 
frequency response during South Australia blackout)

• Wide-area measurement is critical for achieving intelligent 
and effective grid emergency control

• More delays to obtain wide-area measurements than local 
measurements

• The challenge is to ensure acceptable delays even when 
transmitting a large amount of data

PMU Signal delays in PDCI[2]

[1] https://windintegrationworkshop.org/berlin2017/wp-
content/uploads/sites/6/2017/11/WIW17_4B_1_Analysis_of_the_South_Australian_Blackout.pdf 
[2]  F. Wilches-Bernal, et al, “Time Delay Definitions and Characterization in the Pacific DC Intertie Wide Area Damping 
Controller”, IEEE PES GM 2017, 

South Australia blackout [1]



The low-latency of 5G is critical for 
time-sensitive emergency control

[1] Fan X., J.P. Ogle, J.V. Cree, D. Wang, Y. Chen, E.S. Peterson, and T. Fu, et al. 2022. Technical Characterization and Benefit Evaluation of 5G

Performance of roundtrip latency and jitter, 

using DER VM as Client and internal 

LibreSpeed speed test server [1].



AI-based wide-area grid emergency 
control

OUR SOLUTION

V&R Energy
Objective value (total reward) 
differences (positive is better)

Better in 
99.7% 
scenarios



Demo in the PacifiCorp System

Generation tripping 

for angular transient 

stability 

70% reduction in 

tripped generation 

(300 MW vs 1000 

MW)



Challenge and opportunity: connect and 
coordinate with resources at the grid edge 



THANK YOU
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A ML-Based Edge 
Appliance for Detection of 
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Outline

• Motivation

• Exploiting ML Technologies:

• Data Acquisition into ML-hardware.

• Exploiting Hardware using 
Conventional (FFT-based) Methods

• Exploiting ML Methods & Hardware 
for Classification for Detection

• HW Testing:

• Impact of DAQ Chain on ML 
Appliance

• Conclusions
Source: NVIDIA



Motivation
Problem:

Identify oscillations product of the 

interaction between power electronic-based 

converter controls and the grid (under 

changing operating conditions and 

topology). 

Examples:

- Wind turbine rotor controller rings 

against grid when line in grid trips 

(change of impedance) [A]

- PV Inverter controller rings against grid 

when operating in constant PF mode [B]

[A] L. Vanfretti, M. Baudette, J.L. Dominguez-Garcia, M.S. Almas, A. White, and J.O. Gjerde, “A PMU-Based Real-Time Oscillation Detection Application for 
Monitoring Wind-Farm Dynamics,” Electric Power Components and Systems, Taylor & Francis, Vol. 44, Iss. 2, 2016.
[B] C. Wang, C. Mishra, K. D. Jones, R. M. Gardner and L. Vanfretti, "Identifying Oscillations Injected by Inverter-Based Solar Energy Sources," 2022 IEEE 
Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 2022, pp. 1-5.

~12 Hz Oscillation between the grid and a wind farm/turbines in Oklahoma [A]

 

~22 Hz Oscillation between the grid and a utility scale PV plant in Virginia [B]

 

Previous Works:
- FFT [A], statistical signal processing-based methods (e.g., energy-based detection [A]), spectral analysis [B], etc.

- Pros: experience with “slower” oscillations (e.g., electromechanical mode estimation) → has gained trust from utilities.

- Cons: limited on-board computational capabilities on the edge, centralized data collection (e.g., PMU-to-PDC-to-X), 

processing has inherited delays from filtering and RMS-energy computation, signal processing methods needs careful 

parametrization/tuning from experts, decision making is slow (human operator driven)…

AI/ML and 
5/xG tech can 

help here!



Data Acquisition to Exploit ML Edge Hardware
Goal: to exploit onboard edge capabilities of ML Edge HW 

(i.e., here only the NVIDIA Jetson family) to perform GPU-

based computations (FFT) and deploy ML-based 

classification/detection algorithm (after training offline).

Challenge: AI/ML boards mainly target apps outside power 

grid, e.g., autonomous vehicles uses cameras/images. The 

HW is not “plug-and-play” for our use case.

- Need to develop analog DAQ and data ingestion pipeline

(e.g., can’t directly read low voltage/current signals).

- Need to test components that will affect oscillation detection 

at high frequencies, i.e., what is the impact of different 

types of ADCs.

Low-Cost Testing Setup (due to COVID!):
- From Win. PC the Waveforms SDK + Python control the AD2.

- The Analog Discovery 2 (AD2) then acts as a configurable 

analog signal generator → sweep signal amplitude and freq.

- ADC Board couples the analog (test) signals via the I2C bus of 

different ADCs to the NVIDIA Jetson TX2.

- NVIDIA Jetson TX2 performs computations (FFT and ML-algos)

[C] J. Johnson and L. Vanfretti, “A Software Test Suite for Data Acquisition and GPU-Based Computations on IoT Edge Devices for High Frequency Power 
Grid Monitoring,” 2023 IEEE Power & Energy Society (PES) General Meeting (GM) Orlando, Florida, 16 – 20 July 2023.
Author’s copy: https://sites.ecse.rpi.edu/~vanfrl/documents/publications/conference/2023/CP225_JJLV_ADC_GPU_OSC_CUDA_Jetson.pdf

ADC

ADC 
Board

https://sites.ecse.rpi.edu/~vanfrl/documents/publications/conference/2023/CP225_JJLV_ADC_GPU_OSC_CUDA_Jetson.pdf


Exploiting HW in FFT-based Methods

FFT-Based Computations: with data being streamed to the 

NVDIA Jetson TX2, we aim to quantify the benefit of using 

onboard GPU for FFT computations for detection using two 

C++ libraries: FFTW and cuFFT.

FFTW: Fastest Fourier Transform in the West, http://fftw.org/

• Used to FFT computations using the onboard CPU

• CPU: Dual-core NVIDIA Denver 2 64-bit CPU and quad-core 

Arm Cortex-A57 MPCore

cuFFT: CUDA Fast Fourier Transform library, here

• Used to pefrom FFT computations using the onboard GPU

• GPU: 256-core NVIDIA Pascal architecture 

cuFFT vs FFTW
- Left lower figure: as more data samples are used (e.g., 

higher frequency signal sampled faster), FFTW will become 

slower while cuFFT will maintain acceptable performance ~ 

0.12 msec

- GPU-based capabilities: key enabler for high frequency 

power grid monitoring at the edge.

[C] J. Johnson and L. Vanfretti, “A Software Test Suite for Data Acquisition and GPU-Based Computations on IoT Edge Devices for High Frequency Power 
Grid Monitoring,” 2023 IEEE Power & Energy Society (PES) General Meeting (GM) Orlando, Florida, 16 – 20 July 2023.
Author’s copy: https://sites.ecse.rpi.edu/~vanfrl/documents/publications/conference/2023/CP225_JJLV_ADC_GPU_OSC_CUDA_Jetson.pdf

FFT Execution Time (table in msec): cuFFT (GPU-based) vs FFTW (CPU-based)

Sample FFT Computed with cuFFT containing both a 
60 Hz (fundamental) and 100 Hz Component

http://fftw.org/
https://developer.nvidia.com/cufft
https://sites.ecse.rpi.edu/~vanfrl/documents/publications/conference/2023/CP225_JJLV_ADC_GPU_OSC_CUDA_Jetson.pdf


ML-Based Oscillation Detection

Data: build training and testing data sets from a wind farm in 

Oklahoma [A], manually labeled by utility expert. 

Example: Vertical red dotted lines indicate the oscillation 

event inset and offset, with samples labeled.

[D] S.A. Dorado-Rojas, S. Xu, L. Vanfretti, M. I. Ayachi and S. Ahmed, “ML-based edge application for detection of forced oscillations in power grids,” 2022 
IEEE Power & Energy Society General Meeting, 17–21 July 2022, Denver, Colorado. Online: https://ieeexplore.ieee.org/document/9917070
[E] Wind SSO Task Force, “Wind energy systems Sub-Synchronous oscillations: Events and modeling,” IEEE Power & Energy Society, Tech. Rep. PES-TR80, 
Jul. 2020.

CNN Model Optimization: after training and validating the 

models, they need to be prepared for deployment in a target (i.e., 

NVIDIA Jetson TX2) for real-time inference
- TensorRT is used to convert the TensorFlow models to CUDA-

compatible code.

- Without optimization the average inference is of the same order in 

the TX2 than in a Windows PC.

- With optimization the code runs approximately 10 times faster.

- The CNN capabilities of detecting oscillations in less than 10~msec, 

this performance is approximately 3X faster than the state of the art 

using other methods [E]
1 sec 1 sec

Training and Validation: 1D and 2D CNN models are 

trained and validated, results are shown below for each.

Average Inference Time using 
Different HW Devices with and 
without TensorRT Optimization

https://ieeexplore.ieee.org/document/9917070
https://developer.nvidia.com/tensorrt


ML-Based Oscillation Detection Experiments

Detection Experiments: two different experiments.
- Experiment 1 - Figures 1 and 2: real-world measurements from the wind farm [A] including both the oscillations and ambient data, 

never seen neither during training or validation are played back as inputs.

- Experiment 2 - Figure 3: Waveforms emulating oscillations are created using the testing setup (shown previously [C]), labeled (from 

Signal Generator). This aims to emulate end-to-end testing for real-time performance of the entire solution.

Detection Performance:
- Figs. 1 and 2: CNNs succeed at detection and provide correct predictions while the oscillation is active. However, accuracy is not 

100%, as expected. A simple running window algorithm can be used to discard false positives by comparing with past predictions. 

- Fig. 3: shows how oscillations can be detected with real-time data. Accuracy is superior compared to the real-world data experiment, as 

the signal is less “challenging”. But more importantly, this shows that CCNs can learn the patters of an oscillation using data from one 

“system” and then identify similar events in another system, i.e., transfer learning.

1 2 3



Impact of ADC on ML-Based Osc. Detection Performance

Hypothesis: ADCs are the components that will affect oscillation detection at high 

frequencies.

To understand their impact: 

- We test two different ADCs, 8-bit PFC8591 and 12-bit ADC.

Experiment: to valuate the performance of the entire ML-based solution under inputs 

from the two ADCs, we perform:
- 300 experiments varying the frequency of the signal from 1 to 300 Hz, keeping the 

sinusoidal. Example signal in Fig. 1.

- CNN inference is performed on 1000 windows of the produced signal. 

Half of the windows correspond to normal conditions, and the other half is a sustained 

oscillation. After the NVIDIA TX2 computes 1000 inferences, a message is sent to the client 

(host computer) to start the next experiment by varying the signal frequency.

Results:

- Figure 2 – y-axis: average accuracy for 1,000 inferences. PCF8591 performance degrades 

rapidly ~ 100 Hz, while ADS7823 has acceptable accuracy up to ~ 250 Hz.

- Figure 3 – histogram, x-axis is accuracy. Both histograms lean towards 1.0 accuracy, they 

are effective, however, PCF8591 have a larger distribution → larger uncertainty.

- The CNN model is unchanged: this emphasizes the importance of appropriate HW 

selection at every stage when an ML solution is being developed and deployed for 

real-world grid applications.

[F] S.A. Dorado-Rojas, S. Xu, L. Vanfretti, G. Olvera,  M.I. Ayachi, and S. Ahmed, “Low-Cost Hardware Platform for Testing ML-Edge 
Power Grid Oscillation Detectors,” 10th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, Milan, Italy,May
3, 2022. Online: https://ieeexplore.ieee.org/document/9770146

2

3

Accuracy Histogram (PCF: red, ADS: blue)

Average Accuracy for 1,000 Inferences

1

https://ieeexplore.ieee.org/document/9770146


Conclusions

ML Edge Hardware. Can be used to exploit GPU-based computations 

even if ML-based algorithms are not used, with substantial computational benefits for oscillation detection.

Real-Time F.O. Detection using ML. Fast and accurate, can be deployed on the edge, outperforming 3X in detection speed 

existing methods and with similar accuracy.

Not all data is created equal. Unless the data has the behavior that we want the AI/ML to recognize, even if you have 

Terabytes, it is of relatively of low value. Real-world grid expert curated data sets are critical for development.

Labeling: It is very time consuming and requires expert knowledge! However, it is the key for ML-based detection performance.

ML Models/Methods:

• Wealth of methods and technologies that need to be carefully adapted for power applications: seek power grid expertise.

• Transfer Learning: One can get very far using simulations data for training, but accuracy improvements require real data.

Inference at the Edge: ML HW/SW platforms have great potential for grid automation at the edge.

• Poses an entirely new paradigm for grid automation, protection and control based on AI/ML, with the ability to adapt to 

changing grid conditions by updating deployed models with new data from the field.

• Engineering know-how, ML HW/SW and IT/Comm. infrastructure to deploy and train at scale is relatively more complex 

and costly than in existing automation/protection/control engineering practice: it will be a challenge to ”win hearts and 

minds”, train and develop the process to maintain/operate the technology within the electrical power industry constraints.
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