The Importance of Use-Inspired R&D

DOE Projects are having a direct benefit
on VELCO'’s network model
management software initiatives
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The Project Team is a sounding board
for innovative ideas, and a hub for
sharing standards-based solutions that
are scalable across industry

DOE projects are enhancing
collaboration between VELCO, Vermont
Electric Cooperative, and ISO-NE
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Pacific

Northwest  \/O|{-VAR Curve Performance for S. Alburgh

NATIONAL LABORATORY

* Load power factor improved with reactive power contribution from inverters
* Less Q exchanged at the interface

» Overvoltage significantly reduced with reactive power absorption during peak
PV generation
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Advanced Distribution Operations and GridAPPS-D

Vision: An ecosystem of interoperable distribution system
management software applications for utilities, solution

Interoperability
providers, and researchers to support an advanced multi-

stakeholder, multi-objective grid.
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Open App-Hosting Platform Paradigm
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Deconfliction as a Framework for App Cooperation
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Arcing Detection
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Impacts can be catastrophic

« Causes
= Foreign object (e.g., vegetation) contact
= Conductor slapping
= Broken conductor

Fires caused by = Equipment failure
electric equipment

* Challenges

= Traditional fault detection and protection scheme
= Complex distribution systems

« Mitigations
= VVegetation maintenance
* Fire monitoring
= Covered conductors/undergrounding
= Novel fault detection strategies

LLNL-PRES-871001



e —
S e R ) %,
e
T e

]
\ln.\l"lll- e
e T
o IH‘I.”“IN'l - e .
—_— - - S — )
- - ——~

\
$
||
;9
A 4

f\
|
!
||'
|
v
\]m
'?‘ LY

B

e 5 , —
e =
. S TR P SR —_ .
: : —— - —— —
i S s - e
P ; e gl B L
’ e =
N L e S =
- e r > — .

-
= e =

- e e

K _“‘ \i K

20200604 08.56:13 (X Scala, olfsetinskom stantime) N 7
L
$

f

|

|
&

lk
\
&
2020-06-01 13:1507 (X Scale, oftsat in § from 5231 1me)

B o

PIINsy
A:__.‘!ﬁ!!\
NPT

M/, - y

Detect early signs of failure (arcing) with high-

resolution measurements

-
/

Data source: DOE Grid Event Signature Library (GESL)

https://gesl.ornl.gov

Digital fault recorder at a distribution substation

Photo courtesy of Southern California Edison
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https://gesl.ornl.gov/
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Classification of arcing segments
~90% accuracy tested with ground-truth datasets

 Training datasets from
GESL
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* Application to utility data
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Project Overview — Objectives/Impact

Challenges:

The power system dynamics faces reduced
inertia, more dynamic and uncertain due to
increased renewables penetration

Objective:

To develop a set of advanced fast, flexible,
robust, and uncertainty-tolerant control
technologies for the transmission network
systems in terms of novel stochastic
distribution conftrol, architecture
communications and fast energy storage
control

Impact:
Produce a novel and next generation
control suite for fransmission systems -

infegrating local, AGC and stochastic
distribution control

Duration:; 2023 - 2026
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Novel Probability Density Function (PDF) Control — Next Generation Transmission Control
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PDF Control vs Traditional Stochastic Control - What is new and some promising results
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MPC-based Multi-time Scale Frequency Regulation (UNCC)

« Developed a model-predictive control (MPC)-based multi-time scale coordinated AGC
controls for fast-responding IBRs and slower-responding synchronous generators (SGs)

« The approach prioritizes the resources with higher ramping capability and lower costs for
providing frequency support — form effective selection of generation resources for PDF control.

Numerical experiments

» SGs with lower ramp rates are not selected (SG3 and SG4) — priority selection

> IBRs with more control flexibility contribute more to regulation (validated by the comparison between IBR and SG) — multi-time scales
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Fast, Robust Controls Tolerant to Communications Uncertainties (SNL)

Objective:

« develop distributed conftrol solutions by leveraging wide-area information to achieve
system-wide objectives using control architecture developed in Task 1.

« consider communication constraints such as delays and data package

drops/corruption.

Disturbances
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Analysis, Modelling, and Simulation Communication-Induced
Uncertainties (PNNL)

s Uncertainties in networked communication

» Communication Delays v/mst 5§ Paekel dienat | T 3

» Data Packet Dropout 60| W
> Data Packet Disordering Ll VA |

* Uncertainties Modelling: = = = = T—
» Communication system: Data packet, discrete signal
» Power grid dynamic: input signals, continuous

» Use ZOH (zero order hold) to connect the discrete
communication network with continuous power grid network

»Uncertainties Simulation

» Matlab Simulink
» Model time-varying delay in m.file

» then feed the time-varying delay to Simulink to perform the " From Variable
whole closed-loop system (hybrid system) simulation Workspace Time Delay

%QAK RIDGE

ional Laboratory
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%

Modeling of Communication Architecture (PNNL)

OAK RIDGE

National Laboratory

Modeled communication network in a
weighted graph
Developed delay-based weights
= Propagation delay
= Transmit delay
= Switching delay
= Queueing delay
Computed the graph theoretic metrics

to analyze the communication
efficiency

= Closeness Centrality
= Betweenness Centrality
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= Efficiency Drop

Next steps
= Verification with simulations
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Motivation and Objective

* The transportation system is rapidly electrifying, displacing the functions of the
present-day fossil fuel sector

* Ensuring this rapid transition is smooth necessitates understanding the
functional requirements of the emerging electrified transportation system and
the understanding structure and performance of the current fossil fuel delivery

system, which is less well understood and documented

« Sector Coupling Is an emerging discipline to ensure the underlying structures,
couplings, and attributes of these systems are identified, strengths leveraged,
and weaknesses addressed




1. Supply and
price impacted
by global
markets and
events

Fuel Supply Chain: Key Attributes

Import

Others
28%
Mexico

Canada 45%

Columbia

Well site or well

pad

Crude oil
extraction
company

Central
tank
battery

Internal
pipeline

A A

A

A

Y

U.S. Strategic
Petroleum
Reserve (SPR)

714 million barrels,
April 2022

New York State
Strategic Fuel
Reserve

Northeast
Heating Oil
(NEHHQ

3. Storage
throughout
(strategic reserve,

tank farms, pipeline,

Extra
storage

gas stations)

Transfer to refinery

Refining

P>

Fossil-fuel
powered
vehicles

Traders

Transmission to terminals

Export
A JFg <
DD PADD PADD
¢ .
—> OUC T‘
.
L
(e a olle a a
Finished Motor Gasoline
Dal Jc C
A 4
Barge operator B
arge operator
A 4
Pipeline with Pipeline pump Terminal pump
[y |———— Terminal (Bulk e ok
ine company ¢ storage and 4 EULCU LU i
b Poeine Ll romnees [y e P M 7| ety [ comanes [T G setien
p'c?many L ——— (g:,gzmitsfti:g;/ — Bulk terminal Underground
Ipeline storage storage storage
(Breakout facility / Tankfarm Tank farm) | g g
Tank farm) | I A |
o ) ||
| | Railroad _'l‘_l
operator I I I
Railroad (. | |
operator I I |
Tanker (storage | I |
[ | | also if land T ]
storage is full) I | ]
I I | Ethanol supplier
(.
| t——— |
—————— > Broker 4————‘|\-———1—-
I
| | |
I
I t-——-=
———————— i Spot markets [ — — — i— — — —

Aggregation, storage

and distribution

Retail entities

4. Legacy
delivery

experience is

standardized,
simple, and
ubiquitous

Delivery to vehicles



Electricity Supply Chain: Key Attributes

Superchargers
and fast charging
stations
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Ensuring Supply During Extreme Events

- Demand surges can

create shortages prior to
extreme events

Disparities in restoration
and replenishment time
between sectors

Disparities in robustness '“..

of end-use experience - T
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Summary

« Understanding and leveraging system structures
and attributes to meet requirements will be
critical to a smooth transition

» Sector Coupling plays a key role of illuminating
these features in complex coupled systems

 Current focus on sector communication structure
coupling & coordination frameworks at grid
Interfaces

* Currently supporting Oregon (through CESER
funding) under their State Energy Security Plan

* Reports: PNNL-35826

 Coupling of the Electricity and Transportation Sectors - Part |:
Sector Overviews

 Coupling of the Electricity and Transportation Sectors - Part |l:
Risk Assessment

Fetrvewy 2024

-
1 v e



https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-35826.pdf
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-35826.pdf
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-35826-2.pdf
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-35826-2.pdf
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