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Project Overview — Objectives/Impact

Challenges:

The power system dynamics faces reduced
inertia, more dynamic and uncertain due to
increased renewables penetration

Objective:

To develop a set of advanced fast, flexible,
robust, and uncertainty-tolerant control
technologies for the transmission network
systems in terms of novel stochastic
distribution conftrol, architecture
communications and fast energy storage
control

Impact:
Produce a novel and next generation
control suite for fransmission systems -

infegrating local, AGC and stochastic
distribution control

Duration:; 2023 - 2026
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Robust and Uncertainty-tolerant Control
(IBRs, HVDC/FACTS, SSTs, and other resources)
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Novel Probability Density Function (PDF) Control — Next Generation Transmission Control
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PDF Control vs Traditional Stochastic Control - What is new and some promising results
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MPC-based Multi-time Scale Frequency Regulation (UNCC)

« Developed a model-predictive control (MPC)-based multi-time scale coordinated AGC
controls for fast-responding IBRs and slower-responding synchronous generators (SGs)

« The approach prioritizes the resources with higher ramping capability and lower costs for
providing frequency support — form effective selection of generation resources for PDF control.

Numerical experiments

» SGs with lower ramp rates are not selected (SG3 and SG4) — priority selection

> IBRs with more control flexibility contribute more to regulation (validated by the comparison between IBR and SG) — multi-time scales
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Fast, Robust Controls Tolerant to Communications Uncertainties (SNL)

Objective:

« develop distributed conftrol solutions by leveraging wide-area information to achieve
system-wide objectives using control architecture developed in Task 1.

« consider communication constraints such as delays and data package

drops/corruption.
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Analysis, Modelling, and Simulation Communication-Induced
Uncertainties (PNNL)

s Uncertainties in networked communication

» Communication Delays v/mst 5§ Paekel dienat | T 3

» Data Packet Dropout 60| W
> Data Packet Disordering Ll VA |

* Uncertainties Modelling: = = = = T—
» Communication system: Data packet, discrete signal
» Power grid dynamic: input signals, continuous

» Use ZOH (zero order hold) to connect the discrete
communication network with continuous power grid network

»Uncertainties Simulation

» Matlab Simulink
» Model time-varying delay in m.file

» then feed the time-varying delay to Simulink to perform the " From Variable
whole closed-loop system (hybrid system) simulation Workspace Time Delay
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Modeling of Communication Architecture (PNNL)
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Modeled communication network in a
weighted graph
Developed delay-based weights
= Propagation delay
= Transmit delay
= Switching delay
= Queueing delay
Computed the graph theoretic metrics

to analyze the communication
efficiency

= Closeness Centrality
= Betweenness Centrality
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= Efficiency Drop

Next steps
= Verification with simulations

Transmission Network

mmmm Communication - Backbone Network

Communication - Aggregation Network

= Communication - Core Network

Communication - Access Network

Siting of PMUs, PDCs and controllers @ substation
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Thank you
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