
RESEARCH ARTICLE

Forecasting influenza-like illness dynamics for

military populations using neural networks

and social media

Svitlana Volkova*, Ellyn Ayton, Katherine Porterfield, Courtney D. Corley

Data Sciences and Analytics Group, Computing and Analytics Division, National Security Directorate, Pacific

Northwest National Laboratory, Richland, WA, United States of America

* svitlana.volkova@pnnl.gov

Abstract

This work is the first to take advantage of recurrent neural networks to predict influenza-like

illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike

other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-

art machine learning models, we build and evaluate the predictive power of neural network

architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting

(predicting in “real-time”) and forecasting (predicting the future) ILI dynamics in the 2011 –

2014 influenza seasons. To build our models we integrate information people post in social

media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behav-

ior using hashtags and mentions. We then quantitatively evaluate the predictive power of dif-

ferent social media signals and contrast the performance of the-state-of-the-art regression

models with neural networks using a diverse set of evaluation metrics. Finally, we combine

ILI and social media signals to build a joint neural network model for ILI dynamics prediction.

Unlike the majority of the existing work, we specifically focus on developing models for local

rather than national ILI surveillance, specifically for military rather than general populations

in 26 U.S. and six international locations., and analyze how model performance depends on

the amount of social media data available per location. Our approach demonstrates several

advantages: (a) Neural network architectures that rely on LSTM units trained on social

media data yield the best performance compared to previously used regression models. (b)

Previously under-explored language and communication behavior features are more predic-

tive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural net-

work models learned exclusively from social media signals yield comparable or better

performance to the models learned from ILI historical data, thus, signals from social media

can be potentially used to accurately forecast ILI dynamics for the regions where ILI histori-

cal data is not available. (d) Neural network models learned from combined ILI and social

media signals significantly outperform models that rely solely on ILI historical data, which

adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Loca-

tion-specific models outperform previously used location-independent models e.g., U.S.

only. (f) Prediction results significantly vary across geolocations depending on the amount

of social media data available and ILI activity patterns. (g) Model performance improves with
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more tweets available per geo-location e.g., the error gets lower and the Pearson score gets

higher for locations with more tweets.

Introduction

Every year there are 500,000 deaths worldwide attributed to influenza including

30,000 – 50,000 deaths in the US [1]. The Centers for Disease Control and Prevention (CDC)

reports weekly on the level of confirmed influenza and influenza-like illnesses (ILI) seen year

round in hospitals and by doctor visits that are used to monitor the spread and impact of influ-

enza. However, by the time the CDC data is released, the information is already several weeks

old. To overcome this, researchers explored alternative data sources for monitoring influenza

and ILI dynamics in real time including web queries [2], Wikipedia logs [3, 4], microblogs [5]

and social media platforms, e.g., Twitter [6–9], as a way to enhance predictive ability for health

officials when looking at influenza infection rates.

Researchers theorized that the most valuable impact alternative data sources [10, 11], e.g.,

Twitter, can make is by reducing the error in influenza predictions during the weeks the influ-

enza infection rates are under revision by the CDC [7]. Indeed, they have shown through the

use of basic linear autoregressive models that a combined model of Twitter and ILI data out-

performs a similar model of only ILI data. These promising results give motivation for intro-

ducing richer models into this prediction task. The work done by [8] incorporates and

experiments with several machine learning ensemble methods to forecast ILI dynamics. Using

these models, they are able to accurately predict ILI activity for up to two weeks. However,

they only explored basic bag-of-word features extracted from tweets. Similar to [9], we argue

that to effectively utilize social media data, the existing natural language processing (NLP)

techniques need to be improved or new methods developed in order to extract richer meaning

from tweets. Furthermore, researchers advocate the use of Twitter as a way to supplement cus-

tomary influenza monitoring systems to make accurate predictions [6, 12].

Following prior advances on infectious disease surveillance using social media data [7, 8],

we made use of large amounts of public Twitter data – 171M tweets collected between

2011 – 2014. We considered this data as a real-time source of information in order to forecast

ILI activity estimates—the total number of people seeking medical attention with ILI symp-

toms. We specifically focused on military populations and collected ILI activity data and Twit-

ter data from fine-grained geolocations – 25 in the US and 6 international from 2011 to 2014.

To the best of our knowledge, this is a pioneer study that takes advantage of and evaluates

the predictive power of Recurrent Neural Networks (RNNs) to predict ILI dynamics [13].

Moreover, unlike any previous work, the proposed models rely on different social media sig-

nals including lexical, stylistic, topics, emotions and opinions, and communication behavior

patterns extracted from user tweets, and contrast model performance learned from social

media data with models learned from ILI historical data. In addition, we contrast neural net-

work model performance for nowcasting and forecasting ILI dynamics with the machine

learning approaches explored by the current state-of-the-art approach [8]. More specifically,

this work aims to answer several research questions:

• RQ1: What machine learning models yield the best ILI predictions, e.g., the state-of-the-art

regression models or neural networks?
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• RQ2: What signals from social media are the most predictive of ILI dynamics, e.g., word

ngrams, stylistic, communication behavior, topics, or embeddings?

• RQ3: How accurately can we predict location-specific weekly ILI dynamics? How does pre-

diction accuracy vary across locations in a nowcasting vs. forecasting setting (making predic-

tions up to several weeks in advance)? How does model performance depend on the amount

of social media data available per location?

We started our analysis by running machine learning models for ILI dynamics prediction

for 2011 – 2014 on a sample dataset (4M tweets) for six geolocations to determine the best per-

forming models and the most predictive social media signals. We found that language (word

unigrams and embeddings) and communication behavior features (hashtags and mentions)

are more predictive of ILI dynamics than stylistic signals extracted from social media commu-

nications. Moreover, we found that location-specific models outperform location-independent

models and that prediction results vary significantly across geolocations.

We then applied the best performing models—LSTMs and social media features—and

combined tweet and communication behavior signals to forecast ILI dynamics for 31 geoloca-

tions (171M tweets). We demonstrated that social media signals used to learn LSTM models

yield comparable performance to ILI historical data. Thus, signals from social media can be

potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is

not available. Moreover, we showed that neural network models trained on combined ILI and

social media signals significantly outperform models that rely solely on ILI historical data.

We anticipate the proposed neural network models in combination with social media sig-

nals will enable surveillance epidemiologists to perform planetary-scale health monitoring,

detect potential public health threats and capture early-level warnings for epidemics. More-

over, our approach is generalizable to other infectious diseases and social media platforms and

can advance the existing disease surveillance approaches for E. coli [14], ebola [15, 16], and

cholera [17]. Social media resources could be combined with other data streams [18] e.g., res-

taurant reservations [19], news sources [20], and pharmacy sales [21].

Materials and methods

In this section, we present ILI-related clinical visit data across 31 geolocations and describe

our social media data collection and sampling procedure. We then outline our experimental

setup for two prediction tasks—nowcasting (predicting this week’s ILI rates) and forecasting

(predicting ILI activity one and two weeks in advance), describe machine learning models,

social media predictors, and evaluation metrics.

ILI-Related clinical visit data

The ILI clinical data consists of the number of visits to a Defense Medical Information System

(DMIS) Identifier (ID) location for symptoms identified as influenza-like illness (ILI) based on

the International Statistical Classification of Disease and Health Related Problems (ICD) codes

documented in the electronic patient record (Table 1). The DMIS ID facility types identified as

reporting ILI symptoms in patients are hospitals, clinics, administration, and dental offices.

The patients who visit these facilities include active duty, reserve, and retired members along

with their dependents, and cadets, recruits, and applicants for active duty from the army, navy,

marine corps, coast guard, air force, NOAA, and other public health services. This military

health data was collected from 31 specific locations (25 U.S. and 6 international). Each location

comprised all DMSID IDs within a 25-mile radius around military bases (mean 7 IDs, range 2-

19 IDs). The percent of ILI visits to total visits was used in the subsequent analyses (mean
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3.6%, range 1.1-9.5%) and is defined as weekly location-specific ILI visit proportions:

ILI ¼
# of weekly ILI visits per location

# of total weekly visits per location
ð1Þ

In Fig 1 we present weekly ILI proportion dynamics between 2011 and 2014 for six example

geolocations e.g., L10, L12 etc.

We focused on ILI (influenza-like illness) predictions rather than influenza Virology data

(which measures lab-confirmed cases of influenza) because: first, Virology data is not always

considered to be a good predictor of ILI, and, second, it tends to be even more delayed than

ILI data due to time spent on laboratory testing [22, 23].

Twitter dataset

Twitter data, acquired from a social media vendor and through the public API, was anon-

ymized for usernames, user IDs, and tweet IDs based on a rigorous procedure, i.e., a state-of-

the-art encryption algorithm. To ensure the privacy of all users in our sampled datasets, our

analysis was based only on completely anonymized data and our findings are reported on an

aggregate rather than individual level. This study was approved by our institutional review

board (IRB).

We collected geo-tagged tweets within a 25-mile radius of 25 military locations in the U.S.

and six international locations (shown as L and i respectively on Fig 2) following standard

practices on extracting geolocation coordinates from user meta-data [24]. The timeframe for

collected tweets ranges between January 2011 to December 2014. Our large Twitter sample

includes 171,027,275 tweets produced within a 25-mile radius across 31 military locations. We

report tweet distribution for each military location in Fig 2.

For a subset of our experiments, we subsampled 2,169 users from six geolocations (CA, NC,

TX) who explicitly reveal their military affiliation by mentioning military-specific keywords,

e.g.,military, corporal, army brat, etc. in their user profile data from the original dataset of 171

Table 1. The ICD-9 codes used to describe ILI symptoms (NOS = Not otherwise specified).

ICD9 Code Description for ILI Symptoms

79.99 Viral infection, NOS

382.9 Unspecified otitis media

460 Acute nasopharyngitis (common cold)

461.9 Acute sinusitis unspecified

465.8 Acute upper respiratory infections of other multiple sites

465.9 Acute upper respiratory infections of unspecified sites

466 Acute bronchitis

486 Pneumonia organism unspecified

487 Influenza with pneumonia

487.1 Influenza with other respiratory manifestations

487.8 Influenza with other manifestations

488 Influenza due to identified agent

490 Bronchitis, NOS

780.6 Fever

786.2 Cough

https://doi.org/10.1371/journal.pone.0188941.t001
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million tweets. We used the Twitter API to collect up to 3200 of their tweets. The total number

of tweets in a sample is 4,029,715 including L12 = 381, 178, L15 = 467, 509, L23 = 607, 461,

L22 = 578, 843, L10 = 378, 837, and L3 = 1,615,887.

Models

We focus on two prediction tasks—nowcasting (predicting current week ILI rates) and fore-

casting (predicting ILI activity several weeks in advance). We define our nowcasting task as

predicting weekly ILI proportions for the current week Yti using data from the time period

X[ti−k, ti−1], where k is the window size between one and four weeks. We define our forecasting

task as predicting weekly ILI proportions at week Yti+1
or Yti+2

(one or two weeks in advance,

respectively) using data from the time period X[ti−k, ti], inclusive.

Baseline models. We take advantage of different regression models previously used for

predicting ILI dynamics [8] e.g., Support Vector Machine (SVM) and AdaBoost. We also

experimented with Linear Regression with Ridge and Lasso regularization, however these

models yielded the lowest performance and were excluded from our analysis. We experiment

Fig 1. Location-specific ILI dynamics. Weekly ILI proportions between 2011 and 2014 for six example geolocations.

https://doi.org/10.1371/journal.pone.0188941.g001

Fig 2. Tweet distribution across geolocations. The number of tweets collected within a 25-mile radius of military installations for 31

geolocations.

https://doi.org/10.1371/journal.pone.0188941.g002
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with two SVM models: one model with a linear kernel and the other with a radial basis func-

tion (RBF) kernel. However, unlike previous work that only relied on word ngram features

extracted from tweets [7], we experiment with and contrast the predictive power of lexical, sty-

listic, and communication behavior predictors.

Neural network models with long short-term memory layers. Long short-term memory

(LSTM) is a recurrent neural network with a built in memory cells to store information and

exploit long range context, surrounded by gating units that can reset, read, and write informa-

tion [25]. LSTMs have been successfully used for sequence modeling e.g, speech recognition,

language modeling, translation, image captioning. LSTMs are computationally more powerful

than other sequence models e.g., Hidden Markov Models with no continuous internal states,

feedforward networks, and SVMs with no internal states at all.

For our experiments, we implement multiple neural network architectures that rely on

LSTM layers in keras for regression to forecast weekly ILI proportions. To combine ILI histori-

cal data and social media signals we rely on a two-branch neural network architecture pre-

sented in Fig 3. For this combined SM and ILI setting, we add a merge layer before the fully

connected layer. If we only rely on ILI historical data, we use the left branch of the network for

ILI forecasting followed by a fully connected layer. We initialize the network with one input

node per timestep/week (for ILIOnly) and a single output node, using the raw scalar output as

the predicted value for regression. Likewise, if we only rely on social media signals, we use the

right branch for ILI forecasting, followed by a fully connected layer. For social media signals

(for SM Only), we initialize the network with 10k-dimensional vectors of word-level weekly-

normalized statistics (focusing on the most frequent ngrams), 1K-dimensional pre-trained

Fig 3. Diagram of a two-branch neural network model for ILI dynamics prediction. The model combines ILI historical estimates encoded using one

LSTM layer on the left and social media predictors (ILI + SM) encoded using another LSTM layer on the right to forecast ILI dynamics in weeks.

https://doi.org/10.1371/journal.pone.0188941.g003
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embedding vectors [26], and 2K-dimensional topic vectors [27]. While relatively simple (e.g.,

single rather than multilayer), the above described neural network architectures permit rela-

tively short training time, and, thus, a scalable framework for even larger datasets.

Let Xt denote a matrix of training instances at time t that could be either weekly ILI propor-

tions at time t (in the left branch of the network) or k-dimensional vectors of word-level

weekly-normalized statistics (in the right branch of the network), or both. Let It, Ft, Ct, Ot, Mt

denote input, forget and output gates, cell and hidden states of the LSTM at time t. Cells within

LSTM layers of size 2,048 in both branches of the network are described mathematically

below:

Input gate : It ¼ sðXt �Wxi þMt� 1 �Whi þ Ct� 1 �Wci þ biÞ ð2Þ

Forget gate : Ft ¼ sðXt �Wxf þMt� 1 �Whf þ Ct� 1 �Wcf þ bf Þ ð3Þ

Cell state : Ct ¼ Ft � Ct� 1 þ It � tanhðXt �Wxc þMt� 1 �Whc þ bcÞ ð4Þ

Output gate : Ot ¼ sðXt �Wxo þMt� 1 �Who þ Ct �Wco þ boÞ ð5Þ

Hidden state : Mt ¼ Ot � tanhðCtÞ ð6Þ

where (σ) denotes the sigmoid activation function, (�) indicates matrix multiplication and (•)

indicates component-wise multiplication. W�i, W�f, W�c, W�o are parameter matrices for gates

learned during training. LSTM training is performed using backpropagation [28] with batch

size of 16 using Adam optimizer (per-parameter adaptive learning rate method) to stabilize

parameter updates to minimize mean squared error loss. All models are trained for 50 epochs.

Note, no activation function is used for the dense output layer (fully connected layer as shown

in Fig 3) because it is a regression task and we are predicting numerical ILI values directly

without transform.

Our neural network model predicts the ILI value at time t in the time series by training with

the data from a 4-week period prior to the t step. We experiment with forecasting and predict

ILI values 1 to 2 weeks in advance using the 4-week sliding window. We perform this experi-

ment using different types of features described below as the endogenous variables and weekly

ILI proportions (Eq (1)) as the exogenous variable. We extract historical signals from ILI data

(ILI Only), Social Media data (SM Only) or both ILI and Social Media data (ILI + SM).

We train our models independently for each location shown in Fig 2. We evaluate nowcast-

ing experiments using 4-fold cross validation (2001 – 2014) for six example locations and

3-fold c.v. (2012 – 2014) for 31 locations. For the forecasting experiments, we train models for

all years prior to 2014 (2011 – 2012 for six locations and 2012 – 2013 for 31 locations) and

make predictions for 2014 season. We contrast the LSTM’s performance trained on ILI and

social network data with the baseline AdaBoost and SVM regressors. We also compare loca-

tion-specific models with a joint location-independent model trained on all locations jointly.

Predictors

We extract different types of features (predictors) from tweets to train machine learning mod-

els for ILI activity prediction. These include: word ngrams (unigrams, bigrams, trigrams),

term frequency-inverse document (TFIDF) scores [29], LDA topics [27], text embeddings

[26], hashtags, mentions, and communication behavior features [30]. Before feature extraction,

we pre-processed the data—tokenized, lowercased, removed punctuation, URLs, retweets,
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numbers, infrequent tokens, e.g., with frequency less than five in our Twitter corpus, and

masked hashtag and mention symbols.

• Tweets From the cleaned tweets, we extracted unigrams, bigrams, trigrams, and TFIDF text

representations. Our vocabulary size was proportional to the number of tweets from a given

location and ranged from about 100K ngrams for locations with fewer tweets to 300K

ngrams for locations with many more tweets.

• Tweets and Network In addition to text features we extracted hashtags and mentions (aka

communication behavior features) exclusively as our ngram tweet representations ignored

hashtags and mentions. Like n-gram features, we restricted these network predictors to a

minimum frequency of 5 occurrences. Likewise, this vocabulary size was not fixed, but ran-

ged depending on the location from 25K to 50K.

• Topics We learned topics discussed in tweets using Latent Dirichlet Allocation proposed by

[27] on an independent sample of one million tweets. We tuned the number of topics t =

[50, . . ., 1000] and Dirichlet priors α and β. We found that the optimal values of priors are α
= 0.1 and β = 0.005, and topics t = 1000 by maximizing log-likelihood on a development sub-

set of tweets. We converted tweets into topic vectors by replacing words with the corre-

sponding topic assignments.

• Text Embeddings We relied on text embeddings obtained using the Word2Vec model

developed by [26] implemented in gensim [31]. We learned embeddings on the same corpus

of one million tweets as LDA topics. After learning embeddings—50-dimensional vector

representations—we assigned words to clusters by measuring cosine similarity between pairs

of word embeddings, and computed clusters using spectral clustering over a word-to-word

similarity matrix. Similar to topics, we converted tweets into embedding vectors by replacing

words with the corresponding cluster assignments.

• Stylistic We aggregated all tweets per week and calculated 14 stylistic features including the

average tweet length in words and characters; retweet, uppercased COOL, elongated Yaay
and repeated mixed punctuation ???!!! rate; proportions of tweets that are retweets, contain

URLs, mentions, hashtags, punctuation, and emotions; and mention, hashtag, and IRL rate

per word.

Tweets, topics, and embeddings are inputs to the LSTM layer shown in Fig 3 on the right,

also represented as an example Xt matrix of instances in Eqs (2)–(6). More precisely, Xt is

either a sequence of 10k-dimensional vectors of word-level weekly-normalized statistics, or

1K-dimensional pre-trained embedding vectors, or 2K-dimensional topic vectors over time/

window.

Evaluation metrics

To evaluate the performance of our models and to compare against other work [8], we report

four evaluation metrics: Pearson correlation (CORR), root mean squared error (RMSE), root

mean squared percent error (RMSPE), and maximum absolute percent error (MAPE). These

evaluation metrics were calculated for the time period January 1, 2011 to December 31, 2014.

The definitions for all of the metrics are given below. We define Yti to denote the observed

value of the ILI proportion at time ti, Ŷ ti
denotes the predicted value by any model at time ti,

Y 0ti denotes the mean of the values of Yti, and Ŷ 0ti denotes the mean of the values of Ŷ ti
.
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Pearson Correlation (CORR) measures the linear dependence between the predicted and

observed values during the time period [t1, tn]:

r ¼
Pn

i¼1
ðYti � Y

0
ti
ÞðŶ ti

� Ŷ 0tiÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðYti � Y

0
ti
Þ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðŶ ti
� Ŷ 0tiÞ

2
q ð7Þ

Root Mean Squared Error (RMSE) measures the difference between the predicted and

observed values:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðYti � Ŷ ti
Þ

2

s

ð8Þ

Root Mean Squared Percent Error (RMSPE) measures the percent difference between the

predicted and observed values:

RMSPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

Yti � Ŷ ti

Yti

 !2
v
u
u
t � 100 ð9Þ

Maximum Absolute Percent Error (MAPE) measures the magnitude of the maximum per-

cent difference between the predicted and observed values:

MAPE ¼ max
i

jYti � Ŷ ti
j

Yti

 !

� 100 ð10Þ

The evaluation metrics allow us to estimate model accuracy (Pearson correlation r, RMSE,

RMSPE), robustness (MAPE), and the ability to predict upward and downward ILI tendency.

All evaluation metrics were calculated for the time period from January 2011 to December

2014.

Results

This section presents nowcasting and forecasting results for location-specific ILI dynamics

prediction. We first focus on analyzing machine learning models and contrast different social

media signals by training independent models on tweets (ngrams, TFIDF), text embeddings,

and tweet and network (hashtags and embeddings) predictors for six example geolocations.

We then take the best model and feature combinations and report ILI activity forecasting

results for 31 geolocations. Finally, we investigate how model performance correlates with the

number of social media posts available per location.

RQ1: Contrasting predictive models

Nowcasting. Table 2 presents nowcasting (current week) prediction performance for

three machine learning models—AdaBoost, SVM with a linear kernel, and LSTM models

learned from ILI predictors and LSTM model learned from social media features—tweets,

tweets and network, and text embeddings. The results are reported using four evaluation met-

rics—Pearson correlation (CORR), Root Mean Squared Error (RMSE), Root Mean Squared

Percent Error (RMSPE), and Maximum Absolute Percent Error (MAPE) scores. These metrics

were calculated for predictions over the time period from January 2011 to December 2014

using 4-fold cross validation. The results were averaged over six locations with the mean, mini-

mum, and maximum values reported for each metric.
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As Table 2 shows, ILI historical signals yield better performance compared to social media

signals (as has been shown earlier [8, 9]), with the SVM model producing the highest average

CORR (r = 0.90), RMSPE (10.31%), and MAPE (32.2%). The best correlation per location was

as high as 0.99. Thus, ILI predictors are very robust as indicated by MAPE and accurate as

indicated by low average RMSE (0.01).

When we relied on no ILI historical data but only social media predictors to build models

we found that LSTM models outperform other approaches in all metrics e.g., Pearson correla-

tion (0.79), RMSE (0.01), RMSPE (29.52), and MAPE (69.54). We observed that out of all

social media predictors tweets yield the highest performance compared to text embeddings

and hashtags.

RQ2: Evaluating predictive power of social media signals

Fig 4 reports detailed results for the current week ILI prediction across six geolocations

obtained using three models—AdaBoost, SVM and LSTM, and four feature types—ILI, net-

work, tweets, and embeddings. We observe that model performance significantly varies across

locations e.g., RMSE is lower for L12 and L10, but 2.5 times higher for other locations; for the

SVM model, RMSE is three time higher for tweets compared to ILI features; for the AdaBoost

model social media signals yield 5 times higher RMSE than ILI features.

TFIDF, higher order ngrams, and stylistic features yield significantly lower performance as

reported in Fig 5 compared to other types of social media predictors e.g., embeddings, and

tweet and network signals. We found that embeddings, unigrams (tweets), hashtags and

Table 2. ILI nowcasting results (current week) for six geolocations estimated using cross-validation over four years (2011–2014). Models: AdaBoost,

SVM with a linear kernel, and LSTM. Metrics: Pearson correlation (CORR), RMSPE (%), MAPE (%), and RMSE. The highest performance results within each

datatype are highlighted in bold.

AdaBoost SVM LSTM

Metric Mean Min Max Mean Min Max Mean Min Max

ILI Historical Data

CORR 0.81 0.43 0.92 0.90 0.85 0.99 0.86 0.84 0.87

RMSE 0.01 0.00 0.02 0.02 0.00 0.03 0.01 0.00 0.01

RMSPE 12.93 11.63 15.80 10.31 0.94 13.35 15.06 12.31 17.54

MAPE 42.59 23.81 68.91 32.20 4.30 41.89 53.04 42.14 65.01

Social Media: Tweets Only (word bigrams)

CORR 0.47 0.27 0.65 0.19 0.15 0.44 0.79 0.66 0.85

RMSE 0.04 0.03 0.05 0.09 0.06 0.12 0.01 0.01 0.01

RMSPE 30.48 26.04 33.33 72.03 48.70 102.81 29.52 20.25 43.50

MAPE 81.02 59.18 112.64 129.74 100.00 219.87 69.54 45.05 111.35

Social Media: Text Embeddings

CORR 0.60 0.30 0.76 0.64 0.51 0.77 0.22 0.02 0.35

RMSE 0.04 0.03 0.04 0.06 0.04 0.09 0.01 0.01 0.01

RMSPE 29.92 17.60 37.57 52.54 38.57 80.35 35.35 26.55 40.51

MAPE 81.38 42.10 130.21 114.62 81.66 188.84 89.62 61.86 111.74

Social Media: Tweets and Network (hashtags)

CORR 0.61 0.45 0.73 0.58 0.41 0.71 0.79 0.64 0.86

RMSE 0.04 0.02 0.06 0.06 0.04 0.10 0.01 0.01 0.01

RMSPE 31.81 18.61 42.37 47.07 29.58 81.84 34.24 23.40 52.86

MAPE 83.97 45.10 107.60 116.39 74.64 209.14 80.84 50.84 135.99

https://doi.org/10.1371/journal.pone.0188941.t002
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Fig 4. ILI nowcasting results for six geolocations from various social media signals estimated using

cross-validation over four years (2011–2014). Predictive models—AdaBoost, SVM, and LSTM. Predictive

features—ILI, Network, Tweets, and Embeddings. Evaluation metric—Root Mean Squared Error (RMSE).

https://doi.org/10.1371/journal.pone.0188941.g004

Fig 5. ILI nowcasting results for six geolocations obtained using SMOnly model trained on nine types

of social media signals. We contrast Pearson and RMSE for six geolocations. Locations with labels show the

best (embeddings, unigrams, hashtags and mentions), on the right from the dotted vertical line, and the worst

(stylistic and topics) social media signals.

https://doi.org/10.1371/journal.pone.0188941.g005
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mentions (tweets and network) yield the highest Pearson and the lowest RMSPE compared to

all other types of social media signals.

Real-time (nowcasting) predictions produced by the LSTM model learned from tweet and

network (SM) signals are capable of predicting the timing and magnitude of yearly peaks as

shown in Fig 6. Prediction performance varies across locations e.g., Pearson correlation is

between rL10 = 0.66 and rL22 = 0.86 for social media signals and between rL10 = 0.84 and rL22 =

0.87 for ILI signals.

The results presented in Fig 6 qualitatively show the predictive power of social media fea-

tures compared to ILI predictors. Overall, SM signals accurately track (the average Pearson

Fig 6. True vs. predicted ILI proportions (real-time current week estimates) as a function of time

(2011–2014) for six geolocations. We plot true ILI proportions (True), predictions from social media (tweet

and network) features (SM), and predictions from ILI historical data (ILI) obtained using LSTM model.

https://doi.org/10.1371/journal.pone.0188941.g006
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correlation is 0.79) ILI proportions between 2011 and 2014 across six geolocations. Moreover,

the fact that the difference in Pearson correlation between ILI and SM predictors is between

0.02 and 0.05 for four locations demonstrates the value of using solely social media data to pre-

dict ILI dynamics. This is especially valuable for the regions where historical ILI estimates are

not available.

Forecasting. Table 3 presents ILI forecasts for one week in advance obtained using differ-

ent models and social media predictors—tweets, topics, text embeddings, and network. First,

as expected, the LSTM model can estimate ILI proportion for the current week with higher

accuracy than forecasting ILI one week in advance. For example, the highest Pearson correla-

tion obtained using LSTM model with SM data for the current week estimates is r = 0.79 vs.

next week estimates r = 0.61, similarly for ILI data current week estimates r = 0.86 vs. next

week estimates r = 0.84. We also observed RMSE for nowcasting is significantly lower than for

forecasting one and two weeks in advance.

Our key findings for six example geolocation are listed below.

• RQ1: LSTM models yield more accurate predictions compared to previously used AdaBoost

or SVM models learned from social media signals.

Table 3. ILI forecasting (one week) results for six geolocations. Models: AdaBoost, SVM with a linear kernel, and LSTM. Metrics: RMSPE (%), MAPE

(%), and RMSE (% ILI). The best performing models within each data type are highlighted in bold.

AdaBoost SVM LSTM

Metric Mean Min Max Mean Min Max Mean Min Max

ILI Historical Data

CORR 0.87 0.78 0.91 0.90 0.85 0.99 0.84 0.79 0.89

RMSE 0.02 0.01 0.03 0.02 0.00 0.03 0.01 0.00 0.01

RMSPE 13.35 11.51 17.88 10.43 1.04 13.29 15.46 12.45 20.17

MAPE 43.61 23.87 79.53 31.84 4.50 40.23 49.07 39.83 65.42

Social Media: Tweets Only (word unigrams)

CORR 0.53 0.41 0.69 0.23 0.11 0.46 0.61 0.54 0.64

RMSE 0.04 0.03 0.05 0.09 0.06 0.12 0.01 0.00 0.01

RMSPE 29.90 25.55 35.78 70.25 50.97 97.87 20.43 17.50 23.05

MAPE 73.42 52.72 98.11 127.99 100.00 207.35 46.67 37.31 54.26

Social Media: Text Embeddings

CORR 0.61 0.46 0.76 0.68 0.56 0.77 0.18 0.08 0.29

RMSE 0.04 0.03 0.05 0.05 0.04 0.07 0.01 0.01 0.01

RMSPE 29.89 25.32 34.68 43.33 26.00 65.11 29.13 21.15 39.75

MAPE 83.20 69.60 105.26 94.04 52.36 145.65 74.71 47.92 108.58

Social Media: Topics

CORR 0.43 0.34 0.61 0.53 0.45 0.66 0.21 0.16 0.27

RMSE 0.05 0.03 0.08 0.06 0.05 0.09 0.01 0.01 0.01

RMSPE 42.15 20.60 69.71 50.54 35.03 83.12 28.80 21.99 37.93

MAPE 116.73 47.86 192.48 112.85 70.33 191.04 75.74 51.50 103.99

Social Media: Tweets and Network (hashtags)

CORR 0.54 0.43 0.64 0.64 0.58 0.73 0.59 0.53 0.66

RMSE 0.05 0.03 0.08 0.05 0.04 0.08 0.01 0.01 0.01

RMSPE 40.93 29.56 67.97 40.42 27.91 53.26 26.63 17.72 38.61

MAPE 112.70 79.76 182.72 99.02 69.56 131.91 63.30 38.54 97.03

https://doi.org/10.1371/journal.pone.0188941.t003
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• RQ2: Tweet and network signals are the most predictive signals within all other types of

social media signals of ILI dynamics compared to stylistic, TFIDF, and higher order ngram

features.

• ILI predictions significantly vary across locations. Model performance depends on the

amount of social media data available and ILI dynamic complexity.

• Models for the current week estimates (nowcasting) are more accurate than models for one

or two week forecasts.

RQ3: Forecasting using ILI and social media data

In Tables 4–6 we report ILI prediction results (using Pearson correlation, RMSPE, and MAPE,

respectively) for 31 geolocations. We train models using (1) ILI historical data, (2) the most

predictive social media signals—tweets and network, and the best performing models—LSTM,

and (3) joint ILI and SM signals. We train LSTM models on two season data (2012–2013) and

test on the 2014 season.

Combining ILI and social media predictors. Tables 4–6 show that when LSTM models

are trained on both ILI and SM signals the average Pearson correlations are as high as r = 0.9

for this week predictions (on average 0.06 higher than ILI only r = 0.84), r = 0.82 for one week

predictions (on average 0.11 higher than ILI only r = 0.71), and r = 0.74 for two week predic-

tions (on average 0.21 higher than ILI only r = 0.53). We observed the highest correlations for

locations L14, L11, L4, L12, L10, and L25 and the lowest correlations for international loca-

tions—i3, i20, and L20. Note, these international locations have less Twitter data compared to

other locations e.g., i3 = 2.73M vs. L14 = 16.43M.

Contrasting social media signals with ILI historical data. Tables 4–6 further demon-

strate that in case no ILI historical data is available tweet and network features extracted from

public social media data can be accurate predictors of location-specific ILI dynamics. This is

the case for real-time predictions (nowcasting) as well as one and two week forecasts. More

specifically, we show that for some locations, e.g., L3, L27, L28, etc., our LSTM models trained

exclusively on social media features can produce predictions up to two weeks in advance with

comparable or better accuracy to the models trained on ILI historical data. We observed this

for 58% of locations for current week predictions, 75% of locations for one week, and 90% of

locations for two week forecasts.

We identified locations with the highest and the lowest performance measured using

RMSE, RMSPE, and MAPE metrics. The lowest estimates (the best predictions) were for loca-

tions L0, L25, and i2 and the highest estimates—for one international location, i17. Location

i17 has the lowest amount of tweets available (0.16M).

In Figs 7 and 8 we plot true vs. predicted ILI estimates for 2014 season for 31 locations as a

function of time. We plot predicted ILI forecasts one and two weeks in advance obtained using

LSTM models leaned from ILI historical data only (ILI), social media data only (SM), and

combined ILI and social media data (ILISM). We demonstrate that ILI + SM features outper-

form ILIOnly and SMOnly features; models for one week forecasts are more accurate than

models for two week forecasts (lower RMSE, MAPE and higher correlation).

Correlating model performance and tweet volume across locations. Figs 9 and 10 show

how model performance measured using Pearson and RMSPE, respectively, varies across geo-

locations depending on the number of tweets available per geo-location. We found that for

both neural network models trained on either social media data (SMOnly) or both ILI and

social media data (ILI + SM) Pearson between true and predicted ILI dynamics increases with

the number of tweets increasing per geolocation. Trends are shown using dotted lines. We

Forecasting ILI dynamics using neural networks and social media

PLOS ONE | https://doi.org/10.1371/journal.pone.0188941 December 15, 2017 14 / 22

https://doi.org/10.1371/journal.pone.0188941


observe that most of the outlier locations are international (shown as triangles) e.g., Germany,

Puerto Rico, Japan. Similarly, we observe that RMSPE decreases with the number of tweets

increasing across geolocations. Outlier locations are mostly international except Texas and

Georgia.

Discussion

Social media disease surveillance has shown significant promise, however, its potential has not

been fully evaluated. This work is the first to evaluate the predictive power of previously unex-

plored signals extracted from social media and use neural network models to forecast location-

Table 4. ILI predictions for 31 geolocations estimated using Pearson correlation for nowcasting (this week) and forecasting (one and two weeks).

Neural network models are trained from ILI data only (ILI), social media data only (SM), or both ILI and SM data (ILI + SM). Locations are sorted by the amount

of Twitter data available in a descending order (the first column is shown in millions). Locations with min and max correlations are underlined.

This Week One Week Two Weeks

Tweets ILI SM ILI + SM ILI SM ILI + SM ILI SM ILI + SM

16.43 L14 0.86 0.97 0.97 0.73 0.94 0.94 0.55 0.88 0.92

16.38 i2 0.77 0.58 0.78 0.65 0.58 0.72 0.49 0.53 0.61

14.90 L3 0.84 0.94 0.96 0.72 0.90 0.93 0.61 0.84 0.89

12.45 L27 0.86 0.88 0.96 0.74 0.82 0.87 0.54 0.81 0.84

11.67 L20 0.70 0.88 0.91 0.25 0.74 0.69 0.01 0.59 0.62

10.53 i25 0.83 0.77 0.82 0.67 0.79 0.76 0.51 0.79 0.76

9.73 L28 0.87 0.90 0.96 0.75 0.82 0.88 0.54 0.79 0.84

8.87 L11 0.89 0.94 0.97 0.79 0.93 0.92 0.64 0.90 0.91

7.49 L25 0.86 0.91 0.96 0.76 0.86 0.93 0.63 0.87 0.93

7.04 L10 0.86 0.95 0.93 0.82 0.95 0.88 0.68 0.92 0.85

6.52 L4 0.86 0.95 0.97 0.79 0.93 0.95 0.69 0.91 0.90

5.25 L29 0.88 0.79 0.92 0.79 0.76 0.84 0.57 0.75 0.76

5.11 L0 0.75 0.61 0.89 0.69 0.56 0.82 0.58 0.65 0.79

4.48 L23 0.85 0.93 0.96 0.72 0.85 0.88 0.53 0.83 0.83

3.94 L12 0.90 0.84 0.95 0.82 0.90 0.91 0.69 0.95 0.89

3.67 L30 0.86 0.92 0.94 0.71 0.85 0.84 0.50 0.81 0.73

3.00 L33 0.87 0.87 0.94 0.76 0.82 0.89 0.54 0.77 0.84

2.92 L15 0.89 0.96 0.96 0.77 0.92 0.88 0.59 0.91 0.84

2.77 L13 0.78 0.81 0.92 0.57 0.65 0.75 0.33 0.59 0.55

2.73 L31 0.88 0.91 0.96 0.81 0.88 0.89 0.67 0.89 0.84

2.73 i3 0.59 0.54 0.66 0.40 0.47 0.47 0.24 0.43 0.33

2.71 L32 0.85 0.84 0.74 0.74 0.89 0.86 0.51 0.88 0.87

2.08 L22 0.83 0.90 0.95 0.71 0.83 0.86 0.54 0.83 0.77

1.80 L21 0.81 0.93 0.95 0.62 0.81 0.81 0.46 0.74 0.69

1.39 i27 0.86 0.63 0.84 0.79 0.74 0.82 0.61 0.80 0.72

1.33 L34 0.85 0.91 0.95 0.72 0.87 0.88 0.52 0.83 0.81

1.16 L37 0.83 0.57 0.85 0.75 0.45 0.75 0.61 0.38 0.59

1.04 L16 0.86 0.87 0.92 0.73 0.84 0.79 0.50 0.81 0.69

0.41 i20 0.88 0.37 0.81 0.77 0.22 0.63 0.65 0.06 0.33

0.35 L19 0.86 0.70 0.92 0.75 0.74 0.80 0.55 0.77 0.66

0.16 i17 0.80 0.38 0.68 0.59 0.32 0.55 0.38 0.33 0.37

Mean 0.84 0.80 0.90 0.71 0.76 0.82 0.53 0.74 0.74

https://doi.org/10.1371/journal.pone.0188941.t004
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specific ILI dynamics across multiple geolocations. Unlike earlier work, we contrasted neural

network model performance with previously used machine learning approaches, and showed

that LSTM models outperform previously used machine learning approaches (SVM, ADA-

Boost). We showed that our models can produce accurate and robust estimates of ILI dynam-

ics up to several weeks in advance.

We also compared the predictive power of location-specific vs. location-independent mod-

els, and qualitatively evaluated the value of social media for forecasting ILI activity up to sev-

eral weeks in advance. We demonstrated that neural network models learned exclusively from

social media signals yield comparable or better performance to the models learned from ILI

historical data. This suggests that social media signals allow us to track people showing

Table 5. ILI prediction results for 31 geolocations estimated using RMSPE for nowcasting (this week) and forecasting (one and two weeks in

advance). Locations with min and max correlations are underlined.

This Week One Week Two Weeks

ILI SM ILI + SM ILI SM ILI + SM ILI SM ILI + SM

L14 40.2 48.8 38.7 45.3 65.5 32.4 61.8 74.9 30.2

i2 29.0 28.2 30.3 28.7 26.9 25.2 33.7 30.3 26.2

L3 39.7 41.7 55.4 53.5 73.9 40.6 52.4 68.6 53.6

L27 42.4 38.7 21.0 50.4 50.3 44.2 57.4 57.4 49.3

L20 50.2 55.7 48.7 65.6 59.8 67.1 61.2 57.4 51.2

Li25 79.1 53.9 54.0 77.4 54.4 75.1 95.2 70.1 73.4

L28 36.3 31.1 26.6 43.3 51.5 34.0 51.5 58.1 37.2

L11 37.3 50.0 31.9 42.6 71.7 45.6 57.7 55.9 47.0

L25 33.7 54.4 15.5 35.4 70.9 24.2 48.1 67.2 26.7

L10 38.8 40.7 33.4 38.3 37.7 33.6 49.7 54.6 29.9

L4 37.6 44.2 31.0 45.9 58.8 50.0 52.4 55.1 49.7

L29 35.0 45.1 42.1 46.0 49.2 40.2 54.6 48.7 43.3

L0 28.9 25.7 20.1 29.2 32.0 26.2 35.9 45.2 34.8

L23 38.8 62.0 30.0 45.3 74.2 40.2 51.8 65.6 45.0

L12 44.9 80.3 50.6 66.5 105.0 88.9 99.1 149.2 106.4

L30 48.0 62.8 35.1 54.6 75.7 48.9 63.5 75.1 60.4

L33 33.1 37.9 27.2 44.7 42.0 29.4 43.2 38.1 33.9

L15 56.9 99.5 40.5 62.2 107.5 71.9 76.8 154.6 91.0

L13 49.6 54.0 34.5 55.6 73.6 51.2 64.4 81.9 57.7

L31 39.7 70.6 29.3 44.5 79.1 38.9 48.1 71.5 57.8

i3 61.6 63.1 65.8 78.1 62.4 70.4 55.9 63.6 28.9

L32 43.1 97.4 88.3 57.1 97.8 74.6 71.9 141.7 97.1

L22 44.2 74.0 31.0 54.2 68.3 55.3 69.6 84.0 69.3

L21 49.7 83.5 37.7 65.0 68.7 59.5 77.0 90.0 75.7

i27 32.6 67.1 46.1 51.5 62.2 53.5 58.7 72.3 61.1

L34 29.2 36.8 22.6 38.6 38.4 35.0 49.8 39.9 44.6

L37 46.7 58.2 37.5 50.0 62.3 51.4 58.2 59.8 52.0

L16 42.7 50.6 38.7 51.0 57.2 50.5 59.8 54.2 54.3

i20 48.6 115.1 88.3 50.8 109.5 72.2 51.1 116.4 85.0

L19 41.8 92.8 57.8 61.4 89.0 49.8 55.6 89.7 63.0

i17 87.3 169.1 88.3 128.7 183.1 154.2 150.0 181.9 150.5

Mean 44.1 62.4 41.5 53.6 69.6 52.7 61.8 76.6 57.6

https://doi.org/10.1371/journal.pone.0188941.t005
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symptoms of influenza (not necessarily confirmed influenza). Thus, social media sources can

potentially be used to forecast ILI dynamics for the regions where ILI historical data is not

available.

Moreover, neural network models learned from combined ILI and social media signals sig-

nificantly outperform models that rely solely on ILI historical data, which adds to a great

potential trove of alternative public sources for ILI dynamics prediction.

Modeling influenza awareness vs. infection in social media

Previous work on influenza surveillance that relied on social media sources developed Twitter

infection vs. awareness classifiers [6, 7] and filtered flu-related tweets with hand-engineered

Table 6. ILI prediction results for 31 geolocations estimated using MAPE for nowcasting (this week) and forecasting (one and two weeks). Loca-

tions with min and max MAPE scores are underlined.

This Week One Week Two Weeks

ILI SM ILI + SM ILI SM ILI + SM ILI SM ILI + SM

L14 16.81 15.10 18.18 20.90 23.94 11.55 27.46 28.29 13.18

i2 10.88 13.44 11.65 12.39 13.89 12.01 16.24 14.12 12.43

L3 12.96 15.53 17.25 18.15 39.67 12.94 15.89 35.76 26.80

L27 16.75 16.51 9.97 21.59 22.42 12.57 25.47 26.52 14.12

L20 20.13 19.79 17.09 29.51 23.78 27.39 26.68 24.31 17.57

i25 30.92 25.12 19.34 31.88 22.35 27.48 34.77 26.60 34.70

L28 14.36 12.68 11.53 18.71 27.42 14.62 20.84 29.87 13.45

L11 12.30 18.00 10.92 16.48 28.22 16.91 22.27 21.82 22.23

L25 11.43 21.08 6.95 16.95 30.92 8.89 16.39 29.59 12.55

L10 12.34 18.22 17.51 14.37 18.05 18.48 18.80 27.00 16.76

L4 12.34 18.66 10.25 17.38 22.39 17.88 17.83 20.84 19.20

L29 13.87 19.83 12.53 16.13 19.64 14.24 21.39 24.57 21.02

L0 10.37 14.81 9.14 11.74 13.84 10.27 13.58 17.89 13.65

L23 14.67 26.99 11.86 19.32 35.27 17.73 23.86 30.57 22.67

L12 13.96 33.73 15.29 26.28 45.55 30.91 40.91 72.21 42.30

L30 17.50 26.37 16.67 25.96 32.82 19.66 25.14 34.83 29.43

L33 12.30 17.38 10.11 19.34 21.05 12.80 18.93 18.90 15.74

L15 21.32 37.07 18.22 25.91 41.65 33.94 39.65 69.70 38.24

L13 15.57 23.49 14.71 20.10 32.74 23.18 21.90 36.80 26.06

L31 14.17 35.02 12.48 20.84 40.45 21.08 21.39 34.41 25.80

i3 19.67 24.88 22.49 24.34 26.31 25.57 19.61 26.24 28.90

L32 16.25 38.89 20.99 23.80 39.49 27.12 29.24 63.26 36.96

L22 16.36 34.31 13.33 25.30 34.82 27.52 31.78 44.60 37.27

L21 17.50 37.72 16.46 32.36 30.88 29.58 34.16 46.03 38.12

i27 16.16 26.30 17.97 19.03 24.76 19.11 21.96 27.60 22.09

L34 15.74 17.38 9.45 20.99 21.37 13.97 26.00 21.76 17.22

L37 17.63 21.67 16.91 22.82 24.61 18.93 26.28 23.20 21.69

L16 15.08 21.89 13.42 16.89 20.46 16.00 19.14 23.54 18.39

i20 17.08 41.50 28.70 24.68 42.83 29.66 25.63 45.92 39.26

L19 15.99 35.74 19.52 23.39 35.40 22.09 25.66 36.79 28.04

i17 29.39 56.58 31.59 46.21 59.07 47.09 53.29 63.47 55.70

Mean 16.19 25.34 15.56 22.06 29.55 20.68 25.23 33.77 25.21

https://doi.org/10.1371/journal.pone.0188941.t006
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Fig 8. True vs. predicted ILI dynamics two week forecasts as a function of time in 2014 for 31 geolocations. We plot true ILI values

(True), two week forecasts obtained using social media features only (SM), ILI historical data (ILI), and combined ILI + SM data (ILISM).

https://doi.org/10.1371/journal.pone.0188941.g008

Fig 7. True vs. predicted ILI dynamics one week in advance as a function of time in 2014 for 31 geolocations. We plot true ILI values

(True), one week forecasts obtained using social media features only (SM), ILI historical data (ILI), and combined ILI + SM data (ILISM).

https://doi.org/10.1371/journal.pone.0188941.g007
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features [32] to forecast ILI activity [8]. Unlike earlier work, in this study we relied on all tweets

produced by the military population in specific geolocations to go beyond influenza-related

keywords and tweets, and capture other linguistic predictors e.g., tweets about weather, per-

sonal well-being, and travel.

National vs. local influenza surveillance for targeted populations

The majority of work on ILI surveillance focused on general population in the U.S. and used

CDC ILINet as gold standard data [8, 10, 11, 32]. Only limited work developed approaches for

local e.g., city-level ILI surveillance [6] and studied ILI dynamics for targeted populations e.g.,

military populations [33].

Fig 10. Model performance measured as RMSPE as a function of the number of tweets per location. Predictions are made for the current week, one

and two weeks in advance using SMOnly and ILI + SM models. Outlier locations are shown with labels. Trends are shown as dotted lines.

https://doi.org/10.1371/journal.pone.0188941.g010

Fig 9. Model performance measured as Pearson correlation between true and predicted ILI dynamics as a function of the number of tweets per

location. Predictions are made for the current week, one and two weeks in advance using SMOnly and ILI + SM models. Outlier locations are marked with

labels. Trends are shown as dotted lines. International locations are shown as triangles.

https://doi.org/10.1371/journal.pone.0188941.g009
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Recent work by [34] studied the predictive power of emotions and opinions extracted from

user tweets on ILI dynamics. Author relied on social media data to understand the correlation

between psychological behavior and health in the military population and the potential for use

of social media affects—opinions and emotions extracted from user tweets for prediction of

ILI dynamics.

Conclusions and future work

We presented an approach that uses neural network models and a combination of ILI histori-

cal data and social media data to produce more accurate and robust forecasts of location-spe-

cific ILI dynamics for targeted populations. We tested our models on a variety of social media

signals to predict weekly ILI estimates across 26 U.S. and 5 international geolocations. Our

models are capable of predicting weekly ILI dynamics (nowcasting) and forecasting ILI esti-

mates up to several weeks in advance, which can help to overcome a known two week lag-time

of CDC reports. Finally, we evaluated the generalizability of predictive models by contrasting

model performance across many geo-locations, and analyzed how the predictive power of the

model depends on the volume of tweets across locations.

Future work will include exploring image content posted in social media in combination

with text and other predictors to forecast ILI dynamics. We are also interested in exploring the

predictive power of neural network models and social media signals to model other infectious

disease dynamics e.g., ebola, E. coli.
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