Towards Robust Transmission Grid with Uncertainty-tolerant Controls

Dr Hong Wang, Oak Ridge National Laboratory FIEEE, FIET, FInstMC and FAAIA

Project Team: ORNL, SNL, PNNL, UNCC, BPA, Duke Energy, and Hitachi Energy

PNNL is operated by Battelle for the U.S. Department of Energy

Project Overview – Objectives/Impact

Challenges:

The power system dynamics faces **reduced** inertia, more dynamic and uncertain due to increased renewables penetration

Objective:

To develop a set of advanced **fast**, **flexible**, robust, and uncertainty-tolerant control **technologies** for the transmission network systems in terms of novel stochastic distribution control, architecture communications and fast energy storage control

Impact:

Produce a novel and next generation control suite for transmission systems integrating local, AGC and stochastic distribution control

Duration: 2023 - 2026

Novel Probability Density Function (PDF) Control – Next Generation Transmission Control

Narrow PDF = Less Uncertainties

PDF Control vs Traditional Stochastic Control - What is new and some promising results

Traditional Stochastic Control

Stochastic differential equations -Gaussian Driven Systems (Einstein, Ito, et, all, 1904, 1944, 1950) = Solving PDEs

- Mean and Variance Control
- Largely Linear Systems
- Example:
 - 1. Minimum Variance Control (1970),
 - 2. Kalman Filter and
 - 3. LQG Control (1965),
 - 4. Neural Nets Modelling, etc

My Stochastic Distribution Control

- Non-Gaussian Dynamic Systems - Some PDFs measurable for a lot of PDF shaping required processes!
- Total probabilistic control (controlling PDF means controlling all the aspects of a random variable)
- Wide applications:
 - 1. Modelling,
 - 2. Filtering and state estimation,
 - 3. Data miming,
 - 4. Stochastic optimization, etc.

- Journal Publications
 - "Review of Challenges and Research Opportunities for Control of Transmission Grids," in IEEE Access, vol. 12, pp. 94543-94569, 2024, doi: 10.1109/ACCESS.2024.3425272. (Published).
 - "Probability Density Function (PDF) Control of Frequency Fluctuations in Transmission Grids," in IEEE Power Engineering Letters, (Under Review)
- Conference Publications
 - "Towards the Flexibility of HVDC-Interconnected Systems: A Novel Emergency Frequency Response Model", 2024 IEEE Power & Energy Society General Meeting (PESGM), (Accepted)
 - S Wang, W Du, G Zhang, H Wang and Z Huang, Model Gap Quantification and Evaluation, 2024 UKACC 14th International Conference on Control (CONTROL) 10-12 April, 2024. Winchester, UK

MPC-based Multi-time Scale Frequency Regulation (UNCC)

- Developed a model-predictive control (MPC)-based multi-time scale coordinated AGC controls for fast-responding IBRs and slower-responding synchronous generators (SGs)
- The approach prioritizes the resources with higher ramping capability and lower costs for providing frequency support - form effective selection of generation resources for PDF control.

Numerical experiments

- SGs with lower ramp rates are not selected (SG3 and SG4) priority selection
- > IBRs with more control flexibility contribute more to regulation (validated by the comparison between IBR and SG) multi-time scales

Output of IBRs

Fast, Robust Controls Tolerant to Communications Uncertainties (SNL)

Objective:

- develop distributed control solutions by leveraging wide-area information to achieve system-wide objectives using control architecture developed in Task 1.
- consider communication constraints such as delays and data package drops/corruption.

Analysis, Modelling, and Simulation Communication-Induced Uncertainties (PNNL)

- Uncertainties in networked communication
 - Communication Delays
 - Data Packet Dropout
 - Data Packet Disordering
- Uncertainties Modelling:
 - Communication system: Data packet, discrete signal
 - Power grid dynamic: input signals, continuous
 - Use ZOH (zero order hold) to connect the discrete communication network with continuous power grid network
- Uncertainties Simulation
 - Matlab Simulink
 - Model time-varying delay in m.file
 - Ithen feed the time-varying delay to Simulink to perform the whole closed-loop system (hybrid system) simulation

CAK RIDGE

Modeling of Communication Architecture (PNNL)

- Modeled communication network in a weighted graph
- Developed delay-based weights
 - Propagation delay
 - Transmit delay
 - Switching delay
 - Queueing delay
- Computed the graph theoretic metrics to analyze the communication efficiency
 - Closeness Centrality
 - Betweenness Centrality
 - Efficiency Drop
- Next steps
 - Verification with simulations
 - Siting of PMUs, PDCs and controllers

Thank you

Office of Electricity

