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Abstract—A post-silicon Analog, Mixed-Signal, and RF
(AMS/RF) design verification and validation method was devel-
oped called CHARGE (Circuit Hierarchy Analysis, Review, and
Graph Evaluation). AMS/RF design verification and validation
is important due to the critical role of AMS/RF designs in
DoD systems. The CHARGE framework utilizes a Parametric
Graph Isomorphism (PGI) algorithm that enables detection
and identification of design deviations in AMS/RF circuits. An
experiment was devised that tested the CHARGE framework
against two AMS/RF designs with deviations in the recovered
design and contrasted against golden versions of the same.
Experiments in this paper have demonstrated that the CHARGE
framework successfully identifies and spatially highlights both
structural and parametric deviations in two AMS/RF test articles.

Keywords—verification, validation, hardware assurance, trust,
microelectronics, integrated circuits, RF, mixed-signal, analog,
GDSII, layout, untrusted foundry

I. INTRODUCTION

Over the last few decades, global economics and market
trends within the semiconductor industry have driven mod-
ern microelectronics to offshore and untrusted locations for
fabrication [1]. With virtually no visibility into the manufac-
turing supply chain, it is nearly impossible for designers or
program offices to know, with any level of confidence, if the
integrated circuit (IC) chip has been compromised at a point
in the manufacturing process. To address this challenge, post-
silicon verification and validation (V&V) techniques have been
developed for assuring the manufactured design’s equivalence
to the trusted golden design [2], [3]. Significant progress has
been made over the years with digital design V&V, developing
tools that scale to perform equivalence checks between the
recovered and golden design across physical layout, function,
logic, graph, and timing modalities [4], [5]. These techniques,
however, do not map well into the analog domain due to
fundamental differences between digital and analog designs.
One example of a fundamental difference is the discrete
nature of digital versus the continuous nature of analog, which
confounds logical and functional checking algorithms. Thus,
this limits the number of tools, techniques, and approaches for
assuring analog, mixed-signal, and radio frequency (AMS/RF)
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designs. Microelectronics in modern DoD systems are often
complex Systems on a Chip (SoC) that contain sizable percent-
ages of AMS/RF components. Assuring these design modules
are equivalent to the golden is critical for a program office to
have confidence in the chip’s assurance prior to its deployment.

In this paper, we introduce the Circuit Hierarchical Analysis,
Review, and Graph Evaluation (CHARGE) framework, a first
of-its-kind V&V framework that performs post-silicon V&V
on AMS/RF designs. We provide an in-depth review of the
CHARGE framework, outline the methodology, and discuss
how it aligns and integrates into the larger portfolio of post-
silicon V&V techniques. We demonstrate the capability of
the CHARGE framework with an experiment that ingests two
different AMS/RF designs. The first is a fabricated 14 nm
FinFET Configurable Ring Oscillator (CRO) containing design
deviations that were fabricated at the foundry. These devia-
tions, however, are not present in the golden GDSII layout.
The second is a 14 nm FinFET 4-bit flash Analog-to-Digital
Converter (ADC) intended as the mixed-signal component to
an RF receiver chain. The deviations elude the traditional
functional and logical equivalency checks used in digital V&V,
however, the CHARGE framework for AMS/RF V&V is able
to identify and flag them for deeper analysis.

II. LIMITATIONS OF EXISTING VERIFICATION AND
VALIDATION APPROACHES

The central issue that differentiates AMS/RF design from
digital design is the way analog relates to different mathe-
matical and physical phenomena. This impacts how AMS/RF
V&V must be performed, compared to Digital V&V. Digital
circuits are restricted to handling boolean algebra through
discrete logic. AMS/RF cannot be simplified down to boolean
algebra. This can be verified if we consider the Effective
Number Of Bits (ENOB) that analog signals can contain due
to their continuous nature, which is usually more than one
ENOB. Put another way, analog signals can contain more
than one bit of information at any given moment, digital
signals only ever contain one bit of information. Traditional
V&V approaches, such as logical equivalence, solely consider
the case when ENOB equals one, which is Boolean Logic.
Thus, AMS/RF’s continuous nature makes traditional V&V
approaches not applicable. AMS/RF circuits can accomplish
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certain tasks in far less Power, Performance, and Area (PPA)
compared to a digital circuit (e.g., Analog Adder vs Digital
Adder or Analog Pulse Width Modulator (PWM) vs Digital
PWM). AMS/RF circuits can also perform tasks that digital
circuits are incapable of achieving (e.g., Radiating power into
space). Consequently, sources of deviation in a design can
expand beyond logical failures (e.g., changes in binary logic)
to include performance changes (e.g., bandwidth in a filter,
gain in amplifiers, slew rate) and physics related changes (e.g.,
the introduction of negative capacitance, mobility change, or
doping change). As such, traditional design verification tools
such as Layout vs Schematic (LVS) and Logical Equivalence
Check (LEC) do not apply directly to AMS/RF V&V in
a post-silicon fabrication context. This limitation of digital
design verification tools is illustrated in Figure 1, which also
illustrates how the CHARGE framework’s new paradigms
expand on the existing Digital V&V techniques to include
new equivalence check methods that provide coverage over
AMS/RF designs. To fully cover the spectrum of functions
enabled by AMS/RF systems, a comprehensive solution would
compare many electrical effects of the golden design and the
recovered design, within a specified tolerance range. For ex-
ample, solving electromagnetics within materials and surfaces
on a large scale with modern computation is currently an
active research topic [6]. To that end, we seek computationally
feasible methods or techniques that can cover some part of the
space covered by AMS/RF circuits.

Fig. 1. The CHARGE framework integrates new AMS/RF V&V Techniques
into the existing Digital Design V&V Equivalency Checking Techniques from
[3], [4] providing a comprehensive post-silicon V&V tool suite for performing
assurance on any type of design.

III. AMS/RF V&V FRAMEWORK

The CHARGE framework introduces a novel approach
to post-silicon AMS/RF V&V incorporating concepts across
the AMS/RF disciplines. These disciplines usually start at
the system specifications, then build up schematics with
simulations, and then transition to a parasitic representation
that captures first order resistance, capacitance, and inductive
effects for greater precision of circuit behavior. Accordingly,
the CHARGE framework first analyzes the recovered design
schematically for topology and component parameter verifica-
tion, then validates it at the parasitic level. Schematic level
V&V quickly captures deviations in the electrical domain,
whereas parasitic level V&V captures deviations in both the
physical and electrical domains at the expense of computa-
tional complexity. In both cases, the CHARGE framework

leverages practices from the existing field of graph theory, by
representing extracted circuits as graphs to perform V&V.

Before getting to a graph representation, AMS/RF circuit
graph analysis requires Simulation Program with Integrated
Circuit Emphasis (SPICE) netlists from both the schematic
level and parasitic level. A SPICE netlist is a textual represen-
tation of a circuit and includes all necessary components with
parameters, component models, and connections. These SPICE
netlists are extracted from both the recovered and golden
layouts using Cadence Pegasus (or other schematic extraction
Electronic Design Automation (EDA) tools) to create SPICE
netlists for the schematic. Cadence Quantus (or other parasitic
extraction EDA tools) is used to create SPICE netlists that
have parasitics included for the layout. Once the proper SPICE
netlist is generated, the SPICE netlist is converted into a graph.
An example of converting from SPICE to a graph in GraphML
format is shown by Figure 2. The conversion is done by taking
each net, or electrical device, and creating a node in the graph.
Then, edges are connected between graph nodes that represent
a connection between a net and a device pin that existed
in the SPICE netlist. Additional metadata about position and
device parameters are then embedded in the nodes. Once the
nodes, edges, and metadata are made, the graph is formed.
This graph now enables performing parametric isomorphism
checks. Through parametric isomorphism checks, detailed in
Section IV, deviations in circuit topology and component
parameters can be quickly identified.

IV. ANALYSIS METHODS

The CHARGE framework expands into AMS/RF V&V
by introducing new paradigms into the V&V space that
traditional V&V approaches can’t handle when dealing with
AMS/RF designs. This new approach, called Parametric Graph
Isomorphism (PGI), is applied on circuit graphs that are
generated from SPICE netlist files. This graph then undergoes
partitioning to reduce the complexity of the search space.
The resulting graphs are then digested by PGI to perform
the comparison and equivalence checks to find deviations in
the recovered design. The comparison and equivalence checks
expand beyond pure graph isomorphism by additionally being
able to compare the metadata of the nodes. This means the
tools can be used to compare component values (such as
resistance or capacitance) or any other data that is included
in the metadata (such as location of the devices). The process
for this analysis is shown in Figure 3, wherein two layouts,
one for the golden design and one for the recovered design,
are ingested into a parasitic extraction (PEX) tool to produce
a SPICE netlist.

The concept of PGI is a derivative of Graph Theory’s
isomorphism [7], wherein we compare the graph structure
between the golden graph and the recovered graph. In PGI,
two nodes, one in the golden graph and one in the recovered
graph, are considered “matches” if the nodes have the same
connectivity and metadata within a specified tolerance. The
specified tolerance is to account for process variations and
imaging errors, which allows PGI to show gradients of change
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(a) The SPICE netlist extracted from a generic amplifier made in 14 nm
FinFet technology.

(b) The equivalent graph of the previous SPICE netlist.

Fig. 2. An example of an amplifier SPICE netlist (a) being converted to a
graph (b). The edges of the node lead to the voltage nodes (orange) of the
device in SPICE. Data about the device given on the SPICE line (such as
number of fingers, Length, or Width) is stored in the metadata of the node.
Note that the voltage nodes themselves are also nodes in the graph. Those
voltage nodes then lead to other nodes via edges.

on component and parasitic values. This enables highlighting
regions of interest for highly deviated components. However,
these tolerance values must be chosen carefully. Too large
of a tolerance range could result in failure to identify a
deviation (Type II), but setting the threshold too tightly may
result in large amounts of false positives (Type I) due to
small process variations that would not be expected to cause
deviated behavior. An example of the various deviations that
can be captured by this tool is illustrated in Figure 4, wherein
we see not just missing nodes, but nodes that have various
design parameters altered. PGI effectively enables equivalence

checking of electrical, physical, and other relevant parameters
in not only designed devices of post-silicon layouts but also
parasitic elements.

Fig. 3. Overview flow diagram showing the general flow of the analysis.
Two layouts, one for the golden design and one for the recovered design,
are ingested into a PEX tool to produce a SPICE netlist. That SPICE netlist
is transformed into GraphML and undergoes graph partitioning to reduce the
complexity of the search space. The resulting graphs are then digested by PGI
to perform the final comparison and equivalence checks to find deviations in
the recovered.

Fig. 4. Example golden vs. recovered parametric graph isomorphism, showing
a mismatch on one of the resistors, a match on two of the nets, and a mismatch
on a parameter in one of the NFET devices. Mismatches can also be found
in capacitance values, voltage nodes, etc.

V. EXPERIMENTAL SETUP

In order to demonstrate the CHARGE framework’s ability
to ingest and parse an AMS/RF design, compare it to a trusted
golden reference version, and identify deviations, an experi-
ment was performed on two AMS/RF designs as test cases
for validating our post-silicon AMS/RF assurance approach.
These chosen designs were a CRO from the Headache chip
and a 4-bit flash ADC from the Insomnia chip.

A. 14 nm FinFET Headache Configurable Ring Oscillator

The first design, dubbed the Headache chip, was designed
and fabricated in a 14 nm FinFET technology and contained
a variety of AMS/RF circuits. Our work focused on a ring
oscillator design, which serves as an entropy source for a
True Random Number Generator circuit that generates cryp-
tographic keys. Headache version A represents the golden
reference layout sent to the foundry. Headache B is a cloned
version of Headache A that contains small, stealthy variations
in the AMS/RF circuitry that impact the performance of the
ring oscillator circuit. The Headache B chip is representative

3



of the threat case where a modification was made at some
point in the manufacturing supply chain. These changes elude
the traditional digital post-silicon V&V techniques.

B. 14 nm FinFET Insomnia Analog-to-Digital Converter

The second design considered, called the Insomnia chip,
implements a 14 nm RF receiver chain, consisting of a Low
Noise Amplifier (LNA), Mixer, Lowpass Filter (LPF), and
a 4-bit flash ADC. The Insomnia chip has two versions of
this RF chain implemented on-chip. The first version is a
“golden” reference chain, which serves as the “ground truth”
for the entire chain. The other version is a “deviated” chain,
which represents a scenario where a modification was made
at some point in the manufacturing supply chain. Each block
of the chain (the LNA, the mixer, the LPF, and the ADC) had
deviations introduced that were analog in nature. This work
focuses on analyzing the variant ADC block of the Insomnia
chip.

C. Setup Summary

The Headache chip’s CRO deviation replaces several fill
cells, which is a change that is detectable using existing anal-
ysis techniques [3], [4], allowing us to validate our methods
against a known result. Insomnia’s flash ADC deviation is
purely resistive in nature, made by increasing the length of
metal lines to increase resistance. This deviation would elude
traditional logic and function V&V approaches used for digital
circuits.

Each GDSII file was loaded into Cadence Quantus in order
to perform a PEX. In all cases, capacitive and resistive extrac-
tion was performed using identical settings. These extracted
SPICE netlists were then converted into graphs and the graphs
were processed using PGI to detect and identify anomalies
in the deviated layouts. The question we ask is: can the
CHARGE framework capture those modifications that elude
other established V&V techniques, enabling AMS/RF V&V?

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. 14 nm FinFET Headache Configurable Ring Oscillator

We first recovered the full circuit design files by applying
sample delayering, imaging, and feature extraction techniques
across the entire 14 nm FinFET design stack-up of Headache B
[8], [9]. We then extracted the as-fabricated layout from
Headache B and ingested it and the golden Headache A layout
into the CHARGE framework for comparison, according to
the flow diagram shown in Figure 3. Once analyzed, the
framework identified the deviations within the AMS/RF circuit
graphs and highlighted the areas requiring deeper inspection.
Using our PGI approach, we detected and determined that
the changes made to Headache B were decoupling capacitor
fill cells being switched out for normal fill cells with no
capacitors. We found 492 deviated devices due to the missing
via connections in the ring oscillator. Figure 5 shows the region
of interest and the extracted cells of the ring oscillator as well
as highlighted transistors impacted by the modifications.

Fig. 5. Headache B was ingested into the CHARGE framework and analyzed
against Headache A for deviations in the AMS/RF circuitry. One stage of the
ring oscillator is shown with the affected transistors in red and non-affected
transistors in black due to the introduced deviations.

B. 14 nm FinFET Insomnia Analog-to-Digital Converter

Next, we took a single variant of the 4-bit ADC from the
Insomnia chip, seen in Figure 6, and applied PGI against the
golden 4-bit ADC from the same chip. The PGI algorithm then
produced a graph with marked nodes which represent devices
that had parameters out of tolerance as seen in Figure 7. Using
the positions of the devices, the out-of-tolerance devices can
be located in the layout for further inspection.

Fig. 6. ADC Variant layout showing both the golden and variant versions of
the affected wire.

C. Experimental Summary

These two experiments show that PGI is an effective method
for determining AMS/RF deviations in designs. Using PGI,
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Fig. 7. ADC Variant layout (shown at the bottom) contrasted with the PGI
generated graph (shown at the top) showed the approximate location of the
variant that have been marked due to parameters being out of tolerance. The
left most circle is the actual wire that the variant changed. The right most
circle is the effect the variant had on the connectivity of the layout.

the CRO in Headache completed in 1.47 minutes, which had
a layout area of 560 µm2. The ADC in Insomnia completed
in 45.31 minutes, which had a layout area of 21,970 µm2.
The PGI tool runtime and design size table is shown below
in Table I along with additional information about graph sizes
and layout area.

VII. DISCUSSION

Experiments have demonstrated that the CHARGE frame-
work successfully identifies and spatially highlights both struc-
tural and parametric deviations in two AMS/RF test articles.
The introduction of PGI into the problem of post-silicon
AMS/RF V&V represents a powerful capability by being
able to detect and identify deviations that are present due
to topological and parasitic effects in a design, in addition
to connectivity and component-value checks present in a

standard LVS comparison. Besides the example of resistance
shown in this work, PGI can detect and identify deviations in
other electrical properties such as capacitance, or any other
numerical property, in the same way. By visually highlighting
the deviated area for the user and reporting the type of
deviation encountered, the framework can be used by a V&V
team to pinpoint the deviation for further analysis.

After PGI approximately located the deviations, a circuit
designer with AMS/RF experience analyzed the function of
the deviations that were found. For the CRO, it was concluded
that certain FILL cells were replaced with changed FILL cells
that presented different capacitance. The changed capacitance
would change the CRO’s typical oscillation frequency, which
was subsequently validated using Cadence Spectre. For the
ADC, it was determined was that additional resistance was
being added into the feed wire from the reference circuit
to the ADC’s comparators. The additional resistance would
impact the kickback from the ADC’s comparators in the
comparator ladder, which was subsequently validated using
Cadence Spectre.

A factor limiting the effectiveness of the CHARGE frame-
work is the scaling of the approach. While the graph iso-
morphism problem is of NP-intermediate complexity [10],
PGI reduces this complexity by further constraining node
matches based on parametric values. Runtime can be reduced
by increasing the minimum parasitic thresholds during PEX,
at the cost of decreased resolution of the parasitic graph. In
practice, default PEX settings for the PDK used to design the
test articles resulted in graphs of a size that were not tractable
for our current implementation. By reducing minimum PEX
values, we extracted graphs that PGI checks were able to
process in under an hour on our test articles running on a
standard workstation.

While the CHARGE framework was developed with
AMS/RF V&V in mind, the methodology described here can
be applied to digital circuits as well. Deviations in a digital
circuit that arise due to complex analog behaviors are not
detectable when modeling the circuit logically. By considering
a digital design as an analog system, the CHARGE framework
can be applied to digital circuits to identify deviations that
exist due to these analog effects, thereby providing additional
modalities of deviation detection and identification. Once de-
viations are detected in a digital design, information provided
by the CHARGE framework about the location and nature of
the deviations can be utilized to further investigate the logical
effect that the deviations may cause. Due to the complexity
and density of modern digital circuits, further optimizations
may be necessary to ensure analysis can be completed in a
timely fashion.

VIII. CONCLUSIONS

This work extends existing post-silicon V&V science be-
yond the digital domain and into the AMS/RF domain. Here,
we provided a newly developed proof-of-concept framework
designed to detect and identify deviations in AMS/RF cir-
cuits after fabrication. For this demonstration, a real-world
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TABLE I
PGI TOOL RUNTIME AND DESIGN SIZE

Device Area (µm2) # of Devices # of Nodes # of Edges Time (mins)
CRO Variant ∼560 2160 4744 8640 1.47CRO Golden 2160 3883 8640
ADC Variant ∼21970 9440 12022 36920 45.31ADC Golden 9439 12020 36918

Note: “# of Devices” is the number of resistors + number of capacitors + number of transistors

fabricated chip that contained modifications in the AMS/RF
circuitry, in addition to a newly developed AMS/RF chip
currently being fabricated, were selected for V&V. We applied
our physical design decomposition and design file extraction
approach to recover the as-fabricated layout and ingested it
with the golden layout into the CHARGE framework for detec-
tion and identification of unknown design deviations. Finally,
we successfully identified and located all the deviations, thus
demonstrating its potential to address the challenge of ensuring
the integrity of AMS/RF components on manufactured chips.
There are several avenues that could be explored for future
work. Research for techniques and methods to capture radia-
tive effects, such as those experienced by antenna and RF
circuits in general, is ongoing. Future research should also
seek to cover material effects.
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Abstract—Bills of materials (BOMs) are quickly becoming an
effective tool for managing supply chain risk. As more BOMs
enter circulation, the ability to compare them will be crucial
to understanding how products differ and in managing BOMs
from different tools or sources. This paper will describe some of
the challenges of comparing BOMs followed by a discussion of
several comparison methods.

Index Terms—bill of materials, BOM, HBOM, SBOM, com-
parison, graph comparison

I. INTRODUCTION

Modern supply chains are increasingly complex. A supply
chain for a single product can include multitudes of suppliers,
manufacturers, distributors, and more. Common components
that drive efficiency and reduce costs also serve to increase
the potential damage of any one compromised component.
This complexity poses significant challenges for managing risk
because a vulnerability in any one component may have out-
sized consequences and the knowledge of what’s inside any
given product may be distributed across different companies
or across the globe.

Understanding supply chains risks is more important to-
day than it has ever been. Significant vulnerabilities and
breaches continue to highlight the growing risks that supply
chains face whether they were introduced maliciously or
unintentionally. Well known events such as Log4 Shell [18]
or Spectre/Meltdown [9] demonstrated how weaknesses in
components could leave millions of products susceptible to
attack. Solar winds [29] and the recent XZ Utils backdoor [10]
demonstrated how malicious actors could subvert elements of
a supply chain in an attempt to exponentially increase their
reach. The increasing persistence and sophistication of supply
chain threats requires new tools to combat them.

Recently, BOMs have been gaining traction as a tool to
increase our supply chain understanding and help respond
to this threat. A BOM contains details of the components
that are used in building a product. While certainly not a
silver bullet, understanding what is inside systems is a first
step toward protecting them and responding once protections
have failed. Work around software BOMs (SBOMs) far out-
paces other proposed BOMs such as hardware (HBOMs)
or artificial intelligence (AIBOMs) with regulations such as
Executive Order 14028 [12] and the European Union (EU)
Cyber Resilience Act (CRA) [6] helping to further global

adoption. Encouragingly, interest in BOMs has spawned an
abundance of new research dedicated to better understanding
how to generate, exchange, store, and operationalize BOMs
to improve risk management. As BOMs become ubiquitous,
we anticipate a growing need for the ability to compare them
which will be the focus of this paper.

Due to the nature of BOMs, comparing them is effectively
looking at how the composition of two products differs.
There are a variety of cases where that might be useful.
It may be important to understand how the composition of
a product changed with a version update or patch. Another
use case might be evaluating a received BOM against an
authoritative reference BOM. Comparisons can also be utilized
to understand temporal changes that arise in dynamic systems
or variation across a family of products. Beyond these use
cases, we also find comparison methods useful for identifying
inconsistencies in the creation of BOMs themselves. These
inconsistencies are discussed later, with the irony being
that many of these inconsistencies that make comparison
difficult are most easily discovered via comparison.

In this work, we’ll start by discussing previous work on
comparing BOMs in Section II, followed by some of the bar-
riers to comparing BOMs in Section III. Section IV discusses
select methods for comparison followed by several examples
that illustrate the comparison of two SBOMs in Section V and
two HBOMs in Section VI. Lastly, Section VII will summarize
our conclusions.

II. PREVIOUS WORK

As the application of BOMs continues to evolve, particularly
in the context of cybersecurity and supply chain management,
significant research has been dedicated to understanding and
improving how BOMs are generated, compared, and utilized.

Early research on BOMs predominantly focused on en-
hancing data management techniques to cope with the com-
plexity of large-scale manufacturing environments, such as
implementing a control system to manage BOMs throughout a
company [25] and automating the creation of BOMs using an
object-oriented model [2]. The object-oriented programming
model, similar to the graph method used today, allows for
semantic relationships that can create multi-level BOMs with
sub-components of components [3]. However, since relational
databases like SQL are ubiquitous, using them to create



BOMs became more common [20]. Algorithms were invented
to automate the creation of BOMs by determining which
products were in a product order and then pulling the required
component information from the database of parts [1]. While
this method is efficient, flexible and simple, it does not allow
for parts explosion or complex computations, especially when
analyzing or comparing BOMs [21].

To tackle the growing complexity of intricate products,
advancements in BOM structures have been proposed. The
multi-level BOM model is particularly effective in managing
software, hardware, or system variations, supporting efficient
design and planning [31]. Its strengths lies in the ability to
handle complex, hierarchical data that can be represented as
a graph.

Further development in this area focuses on using graph
databases, which store node and relationships, instead of
relational databases to integrate product development with pro-
duction planning [13]. BOM management, found at companies
such as Neo4j and OpenBOM take this approach of using a
graph database.

The main advantage of turning BOMs into graphs is pairing
the knowledge of what’s inside something with information
about how those components relate to each other. Using
graphs, multiple BOMs can easily be combined to gain new
information on a larger system, especially when combined
with graph visualization tools. Even when used on a single
BOM, graph analysis techniques can provide new insights into
a system [4]. Another contribution to the graph-theoretic ap-
proach is where BOMs are converted into generic BOM graphs
using data mining techniques [24]. This method leverages
graph theory to identify common substructures within BOMs,
facilitating the detection of component reuse across different
products. While the ability to uncover hidden patterns and
relationships within BOMs is useful, its application could be
hindered by computational complexity and graph scalability.

There have been a few attempts to leverage graph theory
for BOM comparison.

Graph based similarity analysis has been used to highlight
the importance of reducing unnecessary production variations
[26] and derived graph similarity metrics have been used to
describe the similarity of two BOMs to place them into their
product families [23, 17, 27]. Tree reconciliation, matching
components in one graph to the components of another, has
been used in biology to compare phylogenetic trees and
extended to BOMs [16]. Similar methods can be applied to
BOMs to create new products quickly [15]. This is all of
the literature we could find on applying graph comparisons
to BOMs.

However, graph comparisons have a rich history that could
be explored for comparison of BOMs [7]. Work has been done
on comparing and visualizing trees, a specific type of graph
with no cycles [11]. This is might be especially applicable
to HBOMs since they tend to be more hierarchical while
SBOMs have a tendency to create loops making it less suitable.
Comparison methods range from similarity metrics, like the
ones referenced for BOM graph comparison to unknown node

comparisons, which attempt to create a mapping between the
nodes of the two graphs [19]. In the latter, some algorithms
use attributes while others focus solely on the graph structure.
Taking advantage of the attributes is more computationally
complex, but is important when comparing BOMs due to the
metadata often captured in BOM components. Since there
is not a lot of research on efficient and effective ways of
comparing BOMs, graph comparison literature may offer
promising methods for future application research.

III. BARRIERS TO COMPARING BOMS

BOMs today are extremely heterogeneous which makes
subsequent comparison very difficult. Before undertaking com-
parison, it’s important to understand some of the sources of
variability [28, 32]. While addressing these differences will
be outside of the scope of this paper, considering them will
likely be a prerequisite to meaningful comparison. This list is
not exhaustive but captures some of the variability inherent in
HBOMs and SBOMs.

A. BOM Standards and Versions

Currently in the field there are not single authoritative
standards describing the structure or contents of an HBOM
or an SBOM. For software, the NTIA Minimum elements
[5] has been an influential guidance document outlining a set
of generally accepted minimum elements. The two leading
standards, SPDX [30] and CycloneDX [22], provide detailed
schemas that describe a data structure for the capture of SBOM
information but the mapping between them can be lossy.
Despite the fact that BOMs have existed in manufacturing for
decades, development of HBOM conventions has not reached
full maturity. In addition to the CycloneDX and SPDX stan-
dards, the Information and Communications Technology (ICT)
Supply Chain Risk Management (SCRM) Task Force and
Department of Homeland Security Cybersecurity & Infrastruc-
ture Security Agency (DHS CISA) released a comprehensive
HBOM framework that differs from those standards, although
it attempts to provide mappings to them as applicable [8]. Even
within the same format, major and minor versions describe
BOM changes that can impede direct comparison.

B. SBOM Types

Despite some foundational work defining SBOM types, little
has been done to formally differentiate them within real world
SBOMs. The result is that two SBOMs for the same software
can be markedly different. As an example, a source SBOM
created directly from the source code will include named
dependencies that are imported or loaded. This will look very
different from a build SBOM which will describe a specific
release and may include information on the build process and
produced files.

C. Naming Conventions

Naming challenges permeate every aspect of BOM gen-
eration and despite being a known problem, it is extremely
difficult to solve. Software names remain an open challenge.

https://neo4j.com/blog/top-10-use-cases-bill-of-materials/
https://www.openbom.com/blog/graphs-networks-and-boms-part-1


Efforts such as the common platform enumeration (CPE)
and package uniform resource locator (PURL) have helped
machine-to-machine readability, but they deviate from how
people would colloquially refer to software. Other information
such as a vendor is complicated by lack of authoritative
conventions. As an example ‘MSFT’, ’Microsoft Corporation’,
and ’Microsoft’ are all defensible values but the inconsistent
recording makes systematically disambiguating them difficult.
As a last example, hardware component identifiers have a
tendency to describe a family of components. This means
that sub-strings of the name can still accurately describe com-
ponents, but additional characters identify it with increasing
specificity. The ‘AD7579’ from Analog Devices describes a
LC2MOS 10-Bit Sampling A/D Converter, but ‘AD7579JN’
distinguishes it as having a specific temperature range, integral
nonlinearity, and package. Neither name is incorrect, but they
utilize different levels of specificity which makes comparison
more challenging.

D. Hashing Approaches

Well known hashing approaches such as MD5, SHA1,
SHA256, SHA512 are extremely useful for providing easily
matchable fingerprints of files. Their reproducible and static
nature make them much more attractive in certain cases than
names. One problem is that they are susceptible to dynamic
information such as timestamps that often appear in files.
Since hashes don’t convey why the files are different, it
won’t be obvious whether the difference is meaningful in a
specific comparison. Furthermore, existing standards offer a
lot of flexibility in choosing hashing methods which means a
different method might have been used from one SBOM to
the next reducing comparability.

E. Structure

Structure in this context describes the relationships between
components within a BOM. This structure gives us additional
information such as where a dependency is introduced into our
software or which board a specific component is mounted on.
The problem is that methods for describing these structures
are not rigid leading to expected variability in how they are
described from one BOM to the next.

F. Scoping

In this context, scoping describes the boundaries of a
BOM; what goes inside a particular BOM and what falls
outside. This is a surprisingly hard problem. As an illustrative
hardware example, we could describe a Raspberry Pi with an
HBOM. If that Raspberry Pi is mounted inside a consumer
product, should the HBOM for the consumer product include
an external reference to the Raspberry Pi HBOM? Should
it duplicate the information from the Raspberry Pi? From a
software perspective if a software application requires the use
of a shared library in the operating system, should that be
included in the SBOM? The lack of a clear and accepted
answer to these scoping questions result in variability that
needs to be considered.

G. Quantities

Quantities are an interesting property that appear in
HBOMs. Rather than listing a component n times, we can
indicate how many of them are present with an integer
value. However, if one HBOM opts to list the components
individually and another HBOM leverages the quantity field,
then you have to rectify these different representations when
conducting a comparison.

H. Order

BOMs are unordered. This makes sense because there
isn’t a correct order to describe components. This property
however immediately adds a lot of variability to the files which
poses some challenges for simple comparative methods such
as tabular comparison especially in conjunction with name
variation that will stymie attempts to sort the data.

IV. COMPARING BOMS

Unfortunately there is no single method that can be used
to compare BOMs. Instead, strategies need to be specifically
chosen based on the data available in the BOMs in conjunction
with consideration of the questions that need to be addressed.
In a simple example, if we want to understand the difference
in licenses between two BOMs that utilize a well-formed
ontology such as the SPDX License List [30], a set comparison
using exact match of the values can be employed successfully.

In other cases, understanding quantities can be important.
If we consider two HBOMs and want to understand how
the components differ, we may opt for a list comparison of
component names which will tell us if there are different
components, as well as whether there were a different number
of them used. We know from earlier discussion that component
names can have a lot of inherent variability, so depending on
the consistency of the data, a fuzzy matching technique may be
needed. Fuzzy matching allows for some threshold of leniency
in matching values that are ‘close enough’ at the expense of
possibly making errant matches.

Direct element comparisons are not the only useful compar-
isons to be made. Creative use of redundant or complimentary
information can be exploited to great effect. This is especially
useful when comparing SBOMs where component names,
hashes, cpes, or purls can be used together to gain additional
insights. As an example, matching hashes provide some level
of guarantee that the contents of a software component match.
When compared to component names this can identify inter-
esting situations where 1) component names are the same,
but the contents differ, 2) component names are different,
but the contents are the same, or 3) offer consensus between
component names and hashes. These comparisons can often
uncover unexpected results that are invaluable for assessing
quality and consistency of BOMs.

So far, the comparisons that have been discussed implic-
itly assume a comparison of two similar BOMs, but other
comparisons can be useful as well. SBOM practitioners will
likely be intimately familiar with the variability of generation
tools. Despite the monumental efforts around standardization,



SBOMs tend to vary greatly from one tool to the next. This can
happen for many reasons, but some examples include incon-
sistent assumptions, different methods or levels of technical
ability, different opinions on the boundaries of an SBOM,
and opinions on whether transitive dependencies should be
included. Further exacerbating the issue is the fact that the
details driving the variability are often proprietary or black-
box. By comparing the lists and sets of elements within the
BOMs it is possible to gain insights into design choices and
accuracy of various tools.

BOMs of different size can also be compared. This can
suggest that the components of one BOM are a subset or
contained within another BOM. It is also possible to explore
subsets of a BOM; in a system with built-in redundancy it may
be useful to look at how duplicated modules or sub-assemblies
compare. Much of the previous work done on comparing
BOMs has been used to cluster or identify product families that
contain similar components in a similar structure. Comparing
products within a family can lead to quicker generation of new
products, as well as streamlining supply chain processes.

A. List and Set Comparisons

A straightforward approach to comparing two BOMs is by
simply comparing lists. Due to the popularity of JSON and
XML file types for use in BOMs, this will often require parsing
and/or flattening of the data to obtain the unordered lists. An
example this could be comparing all the component names
in one BOM to the component names in another BOM. List
comparisons aid in understanding differences and quantities of
components which can be particularly useful if multiples of
a single component are present. It should be noted that there
are cases where comparing multiple elements simultaneously
is necessary. For example, two manufacturers could use the
same name for a particular component in which case it may
be more useful to compare the manufacturer and name at the
same time so as to differentiate one component from the other.

Beyond simple lists it can also be useful to only consider
the unique values or sets. This representation sacrifices infor-
mation about the frequency of values, but can greatly reduce
the burden of comparison. Set comparison might be useful
when looking at something like licenses where knowing that
a license appears in n dependencies is probably less important
than just having the list of unique licenses.

B. Graph Comparisons

Graph matching techniques can provide useful insight into
the comparison of two BOMs. The list comparison approach
does not take advantage of the relationships which are present
between elements in a BOM. For example, if there are dupli-
cates of a chip on a piece of hardware, set comparisons will
not capture that information, while a graph comparison will.
Importantly, it will also show where the chips are physically
in the hardware. This can be done through text like the
list comparison or crucially, visualization techniques that are
intuitively easy to understand.

In order to take advantage of this visualization ability, the
BOMs are converted to a graph by making the components into
nodes and the relationships between two elements as edges.
Information about each element can be recorded in the graph
by associating node attributes, and relationship types can be
given by edge attributes. Then a node mapping where one set
of nodes is mapped to the other is created by using the edges
and the node attributes.

V. SBOM EXAMPLE

To illustrate the SBOM comparison methods, we used Trivy
to generate SBOMs from two versions (3.6.4 and 3.7.0) of
Thingsboard, an open-source IoT platform for data collection,
processing, visualization, and device management. Things-
board is largely written in Java and uses Maven to manage
the project. Several modifications were made to the SBOMs.
First, duplicate software components that shared the same
purl and metadata were collapsed to a single component. If
relationships existed to the duplicates that were removed, they
were tied to the remaining copy. While the exact nature of
the duplication in these SBOMs wasn’t clear, it should be
noted that removing them could hinder certain analyses such
as finding multiple copies of a dependency. Next we opted
to remove all the npm front-end dependencies. This was only
done to make the SBOMs a little smaller for illustration.

The comparison of the resulting SBOMs (results in Table I)
showed that out of the 230 components, there were 214 unique
names detected in version 3.6.4 and 218 unique names from
the 234 components in version 3.7.0. Interestingly, the number
of unique purls was also four apart: 170 to 174. We note that
the difference between the number of components and purls
was due to 60 components that did not contain purls in the
SBOM. The number of unique purls is identical to the total
purls which is expected after the deduplication, meaning that
each purl appears only once. There were 10 component names
that were duplicated; each one had a different unique purl,
with a total of 16 duplicates. Looking at the comparisons of
the unique names, there were 201 names that appeared in both
SBOMs. Finally, doing a Jaro-Winkler string comparison with
a threshold of greater than 0.85 on the node names between
the two sets resulted in a total of 887 matches.

TABLE I
COMPARISON RESULTS FOR SBOM WHERE 3.6.4 (ONLY) INDICATES THE

DIFFERENCE BETWEEN 3.6.4 AND 3.7.0

3.6.4 3.7.0 3.6.4 (Only) 3.7.0 (Only)
Name 230 234 13 17

Unique Names 214 218 13 17
Purls 170 174 158 162

Unique Purls 170 174 158 162

Comparing two SBOMs does not have to be constrained
to differences in components. We also considered whether
the licenses reported were different between the generated
SBOMs. Because the primary interest is whether there are any
different licenses to consider, using set comparison (comparing
the unique values) of recorded license would seem the obvious

https://github.com/thingsboard/thingsboard


choice. Version 3.7.0 contains only a single unique license:
Apache-2.0. However, version 3.6.4 contains two unique li-
censes: Apache-2.0 and MIT. While this may look like version
3.6.4 is more complete, it is also important to know that only
six dependencies in the version 3.6.4 SBOM had a license
recovered by the tool. Version 3.7.0 had four dependencies
with recovered licenses. This largely indicates that neither
SBOM has a complete picture of the licensing exposure in
Thingsboard.

The potential lack of information prompted us to manually
review the licenses for the listed dependencies. We discovered
that both versions of the software contained several other
licenses such as the Eclipse Public License (EPL) and the
Lesser GNU Public License (LGPL). These licenses have
additional disclosure and representation requirements that may
not be satisfied with the same rules as Apache-2.0 or MIT.
Additionally, it is not inconceivable that an organization may
apply additional scrutiny to licenses from the GNU Public
License (GPL) family and would want to know that LGPL
code is being used. While set comparison identified a notable
difference in recorded licenses, a list comparison would have
highlighted how few of the components captured license
information.

We also examined the organizations of the dependen-
cies. They were detected by using the first two segments
of the package name in the purls. For example, given the
purl “pkg:maven/com.example.foo@1.2.3”, the organization
is “com.example”. There were fifty unique organizations in
version 3.6.4 and 52 in version 3.7.0. Excluding Java standard
library packages, we found that when moving to version 3.7.0
Thingsboard gained four additional external organizations and
lost one. This information could be useful for situational
awareness or subsequent corporate analysis where some pro-
ducers may imply an increased/decreased level of assurance.

For the graph comparison, we converted the SBOMs into
graphs using components as nodes and dependencies as edges.
We then merged them on the name field using a depth-
first search matching algorithm [14] with exact matching. A
quick calculation shows us that 217 nodes were matched, 13
appeared only in version 3.6.4 and 17 appeared in version
3.7.0, matching the comparison in Table I. The visualization
of the compared graphs did not add to the analysis and
was therefore not included. To understand if the identified
differences between the two SBOMs was due to small variance
in the names, we employed fuzzy matching. It should be noted
that with a priori knowledge of the name structure, some fuzzy
matching approaches may be more successful, but here we
naively employed Jaro-Winkler on the node names with an
arbitrary threshold of .85 and found that there are 7 similar
packages (see Table II). While we note that the graph wasn’t
particularly useful for visualization, the added constraint of
the structure reduced the number of possible matches by 880
because rather than just finding similar names, the structure
requires the names to also be in the same place as defined by
the relationships in the SBOM.

In comparing these SBOMs, a combination of methods

TABLE II
SIMILAR NAMES OF PACKAGES IN EACH THINGSBOARD VERSION WITH

THE DIFFERENCES HIGHLIGHTED.

3.6.4 3.7.0
bcpkix-jdk15on bcpkix-jdk18on
bcprov-jdk15on bcprov-jdk18on

commons-collections commons-collections4
hypersistence-utils-hibernate-55 hypersistence-utils-hibernate-63

javax.annotation-api jakarta.annotation-api
swagger-annotations swagger-annotations-jakarta

springfox-boot-starter spring-boot-starter-webflux

proved useful. List and set comparisons provided useful char-
acterization of the SBOMs and identified some license irregu-
larities. The graph method allowed us to ignore dependencies
with similar names and focus on the differences we are more
interested in, which were updated dependencies.

VI. HBOM EXAMPLE

In this example, two HBOMs were created from two distinct
instances of the same hardware product. The identities of the
devices and components have been obfuscated, but the real
characteristics of the comparison were preserved. Visualiza-
tions of the two graphs are shown in Figures 1 and 2.

A list comparison of the component names for the HBOMs
immediately conveys differences shown in Table III. Despite
being the same product, we see 35 components that only
appear in HBOM 1 and 46 components that only appear in
HBOM 2. Because the comparison of unique names reflects
different counts, we can infer that some of the differences
include components that appeared multiple times. In reviewing
the differences, the most noteworthy finding was that one of
the components was a circuit board which was especially
surprising. Fuzzy matching in this case was not particularly
useful because it flagged 743 possible matches which is
difficult to sift through.

A comparison of the vendor revealed that there were 17
unique vendors in HBOM 1 and 14 unique vendors in HBOM
2. with only 13 vendors shared between the two. We offer no
explanation as to why the vendors differ, but interestingly de-
spite the BOMs representing the same product, the component
supply chain looks different and may result in varying levels
of risk exposure.

TABLE III
COMPARISON RESULTS FOR HBOM EXAMPLE WHERE HBOM 1 (ONLY)

INDICATES THE DIFFERENCE BETWEEN HBOM 1 AND HBOM 2

HBOM 1 HBOM 2 HBOM 1
(Only)

HBOM 2
(Only)

Name 156 169 35 46
Unique Names 99 108 17 26

Repeating the same graph comparison approach as in Sec-
tion V, we generated the merged graph shown in Figure 3.
Blue nodes indicate that the node names matched exactly,
while the thick yellow edges indicate the node names matched
approximately (Jaro-Winkler with a threshold of .85).



Fig. 1. Visualization of HBOM 1.

Fig. 2. Visualization of HBOM 2

This visualization is immediately useful. The most notable
difference is the presence of a yellow circle in the top of Figure
3. This turned out to be the additional circuit board that was
unexpectedly present in one of the devices, and we can quickly
understand which of the different components correlate to
the addition of that board. The remaining differences are
drastically reduced by enforcing the graph structure (e.g. the
component must be on the same board). The differences
identified fell into one of three categories:

1) The component name was transcribed incorrectly. For
example, the names were recorded as IN3S00A and
IN3500, where a 5 is switched for an S.

2) The difference was real and describes a component that
had been switched out in production with a different but
equivalent component.

3) The name in one HBOM was recorded with more
specificity than the name of the equivalent component
in the other HBOM. One component was named V 17N
and one was recorded as V 17N − ZB11.

Fuzzy match on the component names using the graph was
particularly useful for this comparison. Instead of 743 possible
matches, there are only 21 matches, identifying transcription
errors and incremental component variations with high pre-
cision. As with the SBOM comparison, leveraging multiple
comparison methods proved to be useful, but notably the
graph provided significantly increased utility in the hardware
example.

Fig. 3. Visualization of Merged Graph. Blue represents nodes found in both
HBOM 1 and HBOM 2. Pink nodes are only found in HBOM 1 and yellow
nodes are only in HBOM 2. Yellow edges indicate nodes where the names
fuzzy matched.

VII. CONCLUSION

This paper provides an introductory discussion of the meth-
ods and challenges associated with comparing BOMs. Despite
the recent abundance of energy and research in BOMs by
government, industry, and academia, tools and methods to
effectively compare BOMs lag behind. There is no single
method of comparison that can effectively compare BOMs
today. List, set, and graphical comparisons are complimentary
and contribute to a foundational capability. As reference
BOMs become more readily available, comparison methods
will be vital to leveraging them. Ultimately BOM adoption,
spurred by policy and regulation will continue to grow. The



ability to compare BOMs will be essential for understanding
and reasoning about BOMs for supply chain risk management.
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Abstract—Developers regularly rely on third-party code ob-
tained from collaborative software platforms and code repos-
itories. Despite the benefits, this introduces potential security
and privacy risks. The Software Bill of Materials requires a
manifest of all code components; however, understanding the
possible risks from the inclusion of the components is a deeper
challenge. Both privacy and security risks may be contextual,
depending on operational environments. In order to evaluate the
potential for large language models to identify potential risk,
we focus on privacy risks as these are contextual and nuanced.
We focus on risks from the inclusion of data types that have
been adjudicated as personally identifiable information (PII).
We explore the efficacy of Large Language Models (LLMs)
in meeting this challenge by testing their performance in the
classification of code snippets as processing sensitive data types,
or not. We report on the feasibility of using a range of zero-shot
and few-shot approaches to automate the detection of source code
that includes processing of sensitive data. For this purpose, we
developed a labeled corpus of code snippets from GitHub. We
report on the accuracy of fine-tuned LLMs (GraphCodeBERT,
LongCoder, Mistral, LLama2, and CodeLLama) and commercial
prompt-based LLMs (OpenAI’s ChatGPT and Google’s Gemini).
We conclude that language models have the potential to identify
privacy risks; however, such models must be trained to meet spe-
cific regulatory requirements. Moreover, we find that commercial
LLMs may need further development before they are suitable for
general use in identifying privacy risks in code.

Index Terms—secure by design, data minimization, privacy,
risk management, AI, SBOM, compliance, code quality, LLM

I. INTRODUCTION

Developers frequently rely on code reuse, leveraging col-
laborative code management systems such as GitHub, Source-
Forge, or Stack Overflow. However, the advantages of code
reuse which add speed and ease to the task of coding also
create the disadvantage of incurred security and privacy risks
[1]. The inclusion of code that references sensitive data can
expose organizations to compliance risk or legal liability. This
underscores the pressing need to ensure that organizations
have a clear grasp of what data they’re compiling, not only
for purposes of respecting user’s rights but also for avoiding
operational risks.

The definition of what constitutes privacy risk varies de-
pending on the context, making it challenging for developers
to reach consensus on which data compilations and uses to
consider privacy sensitive. Moreover, different jurisdictions
and cultures may have distinct guidelines for quantifying the
sensitivity of information. Due to the contested and complex
nature of privacy, here we focus on potentially sensitive data
types from explicit legal categorizations and enumerations.
The legal definition of sensitivity of data types also varies
across contexts of use; for example, healthcare provision and
healthcare research have different standards. Consequently,
organizations face difficulties in safeguarding against com-
pliance risks. Even large organizations with extensive com-
pliance processes, including Google, Amazon, H&M, British
Airways, and Marriott, have - in the past few years - been
fined substantial amounts in excess of 20 million pounds for
violating the General Data Privacy Regulation [2] . Identifying
indicators of sensitive data, such as variable names or the code
in which a variable is embedded, could enable developers to
avoid incidental inclusion of code with potential privacy and
compliance risks. It could also inform operator compliance de-
cisions when code goes between jurisdictions (e.g., US/EU or
across state borders), or across business functions (e.g., patient
care to public health dataset). The potential for one-shot and
few-shot learning offers the possibility that organizations can
train for their own unique combination of code and context.

The overall goal of this work is to explore the possibility of
automating identification of sensitive data in code. Traditional
methods, like string matching or regular expressions search,
have been routinely employed to identify the presence of
named variables in code [3]. This study aims to document
the efficacy of more sophisticated approaches in capturing
potentially sensitive data types. The insights provided by
the comparisons of the accuracy of the models and failure
modes can inform software development choices and risk
management.

Through our study, we seek to answer the following research
questions:



RQ1: Is it possible to identify potential privacy-related data
risks, arising from third-party code, by applying a Natural
Language Processing (NLP) based approach to search for for
indicators of sensitive data in code?

RQ2: How well do different artificial language models
compare in terms of their ability to identify variables that
correspond with the handling of sensitive data?

RQ3: Are there identifiable patterns, or types of failures
characteristic of different models?

II. RELATED WORK AND MOTIVATION

In this section, we begin with a discussion of how we define
sensitive data types. Subsection II-A describes the basis for the
labelling of different data types as sensitive. The identification
and labelling of data as sensitive is grounded in GDPR and
CCPA. Our goal is to both provide a motivate for our selections
of data types and to describe our method in enough detail, to
enable the reproduction of this research with any enumerated
list of sensitive data types.
A. Defining Sensitive Data

In this Subsection II-A, we define what constitutes sensi-
tive data in this experiment. We begin with an overview of
two privacy regulations that have well-defined categories for
personally identifiable information, i.e., data that is considered
personal or protected. Given the variation in definitions across
different jurisdictions, we refer to these data types as sensitive
or privacy sensitive.

The General Data Protection Regulation (GDPR) of the
European Union and the California Consumer Privacy Act
(CCPA) of the State of California are used to define what data
are sensitive in our analysis. These two privacy regulations
have significant requirements constraining the compilation and
processing of Personal Identifiable Information (PII). These
regulations are significant factor in software production as
California produces roughly 5% of the total global economy
and the EU accounting for between 15% and 20%. [4]. Both
emphasize foundational principles such as data minimization,
which calls for the least amount of data collection necessary,
and purpose limitation, to ensure data is used solely for the
reasons it was collected (GDPR Article 5 [2]; CCPA Section
1798.100(d)(1) [5]). More importantly, for our purposes, both
also clearly enumerate what data is considered sensitive. This
method can be reproduced by smaller jurisdictions or industry
segments, as long as there are clearly enumerated data cate-
gories. Concurrently, the Software Bill of Materials (SBOM)
initiative has emerged as a complementary effort aimed at
transparency in the software supply chain. As SBOM matures,
it has expanded beyond licensing and vulnerability tracking
to considerations of development practices. compliance. and
privacy [6].

The GDPR was grounded in the 1995 Data Protection Direc-
tive, which was an early attempt to identify privacy-sensitive
data types and data processing. The GDPR was adopted in
2016 to define individiual data rights. It was intended to
provide a unified, consistent, comprehensive framework to
safeguard the rights and freedoms of individuals within the

European Union. The GDPR defines the responsibilities of
organizations compiling, processing, storing, and managing
personal data. CCPA and GDPR compliance require that or-
ganizations confirm that personal data processed through code
dependencies aligns with the regulations and the organizations’
stated privacy policies. As a result, organizations are obligated
to determine the potential impact of code dependencies on user
data privacy and to institute measures that protect personal data
throughout software development and supply chain processes.
Recognizing that a particular data type covered by the GDPR
or CCPA is in a library, utility, or other dependency remains
an open challenge.

The CCPA defined statutory principles of data minimization
and purpose limitation (Section 1798.100(d)(1) [5]). As with
GDPR, it identifies a range of data types. The statute endows
consumers with multiple rights, including the right to be
informed, to access, and to delete their personal information.
In terms of code analysis, aligning with the CCPA requires
organizations to evaluate data compilation and processing in
code, including dependencies, where the code is used by
Californians. The Act has an expansive definition of sensitive
data types and defines consumer rights over those types.

There are additional regulations based on specific contexts,
notably for health, biometrics, education, employment, chil-
dren‘s data, and regulations in other legal contexts [7], [8].
This work contributes to understanding the potential, and the
risks, of using few-shot and zero-shot techniques described in
this work to identify sensitive data types in code. Few-shot
training in the context of this paper refers to training samples
on a very small dataset. Zero-shot learning refers to prompting
LLMs like ChatGPT to leverage their pre-existing knowledge
without providing them with any labeled training samples.

III. METHODOLOGY

Our research methodology was structured into five stages.
First, we conducted a literature survey, as summarized in re-
lated work (Section II). We then compiled a data corpus using
the GitHub search API for code. We validated all samples
through human review of both the code and its implicit or
documented use context. With the data validated, we then
proceeded to the third stage of fine-tuning large language mod-
els. Initially, our evaluation process focused on CodeBERT
and GraphCodeBERT [9], [10]. However, the results were not
impressive. With the open-sourcing of LLaMA2 by Facebook
and the release of Mistral 7B we were able to expand our
work [11]–[13]. Our final results include evaluations of Graph-
CodeBERT, LongCoder, Mistral, LLaMA2, and CodeLLaMA.
LongCoder performed particularly well, validating its potential
across diverse coding tasks. Results from salesforces T5,T5+
and CodeBERT have been reported [9], [14], [15].

Due to their robust performance and widespread adoption,
we included ChatGPT and Gemini Advanced as the fourth
stage of our method. This enabled us to evaluate their advanced
zero-shot capabilities and benchmark their effectiveness in our
specific use case. Lastly in the final stage, we further analyze
the responses and the data that we compiled during these



stages to answer the research questions that we outline in the
Introduction/

Fig. 1. Overview of methodology

A. Data Corpus
To create a corpus of code containing sensitive information,

we began by selecting a subset of categories that are identified
in both the California Consumer Protection Act (CCPA) and
the European Union’s General Data Protection Regulation
(GDPR) as sensitive. The ten data information categories we
chose were as follows: These were 1. Unique Device ID,
2. Account/Individual Identifier, 3. Demographics, 4. Internet
traffic, 5. Commercial/Financial information, 6. Biometrics, 7.
Multimedia data, 8. Employment information, 9. Educational
information, and 10. Location information.

We leveraged common expressions (e.g., DoB) and code
functionality (e.g., payment) to search for code candidates
in repositories, using GitHub’s code search API. We list
the search terms in the appendix. We selected code from
commercial public repositories and other popular open-source
code. While no small sample can be representative of every
production environment, our goal is to explore the potential of
zero-shot and few-shot learning for different contexts so we
sought widely used code.

To create a control group, we included an equal number
of including a large number of code snippets that were
not considered sensitive. These code snippets were selected
from popular code, and include diverse functionality. The
inclusion of non-sensitive code snippets enabled us to assess
the specificity and accuracy of our models in distinguishing
between sensitive and non-sensitive code.

To ensure the contextual sensitivity of the identified vari-
ables these were manually reviewed. The research team (in-
cluding a professor, a post-doctoral scholar, three interdisci-
plinary doctoral candidates, one computer science graduate re-
searcher, and one undergraduate computer science researcher).
Each individually reviewed the code snippets and determined
whether the identified variables were indeed sensitive within
the given code contexts. We began with only those sam-
ples where the Fliess Kappa score of agreement amongst

Category Repos Lines Variable Code Snippets
Unique Device ID 6 958 27 25
Individual Identifier 9 1643 29 28
Demographics 6 179 20 21
Internet Traffic 7 2549 46 57
Financial Information 8 1068 44 50
Biometrics 5 490 32 38
Multimedia Data 4 1388 20 31
Employment 7 943 29 31
Location 8 1472 50 58
Education 2 102 7 6

TABLE I
SUMMARY OF SEARCHING CODE CORPUS

researchers was equal to 1. Any differences in opinion were
identified and discussed in real-time meetings until there was
consensus. This collaborative knowledge construction method
[16], [17] was a verification stage to add a layer of accuracy to
the dataset. Further validation serendipitously occurred when

For the scope of this study, we collected Python code
samples to create our dataset as it is widely used and easy to
understand for most of the human participants. We searched
for identifiable variables in the selected categories, based on
CCPA, GDPR, Privado rules, and previous literature. GitHub,
as the largest open-source code-sharing platform, offers an
extensive repository of publicly accessible code contributed by
a diverse community of developers. Its vast collection of code
makes it an ideal resource for acquiring a large-scale public
dataset suitable for research and analysis in various domains.
As we focused on code with potential privacy implications,
we searched all Python GitHub repositories for a small set
of data privacy-related keywords and data types. Searching
for these keywords resulted in a corpus of 53 repositories,
30 keywords, and 86 variables with their related variables
and code expressions in total, see Table I for details. We
used different keywords for each category domain to search
the repositories on the GitHub platform. We also extract the
nearby variables and code segments that have the value trans-
mission with the picked variable. The final dataset consisted of
57 code fragments containing sensitive data and 57 fragments
without, each roughly 100 lines. Preprocessing was applied
to the collected code fragments, involving the removal of
comments and non-essential characters.

B. Fine-Tuning Large Language Models for Identification of
Privacy risks

Fine-tuned models have exhibited a strong proficiency in
few-shot learning, where they can quickly generalize to new
tasks by learning from a limited number of examples like our
dataset. This contrasts with zero-shot learning scenarios where
models apply learned patterns without additional training data.
Few-shot learning exploits the models’ pre-trained knowledge
base, enabling them to identify underlying patterns in sparse
data and effectively adapt to novel programming tasks or
languages with remarkable efficiency using relatively smaller
training samples [18]–[20].

We began our evaluation process with CodeBERT and
GraphCodeBERT (described above) [9], [10]. To further re-



fine these models, fine-tuning with additional neural network
layers, often termed ”task-specific heads” or ”classification
layers,” as employed by [21]. These layers are crucial for
adapting the model’s expansive knowledge to specific tasks,
allowing it to detect subtle, task-dependent patterns. With
just a handful of examples, models like GraphCodeBERT,
LLAMA, LongCoder, CodeLlama, and Mistral can be fine-
tuned to significantly enhance their proficiency in making
precise code-related predictions or classifications. Through
few-shot learning and strategic fine-tuning, these models can
become exceptionally adept at interpreting and analyzing code,
even in areas with little to no prior exposure.

Preprocessed code fragments underwent tokenization, re-
sulting in sequences of tokens compatible with the respec-
tive models. We then processed each tokenized code snippet
through all the models. These models transformed the code
tokens into high-dimensional vectors, known as embeddings,
which effectively encapsulate the syntactic and semantic nu-
ances of the code. To streamline the computational process and
manage the high dimensionality of the data, we computed the
mean of the tokens for each snippet. This averaging technique
yielded a single vector of fixed dimensions per code fragment,
which succinctly represented the original richly exhibited data
[22]. These condensed vector representations were then used
as input in the subsequent stages of sensitivity classification.

In our research, we initially implemented a fully connected
neural network (FCN) model. Our preliminary architecture
was composed of three layers, containing 64 and 32 hidden
units, respectively, with the Rectified Linear Unit (ReLU)
serving as the activation function [23]. The neural network
predicts the probabilities that the input sample is sensitive or
not sensitive. The model was designed and executed using the
PyTorch deep learning framework and was optimized using
the Adam optimizer [24]. In our model, we used binary cross-
entropy as the loss function, which is a standard approach for
binary classification tasks [25], [26]. However, we transitioned
to a more robust FCN model, consisting of two layers each
with 512 nodes. This enhanced network was capable of
learning and predicting more intricate patterns in our data,
thereby improving the accuracy of sensitivity discernment for
variables.

The hyperparameter choices for the models were deter-
mined by iterative experimentation and tuning to achieve
satisfactory performance. Our initial methodology utilized an
80:20 ratio for training and testing to evaluate the model’s
performance. To enhance this evaluation, we adopted a k-
fold cross-validation method, with k designated as 5 [27].
This method divides the dataset into k equally sized portions,
known as ’folds.’ In a series of iterations, each fold is used
once as the test set while the remaining folds (k-1 in number)
serve as the training set. This approach does not just yield
an averaged value for metrics such as accuracy, precision,
recall, and F1-score, but also captures the variability within the
data. It ensures that our performance metrics are not skewed
by any specific partition of the dataset. The average values
reported from the iterations of the 5-fold cross-validation

present a more thorough and reliable measure of the model’s
performance, having been stringently evaluated across various
data subsets.

C. Prompting Large Language Models

In this phase of our methodology, we harnessed the prompt-
based classification capabilities of advanced language models,
namely ChatGPT 3.5, ChatGPT 4, and Google’s Gemini
Advanced to assess the privacy sensitivity of the collected code
fragments. Zero-shot learning allows these models to perform
downstream classifications they were not specifically trained
to recognize, by drawing on their extensive pre-training on
diverse data. This capability is critical for identifying sensitive
information in code (as per GDPR and CCPA guidelines) with-
out the models having previous exposure to such classification
tasks [28].

Prior to classification, we assessed the models’ knowledge
of GDPR and CCPA regulations to ensure their capability to
make informed judgments about data sensitivity by asking
questions about these regulations. Then, to facilitate clas-
sification, we crafted and refined the prompts through an
iterative query engineering process. The final prompt directed
the models to examine four code fragments, each separated
by a specified delimiter symbol in the input, and to determine
the presence of sensitive data as per the mentioned guidelines
without providing explanations or summaries of the code. We
structured the prompt to maximize generalizability and accom-
modate the language models’ interface limitations, asking for a
straightforward response indicating which fragments contained
sensitive information. Previous work has illustrated that LLMs
may validate questions, so our queries were strictly neutral.

The initial query we presented to the models was, ”Given
below are 4 fragments of code. Each of them is separated by
a delimiter. Considering the first code as ’1’ and the fourth as
’4,’ identify if the fragments contain sensitive data according to
GDPR or CCPA guidelines, indicating your response as ’code
fragment number: Sensitive or Not Sensitive’.” This query-
based approach ensured consistency and uniformity in the
sensitivity classification process across the entire dataset. Each
code fragment was presented to ChatGPT 3.5, ChatGPT 4, and
Gemini models using the same prompt, enabling standardized
classification based on their understanding of GDPR and
CCPA guidelines. While GPT 3.5 initially showed limitations
in performance, its subsequent paid version demonstrated
significantly enhanced higher-order reasoning abilities. This
iterative refinement of our query approach was informed by
comparative studies of large language models in tasks such as
sentiment analysis and prompt engineering surveys [29], [30].

In this study, the specific query was carefully formulated
to address the challenges posed by the generative nature of
language models. Language models have a tendency to provide
detailed explanations or summaries of code, which may intro-
duce bias or compromise the objectivity of the analysis. This
query maintains a clear restraint over the query parameters
by explicitly instructing the language model to refrain from
providing explanations or summaries. This ensures that the



language model’s responses focus solely on assessing the
presence of sensitive data in the code fragments. Furthermore,
by referencing the GDPR and CCPA guidelines, the query
aligns with the legal frameworks for data privacy, enabling a
targeted evaluation of code sensitivity. Overall, this query was
iteratively optimized to mitigate the risks of information bias,
maintain objectivity, and ensure that the analysis is conducted
within the scope of the research objectives.

We analyzed the responses generated by ChatGPT 3.5,
ChatGPT 4, and Gemini to determine the sensitivity classi-
fication of the code fragments. Accuracy, consistency and any
challenges associated with the models’ inclination to provide
detailed explanations rather than straightforward sensitivity
labels were considered.

Fig. 2. Heatmap showing how various categories of privacy risks were
misclassified. Red squares show poor performance of the language model
in the category as the threshold for a good score is 75% accuracy and above

IV. RESULTS

The performance of various models was evaluated using
metrics such as Accuracy, F1 score, Precision, and Recall. The
results are summarized in Table II. Overall, the results indicate
that Mistral 7B and CodeLlama 7B are highly effective at
classification of code as containing potentially sensitive data
processing. The overall accuracy, precision, and recall of these
two LLMs were high, with other models offering varying
trade-offs in their levels of performance. Given tolerances for
different types of errors, other models may be suitable for
different applications.

Mistral 7B outperformed all other models, achieving the
highest scores across all metrics with an accuracy of 92.09%.
CodeLlama 7B followed closely with an accuracy of 91.26%,

TABLE II
COMPARISON OF MODEL PERFORMANCE METRICS OF FINETUNED

Model Accuracy F1 score Precision Recall
Mistral 7B 92.09% 92.04% 92.57% 92.04%
CodeLlama 7B 91.26% 91.12% 91.97% 91.12%
Llama 2 90.39% 90.29% 91.62% 90.30%
Long Coderbase 88.61% 88.06% 91.01% 88.48%
GraphCodeBERT 80.71% 80.60% 81.31% 80.51%
CodeT5-220m 78.93% 78.48% 80.47% 78.86%
CodeT5plus-770m 81.54% 81.43% 82.39% 81.66%
CodeBERT 72.80% 72.26% 74.61% 72.87%

and Llama 2 also performed well with an accuracy of 90.39%.
Long Coderbase and GraphCodeBERT displayed moderate
performance, with accuracies of 88.61% and 80.71%, respec-
tively. The Salesforce models, CodeT5-220m and CodeT5p-
770m, showed competitive results, particularly the latter with
an accuracy of 81.54%. CodeBERT, while achieving the lowest
performance among the evaluated models, still provided useful
insights with an accuracy of 72.80%. LLM modes, particularly
general chat models, did not perform as well with ChatGPT
3.5, Chat GPT 4.0, and Gemini achieving accuracy of 50%,
73%, and 58% respectively.

V. DISCUSSION

Our results in Table II report a high level of accuracy for
fine-tuned models trained on a small corpus. The accuracy
of popular chat-based models remained low, regardless of the
query. One of our initial limitations was a concern that the
corpus of data samples was too small. In contrast, we hy-
pothesized that NLP models that have already been pretrained
on extensive datasets could transfer learned knowledge effec-
tively, even when applied to smaller, domain-specific datasets.
The accuracy of our results aligns with recent findings in the
field, where models trained on less in-distribution data have
shown better out-of-distribution performance. These results
mitigate concerns about the capabilities of pretrained models
[31]. However, the analysis of the results as reflected in the
confusion matrices, revealed a concerning trend of high false
negatives. Inaccurate classification of sensitive information of
Language Models (LLMs) spanned across multiple categories:
Unique Device ID, Account/Individual Identifier, Demograph-
ics, Internet Traffic, Financial Information, Biometrics, Multi-
media Data, Employment Information, Location Information,
and Educational Information.

In the case of UniqueID, all the LLMs classified three
of sixteen as not sensitive regardless of the fact that such
unique identifiers are central to differentiating identifiable from
nonidentifiable (and thus less sensitive) data.

We identify the limitations of prominent large language
models including ChatGPT and Gemini. These models dis-
played systematic patterns of failure in classifying code snip-
pets related to both demographic data and geofencing opera-
tions. In particular, none of the code snippets which indicated
geofencing processes were not categorized as privacy-sensitive
by these LLMs. This is not only notable because of extensive
research that emphasizes the high privacy risks associated



Fig. 3. Confusion Matrices showing the false positive, false negative, true positive, and true negatives of each model. These confusion matrices provide the
raw percentages used to calculate precision and accuracy, illustrating the need to explore beyond the report of summary statistics.

with location data (e.g., [32]) with even four spatiotemporal
points adequate to uniquely identify an individual within a
large dataset, thereby escalating privacy risks [33]. Recall that
location data is defined as sensitive.

The processing of demographic data was also frequently
misclassified. Three of four instances were subject to incorrect
classification. This high rate of failure may be attributed
to the small sample size, as discussed in the limitations
section of this paper. Our analysis revealed that certain code
snippets containing this data type were erroneously classified
as non-sensitive by both ChatGPT and Bard. This trend is
more notable in light of extensive research documenting the
risks of mishandling such sensitive demographic information.
Previous studies have indicated that even simple demographic
characteristics can uniquely identify individuals within large
populations, thus exacerbating privacy concerns [34], [35].
Moreover, careless handling of demographic data not only
jeopardizes individual privacy but also has broader societal
implications, such as exposing communities to discrimination,
stereotyping, and targeted surveillance [36], [37]. Eckersley
emphasized that even seemingly innocuous information could
uniquely identify users, illustrating the covert ways in which
privacy can be compromised [38]. Further adding complexity
to this issue are the risks associated with microtargeted ads on
platforms such as Facebook, which have been shown to exploit
demographic data [39]. Korolova specifically addressed the
potential for privacy violations through targeted advertising,
shedding light on how such platforms could inadvertently
facilitate unauthorized data sharing and re-identification [40].
Given these considerations, our findings underscore the neces-
sity for improved measures to ensure that demographic data
are managed as sensitive data, not systematically identified as
non-sensitive.

Other categories where all the LLMs misclassified included
financial and biometric data. These are contextual in the sense

that financial data that was used for payment (other than
fraud) are used with consent. Similarly, biometrics may be
recognized by LLMs as being components of authentication.
Regardless of the presumption of use, financial and biometric
data can be sensitive. The systematic misclassification of these
categories in comparison with other approaches illustrates the
applicability of criticisms of unexamined adoption of LLMs.

These reflect the classic critiques of LLMs listed in [41]. An
essential argument of that paper is that the models can be too
large to be accurate. Our results can be read as reifying this.
The second argument is that social change cannot easily be
embedded in a model; consequently, LLMs may be inherently
unresponsive to social change. This may apply to the case of
privacy, for example, consider network information such as IP
addresses. There was a long-standing argument in the first two
decades of the century if IP addresses were sensitive, and the
differences between jurisdictions remain [42].

The third critique is that LLMs are majoritarian and often
inadequately respond to less frequent events (or populations).
There is a general problem in privacy (and security) that
most code does not have privacy concerns, resulting in biased
datasets from the real world. The confusion matrices illustrate
this, in the prevalence of false negatives.

Conversely, there were instances where these models dis-
played an overly cautious approach, erring on the side of over-
classification of non-sensitive content as sensitive. Gemini, in
particular, demonstrated this flaw when it incorrectly classified
an ML classification and cropping algorithm as identifying
sensitive financial data in receipts. Upon closer inspection, it
was evident that the algorithm in question was solely focused
on generic image classification and was not associated with
any receipt dataset. Such false positives underline the impor-
tance of refining model criteria for sensitivity assessments and
ensuring that their determinations are grounded in accurate
contextual understanding.



An obvious solution to this would be to simply ask devel-
opers to hand label code as sensitive or not sensitive. Yet,
previous research on that question illustrated that individual
developers disagree about sensitive information, and often
do not know that entire categories of data are sensitive. A
2018 survey of 36 developers found that many had never
heard of a privacy impact assessment (47.2%), fair information
practices (38.9%), nor privacy by design (36.1%) [43]. A later
evaluation of 99 developers showed that developers with more
experience were not better at identifying code as process-
ing sensitive data [44]. Agreement comparisons between the
more expert human coders (0.2033) was slightly higher than
the agreement between the models evaluated here (0.2028).
(Scores greater than 0.2 indicate consensus.) Human experts
categorized sensitive data as not sensitive more often than
LLMs and more often than non-experts. Non-expert consensus
was measured as 0.2171. The results from LLMs are closer
to those of non-experts, perhaps as a result of their training
corpus.

VI. LIMITATIONS AND FUTURE WORK

We report that LLMs exhibit systematic failures in identi-
fying sensitive information and thus privacy risks in code. We
identified patterns in these errors. However, our data set was
too small to determine if these were systematic or random.
Some of the errors may indicate an embedded assumption of
legitimate use, such as payment information. In other cases,
there is no clear reason. Consider that, aside from targeted
advertising, the business case for demographic data is limited
while the privacy implications are substantial. Some data
types, like the date of birth, are widely classified as sensitive
personal information and have limited commercial use.

The failures by the models to correctly categorize some
code snippets as sensitive underscore a pivotal challenge:
despite their ability to process vast quantities of information
and generate coherent responses, LLMs are limited in their
ability to identify nuanced concerns surrounding data privacy.
This gap highlights the urgent need to avoid the unexamined
uniform adoption of LLM for the identification of nuanced
categorizations. A focus on the recognition and classification
of potential privacy threats is needed, especially in light of
the substantial risks associated with the mishandling of demo-
graphic and geolocation data. Our results support integrating
robust location and demographic privacy measures into the
ethical guidelines and coding practices that govern LLMs [45].

In future work, we will expand our corpus. We seek a
partner to explore how that organizations might employ a
Grammarly-like framework to signals parts of code that might
violate privacy compliance requirements. We are particularly
interesting in working with organizations that share data across
operations and research functions.

VII. CONCLUSIONS

There is a need to detect the inclusion of Personally Iden-
tifiable Information (PII) in source code. We have reviewed
past research focused on identifying privacy risks in code and

highlighted the existing gaps and challenges. We report on
the accuracy of emerging technologies, such as Generative AI
and Large Language Models (LLMs), in offering solutions for
automated privacy risk detection in source code. Specifically,
we explored the potential for one-shot and few-shot learning
for the identification of code that processes sensitive data using
a custom-labeled corpus. LLMs varied in their accuracy in the
correct classification of sensitive code but were higher than
previous research using human evaluators, including previous
research on software developers.

Our results underscore the challenges in automated code
sensitivity detection and emphasize the need for continuous
model refinement. Our results also illustrate that while ad-
vancements in language models have provided us with power-
ful tools for code analysis, understanding their limitations and
biases is crucial in deploying them in real-world applications
This is arguably especially true for tasks with significant legal
and ethical implications such as compliance with privacy laws.

The larger question is if it would be effective for organiza-
tions to train LLMs for their own unique combination of code
and context. While this justifies the use of a small, carefully
labeled dataset, we also acknowledge the size of the dataset is
a limitation. Our sample dataset can be augmented with more
detailed analysis and is available on the author’s Github.1

Part of the significance of our work lies in the use of one-
shot and few-shot training methodologies to identify privacy
sensitivity. A single organization may have different privacy
constraints for different units or processes so a single model
might not be able to capture the required nuances for all
business purposes. Similarly, individuals have differing rights
based on their jurisdictions, as well as differing individual
personal preferences. Our contributions are to the challenges of
selecting products and managing privacy risks based on these
constraints. The comparison of the categories and patterns
of failures can contribute to the identification of sensitive
information in code, and provide insights into the effectiveness
of different methods of analysis.
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Abstract — The systems we use on a day-to-day basis consist of 

hundreds, if not thousands, of individual components. When 

considering system security, the inherent risk of each of these 

components must be considered. A single vulnerability within a 

component can have a permeating impact throughout the system. 

Supply chain risks to modern devices can lead to attacks that affect 

millions of people, as seen in recent years through the Colonial 

Pipeline attack. To consider the risk posed by individual 

components, these components must first be identified. Identifying 

and understanding these risks can minimize damages by providing 

organizations with methods to reduce risk. One of the first steps 

toward identifying risks is performing enumeration of the 

components in a system. While several internet forums mention 

performing enumeration of hardware systems, no formal or 

scientific presentation of hardware enumeration processes were 

found in academic and industry publications. Furthermore, tools for 

software enumeration do not provide comprehensive insight of the 

contents of software packages. This paper describes the processes, 

procedures, and outputs of hardware and software enumeration and 

proposes a standardized enumeration process that ensures 

consistency and reproducibility for use in supply chain risk 

management. The enumeration process proposed creates a more 

thorough process of data collection and analysis for hardware and 

software related products. As supply chain security matures, 

additions to tools and available information could further improve 

the ability to craft more complete enumerations and analytic 

conclusions. 

Keywords—component, supply chain risk management, 

system, critical infrastructure, publicly available information, 

enumeration, hardware enumeration, software enumeration, bill 

of materials, software bill of materials, hardware bill of materials 

I. INTRODUCTION 

Traditional supply chain management (SCM) focuses on 

logistics for maximized efficiency, reliability, and revenue; 

the newer research area, supply chain risk management 

(SCRM), additionally aims to identify the risks within a 

supply chain, such as vulnerabilities, weak points, and break 

points. In an effort to improve the risk assessment, SCRM 

aims to look at individual nodes within the supply chain to 

identify the risk introduced. This in-depth risk assessment 

may enable an organization to better understand how a 

product influences its reputation, bottom line goals, and trust 

in products. 

Events in recent years, such as the Colonial Pipeline 

attack [1], involving supply chain failures have raised 

awareness of the need for security within supply chains. This 

priority shift has been recognized by government and 

industry alike, as single faults within supply chains can have 

significant negative impact. Efforts to minimize the damages 

to security, finances, and reputations require identifying and 

understanding the risks within a supply chain. Because 

SCRM is relatively new, it is important to understand the 

taxonomy surrounding the topic and attempt to maintain 

some standardization. Terms such as elements, processes, and 

network are used in this context [2]. Though these terms may 

not always be consistent, the concept of an element, process, 

and network are maintained. Element refers to the individual 

components, process refers to the way two or more 

components may relate to each other, and network defines the 

grouping of multiple elements and their respective processes 

[2]. 

Traditional SCM may indicate where single points of 

failure exist within a supply chain; consider a critical 

component with only a single vendor. After identification of 

these single points of failure, corrective actions can be taken, 

such as selecting multiple vendors for the component. This is 

where SCRM builds on SCM.  

A single fault in a supply chain can have lasting and 

noticeable impacts on a business and its product 

lines. Identifying and understanding various risks can 

minimize reputation, security, and financial damages by 

providing organizations within a supply chain with methods 

to reduce its susceptibilities.    

Cyber Testing for Resilient Industrial Control Systems 

(CyTRICS) [3] is a Department of Energy multi-laboratory 

effort to increase energy sector cybersecurity and reliability. 

CyTRICS has strategic partnerships with key stakeholders, 

including technology developers, manufacturers, asset 

owners and operators, and interagency partners. CyTRICS 

has taken initiative on driving the key methodology for 

enumerating systems. Enumeration is the dissection and 

documentation of a given device or software program. 

Enumeration is necessary in SCRM as it enhances 

accountability, awareness, and anomaly detection by 

requiring a thorough understanding and analysis of the part 

being enumerated. Additional research into the product 

during or after the enumeration process also increases the 

insight of the product’s capabilities and vulnerabilities.  

While enumeration of a single component can be useful, 

developing a consistent and reproducible approach to 

enumeration enables comparability across enumerations, 

aggregation across multiple collection teams, and the 

exchange of enumeration data. By aggregating enumeration 



data, we can begin to investigate broader questions about 

supply chains and provide insight into combined attack 

surfaces. In this paper, efforts to standardize enumerations are 

presented by detailing the processes, procedures, and outputs 

to ensure consistency and reproducibility.  

When performing an enumeration, it is important to have 

clear understanding of the scope of enumeration. There may 

be cases in which most components should be enumerated 

such as processors, memory chips, and ports. In other cases, 

chips may be necessary to record but ports are not. One 

particular delineation with respect to scope is destructive vs. 

nondestructive enumeration. This scoping indicates whether 

enumeration should continue when further disassembly of 

components would potentially cause irreversible damage to 

the system. One action that may be considered destructive is 

removing a chip from the circuit board. If an enumeration is 

requested with the stipulation that the system still be 

functional upon completion, it is indicative of a 

nondestructive enumeration. 

While the act of performing an enumeration is not 

inherently illegal, it is strongly suggested that enumeration 

teams take appropriate measures to understand the licensing 

information and rights of the hardware or software owner. In 

short, the enumeration team must ensure that due diligence is 

practiced before, during, and after the enumeration to ensure 

appropriate collection methods and data storage. 

II. LITERATURE SURVEY 

In preparation of both developing the CyTRICS program 

and writing this paper, a survey was completed to determine 

existing practices, theories, and opinions regarding SCRM. 

As both industry and government continue to place a larger 

emphasis on securing critical supply chains, there will 

continue to be a rise in available literature. At this time, the 

majority of documentation regarding enumeration is specific 

to software. Less information is available regarding hardware 

and standardized practices for securing hardware 

components. Neither software nor hardware have a 

standardized and documented process that develops a 

comprehensive view of a given system.  

Information regarding supply chain security is also 

starting to see a larger subset of academic papers. “What do 

you mean, Supply Chain Security” [2] focuses on defining 

the framework and taxonomy of supply chain security to 

better facilitate a common language and set the foundation 

for standardized practices. This paper defines security in 

terms of the confidentiality, integrity, and availability triad. 

Supply chain is divided into elements, processes, and 

networks. This framework and taxonomy translate to the 

enumeration process as each step needs to be defined in a 

reproducible and standardized way.  

The literature surrounding enumeration efforts is 

constantly evolving as enumeration is a somewhat novel 

process. The enumeration process exists to produce bills of 

materials (BOMs) for the hardware or software under 

inspection. Recent articles from OpenBOM, CycloneDX, 

Fortress, and CISA outline efforts to develop hardware bills 

of materials (HBOMs) and software bills of materials 

(SBOMs).  

As technology has evolved, the distinction between 

hardware and software has blurred. Much of modern 

hardware includes software that runs on it. For example, 

modern cars may include upward of 100 million lines of code 

[4]. The OpenBOM article describes the need for a multi-

disciplinary BOM to gather and join data together. 

OpenBOM is a software tool described as a “flexible data 

model” [4] used to create BOMs.  

Another resource for composing BOMs is the 

CycloneDX project by the Open Web Application Security 

Project (OWASP). CycloneDX is a model that is capable of 

bringing together HBOMs, SBOMs, and vulnerability 

exploitability exchange (VEX) documents, among other data. 

The CycloneDX BOMs are based on a high-level object 

model containing data including metadata, components, 

services, dependencies, compositions, vulnerabilities, and 

extensions [5].  

Once of the primary outcomes of enumerations is the 

generation of a BOM that provides a detailed view of the 

exact components that make up a software package or 

hardware system. The current efforts to generate SBOMs 

require some form of enumeration, albeit less structured and 

well defined. By referencing existing SBOMs and efforts to 

produce SBOMs, the enumeration process can be adjusted to 

better collect meaningful data. 

Part of generating effective SBOMs is to have consistent 

and standardized terminology and data collected. A well-

defined schema can be effective at providing this consistency 

by specifying the fields to be collected. In addition to stating 

the terminology, the schema can also define what attributes 

are to be collected for each of the fields. Efforts to perform 

enumeration have existed in some capacity prior to being 

titled enumeration in the form of logical and physical 

inspection [6] [7], which describe the process for software 

and hardware enumeration, respectively. Some portions of 

software enumeration can be automated; however, hardware 

enumeration can be a more daunting task, particularly for 

larger systems. For this reason, it may be useful to provide 

guidance on how to down select the components to be 

enumerated if resources are not available to perform a full 

enumeration. Because of their increased potential to be used 

in an attack, inclusion of all logic-bearing components should 

be considered a baseline for hardware enumerations [8]. 

Logic-bearing components include components that possess 

the capability to perform computation, store data, or 

communicate with other components, in other words, 

networking capability. 

The National Telecommunications and Information 

Administration (NTIA) has spearheaded efforts to explore the 

effectiveness of SBOM within a medical environment [9]. 

The primary intent of the SBOM is to provide an inventory 

of the software components and dependencies that make up 

software systems and define the relationships between the 

components. Having an inventory provided by the SBOM 

enables an organization to determine whether certain supply 



chain concerns will affect their products. Among other 

benefits, NTIA identifies reduction of cost and reduction of 

risk as primary benefits. The NTIA SBOM lists the following 

as baseline information that can be collected for a component: 

• Author name • Supplier 

name 

• Component 

hash 

• Component 

name 

• Version 

string 

• Unique 

identifier 

• Relationship   

NTIA performed a proof-of-concept SBOM for medical 

devices in a healthcare setting to test the efficacy of its SBOM 

[10]. Through the process, the generation of the SBOM used 

both manual and semi-automated processes, including 

scripting languages and software composition analysis tools. 

The fields identified as important to collect during the proof 

of concept were as follows: 

• Author 

• SBOM document name 

• List of SBOM components 

After completion of the proof of concept, it was 

determined that the SBOM had cybersecurity benefits across 

the procurement process, asset management, and enterprise 

risk management activities. NTIA identified the following 

strengths, weaknesses, opportunities, and threats associated 

with the proof of concept. 

Strengths included successful access, ingest, parsing, 

and querying of the SBOM data. The lack of standard format 

for data, the lack of consistency in naming devices across 

organizations, and a lack of authoritative sources for certain 

fields were identified as weaknesses. The proof of concept 

identified opportunities to create a standard format, use 

globally unique component identifiers, and begin discussion 

of including an HBOM. The lack of a defined auditing and 

validating process presents a threat associated with the data 

collected as it may not be accurate or complete. 

The NTIA, after analyzing use cases, identified the 

following benefits for three categories of software users: 

producers, choosers, and operators [11]. 

• Software producers 

• Software choosers 

• Software operators 

Similar to NTIA, this white paper emphasizes the 

importance of creating an SBOM as developers often create 

products that incorporate open-source and commercial 

software with proprietary code. Identifying and 

understanding what is in the SBOM is the first step in 

addressing challenges associated with hardening systems. 

Using SBOMs allows components to be compared against 

known databases so vulnerabilities and counterfeit 

components can be identified more easily. 

III. FOUNDATIONAL DATA STRUCTURES 

At the highest level, the object received for enumeration 

is known as the system, as shown in figure 1. There is only 

one system per enumeration, which consists of one or more 

devices. In this framework, a system is an abstract grouping 

intended to encompass the breadth of the enumeration 

activity. A device is then comprised of one or more 

components identified through the enumeration process. For 

each component, metadata is gathered and stored in isolation. 

To the extent possible, further decomposition of the 

component produces more components for which metadata is 

subsequently captured. This process continues until all 

components within the system under test have been 

enumerated. The hierarchical structure of the components as 

they relate to one another is then described by a set of 

pairwise relationships where each relationship indicates 

membership, direction, and nature of the relationship.  

 
Figure 1: Component Relationship Hierarchy 

At the conclusion of an enumeration, what is left is a 

system containing a list of components that are tied together 

via relationships. In this way, the nested components of the 

system and the underlying structure that ties them together 

are preserved. 

IV. PURPOSE OF ENUMERATION 

The purpose of enumeration is to identify all the 

components within a system. This data then enables us to 

have a better understanding of how the system works and 

allows for further research into the system. The components 

that make up a given product can heavily influence the 

product’s overall exposure to risk based on the component’s 

origin. Understanding how a system works cannot always be 

assumed by reading the owner’s manual, as unintended uses 

need to be known in critical infrastructure. Enumeration can 

support security testing by identifying unintended 

functionality and other security concerns. These unintended 

uses could have a lasting negative impact on a system, so 

identifying them is the first step in mitigating any gaps in 

security. Further research on a system is also needed to best 

understand all the parts that contribute to the final product. 

Each component added to a system plays a specific role and 

can influence the overall security of the system. As a system 

is typically made up of hardware and software, we have 

developed enumeration processes specific to both. 

A. Awareness and Accountability 

Enumeration plays a large role in bringing awareness to 

both the vendor or manufacturer and the consumer in what 

actually makes a system and how it can positively or 

negatively affect their overall network. For hardware this can 

include memory, processors, ports, and other forms of 

communication. Software can include types and sizes of files, 

ports in use, and how the device executes functions, classes, 

and imports. Each item should be considered a potential entry 

point for risk and its ability to secure itself and the system 



from external threats should be scrutinized. Still, inherent 

risks can occur with a component. Take for example a field 

programmable grid array, which is intended to be changed 

post-production. While this allows for flexibility in 

functionality, it also introduces new risk as it can be 

manipulated at any time. These types of inherent risks may 

not be readily known unless all components within a system 

are cataloged and researched through enumeration. By having 

awareness of the components that should exist within a 

system based on manufacturer claims, an organization can 

hold itself and the manufacturer accountable for verifying the 

validity of the claims.  

B. Documentation 

A core outcome of enumerations is to produce an easily 

readable output of the data collected. The output of the 

enumerations is a nested directory structure with JavaScript 

Object Notation (JSON) files that contain the details of the 

enumerated components as well as any images and 

documentation associated with the component. In order for 

the data in the JSON files to be easily searchable and 

meaningful, it must be standardized and consistent. To ensure 

this, the data must pass through a validator that compares it 

to a predefined JSON schema. This is a data structure that 

describes what is considered acceptable input data. Among 

other capabilities, the schema defines what field names are 

valid, the types of those fields, whether the field is required, 

and the valid values for a given field. After the data in the 

JSON files have passed the validation step, they are ready to 

be stored in a data repository. The inclusion of data in a 

repository enables centralized access to the data in a query-

friendly medium. 

C. Anomaly Detection 

After data collection, documentation, and research have 

been completed, anomaly detection can more easily be 

performed. Anomaly detection is identifying what the system 

is expected to have or do versus what it actually has or does. 

In some cases, this could mean discovering the system has 

missing functionality in the software or that counterfeit 

components have been used in the hardware. It could also 

mean discovering the system is capable of more than what 

was intended or that unexpected ports can add further access 

via communication.  

A more serious example of anomalous behavior would 

be behavior injected from a malicious actor. In December of 

2020, FireEye published research of a software supply chain 

vulnerability being used to insert malicious behavior into the 

SolarWinds Orion product [12]. Many government agencies 

were affected by this incident. 

A similar technique implemented on systems within 

critical infrastructure could have much more serious and 

visible consequences, such as the disruption of critical 

services as seen in the Colonial Pipeline ransomware attack. 

Anomaly detection is key to securing critical infrastructure 

supply chains, so using enumeration to collate data in a 

standard form is the logical first step in strengthening a 

system.  

V. PROCESS OF ENUMERATIONS 

The enumeration processes for both hardware and 

software follow an iterative process of unpackaging, 

research, and documentation that is repeated until the entire 

product has been enumerated. The processes differ in how the 

product is unpackaged and documented because of the 

variance in what data is collected.  

A. Hardware Enumeration 

1) Unpackaging 

When a system is received for enumeration, the first step 

is to unpackage the system from the shipping container it is 

received in. The system may be received in a package with 

supplementary material such as additional cords, power 

cables, disassembly tools, and documentation. It is important 

to make note of these supplementary materials as they can be 

instrumental in proper disassembly or operation of the 

system. The documentation may provide insight for how 

certain components need to be removed from the system and 

in some cases, there are special tools for removing pieces 

from the unit. After determining which parts of the packaging 

received are actually part of the system to be enumerated and 

which parts are supplementary materials, the enumeration 

process can begin. During the unpackaging process, an 

inventory should be kept of the parts that arrived in the 

package and which parts are considered part of the system 

versus supplementary.  

2) Imaging 

Imaging includes taking photographs or other visual 

captures of the system and its components. Imaging should 

be completed every time a previously undocumented 

subcomponent is identified during the disassembly phase of 

enumeration. Images taken should include all critical or 

relevant information about the component; for example, an 

integrated circuit where writing on the component is readable 

should be photographed in a manner that allows the writing 

to be referenced for information in the future. The time and 

tools needed for imaging varies based on what is being 

photographed. For example, capturing an overview image of 

a system is often as easy as point and shoot, while taking a 

close-up image of an integrated circuit on a circuit board 

takes additional stabilization and polarization to optimize the 

image. Regardless of what is being photographed, the image 

should be clear and easy to view. An image naming 

convention is also invaluable when enumerating as recalling 

specific images needs to be efficient so additional processes 

can run in a timely fashion.  

3) Research 

Additional research is almost always required to find key 

identifying information about a component or system. 

Identifying information can include part names, part 

numbers, and the part manufacturer. Research is conducted 

on the internet using publicly available information (PAI) and 

results usually include datasheets, manufacturer information 



releases, and third-party resellers. Discrepancies found in 

datasheets as compared to the physical component can be 

critical in anomaly detection.  

4) Documentation 

Data collected through hardware enumeration needs to 

be documented thoroughly and in a manner that allows for it 

to be easily ingested and analyzed. A schema, as described in 

the purpose of enumeration section, gives a way to 

standardize data so it can be inserted into a repository and 

ensure all data points are collected. Further information about 

data structuring related to enumeration is detailed in Supply 

Chain Risk Management: Data Structuring [13].  

5) Disassembly 

While the primary goal is data collection, a good 

enumeration has a secondary goal of ensuring the system is 

functional post enumeration. Therefore, disassembly of a 

device is done in a nondestructive manner that ensures the 

device can be reassembled and function the same as before 

disassembly. Each device is disassembled into individual 

components until doing so would result in the destruction or 

damage of the device or component. Before beginning 

disassembly and after each step of the process, 

documentation and imaging of every new component 

identified is needed.   

6) Repeat as Necessary 

The previous steps should be repeated recursively until 

the device has been completely disassembled and all 

components have been documented. Imaging should also be 

completed after the system has been reassembled to ensure 

the system is back in its original condition.  

B. Software Enumeration 

Software enumeration is the process of identifying the 

individual software files, collecting metadata about the files, 

and documenting the relationships between them. Because 

software is not a tangible object like hardware, the 

enumeration process is inherently different. 

1) Unpackaging 

Generally, software will be provided in a zipped folder. 

The first step in software enumeration is to handle unzipping 

the software package as received. These zipped packages 

may be in a variety of file formats including .zip, .tar, and .7z. 

There are standard tools that can be used to unzip these 

packages. After unzipping the package, the tester should have 

some directory structure with software files. The directory 

structure will vary with each software package, but generally 

there will be several levels of nested folders with software 

files, documentation, and licensing information.  

2) Basic Detail Enumeration 

Software enumeration initially collects details about 

each file: the file name, hash values, file path, and file type. 

Collection of these details can be automated using a Python 

script.  

Additional information related to the specific contents of 

each file can be extracted using knowledge of the specific file 

format and headers. This can be used to get file type specific 

metadata such as the vendor, version number of the software, 

and imported shared libraries. Going a step further with 

binary files to disassemble/decompile the file can be used to 

collect information on the functions, classes, strings, and 

vulnerabilities associated with each file. After running the 

enumeration script and performing the additional steps listed, 

a tester should ensure that the fields recorded meet the 

minimum set of requirements for a complete SBOM as 

defined by NTIA, described in the Literature Survey. 

a) File Name, File Path, and File Type 

The file name attribute of a file is self-explanatory. The 

file path attribute is the relative path from the root folder of 

the software package to the location where the file is located.  

For basic details enumeration, the file type can be determined 

based on the extension on the file when an extension is 

present. For example, a .py file is a Python file and a .docx 

file is a Microsoft Word file. However, file types can be 

spoofed by changing the extension to make a file appear as a 

different type than it actually is.  

b) File Hashes 

The last of the basic details to collect are the hash values 

associated with a file. Hash values are intended to produce a 

unique string value based on the contents of the file. A good 

hashing function will produce a hash such that even a small 

change in the contents of the file will produce a different hash 

value. The hash values can be used to verify the identity or 

ensure the integrity of a file. If the manufacturer claims that 

the file hash will be a1b2c3d4 and the computed hash value 

differs, the tester has reason to believe that some contents of 

the file have been modified from what the manufacturer 

released and requires further analysis. There are numerous 

hashing functions commonly used, but for our enumerations 

we use SHA1, SHA256, and MD5 because of their current 

and historic use.  

3) Documentation 

All the details captured must be documented, preferably 

in a specific format that conforms with the schema mentioned 

in the earlier section of this paper. By conforming to the 

schema, data collected can easily be entered into the data 

repository with limited preprocessing. The last step in 

software enumeration is to perform any research necessary to 

ascertain further details about the software package and 

individual files. The primary goal of this research is to 

discover known vulnerabilities, datasheets, web pages, and 

open-source repositories, but any additional information 

found is useful. The process described should be recursively 

repeated for each individual file in the directory structure. 

VI. TOOLS AND TECHNIQUES 

A. Physical Tools for Enumeration Assistance 

The hardware enumeration process requires multiple 

physical tools to better deconstruct and document a given 

device. These tools include the workstation setup, tool kits, 

cameras, and microscopes. Other physical tools may need to 

be considered depending on an organization’s goals for 

device enumeration.  

1) Workstation Setup 



The workstation setup will vary depending on the device 

to be enumerated. Additionally, the number of workers who 

may be at one table contributes to the size and shape of the 

desk needed to accommodate people, tools, and the device. 

After the desk itself has been chosen, all workstations should 

include antistatic mats to reduce device damages and bodily 

injuries. Antistatic sheets, often made of foam, should also be 

used when devices are being deconstructed in order to reduce 

potential static interactions.  

2) Tool Kit 

Designated tool kits per station are needed for teams 

planning to work at the same time. The kit should be designed 

for electronic disassembly and reassembly to best prepare for 

varying screw heads and sizes, as well as niche tools such as 

spudgers and angled tweezers. An all-in-one kit can be 

extremely useful when it comes to organization and storage, 

but often additional tools such as wrenches may need to be 

purchased outside of a kit designed specifically for 

electronics.  

3) Camera 

A camera with the capability to change lenses to take 

better images is a must. A mirrorless camera is more 

expensive than a digital single-lens reflex (DSLR) camera 

and does not have an optical viewfinder. A DSLR camera 

with a cross-type autofocusing system, tripod mount 

capabilities, self-cleaning sensor unit, and a minimum of 12 

megapixels is recommended for enumerations. The cross-

type autofocusing system will ensure that the camera will be 

in focus, especially when the subject of an image contains 

vertical lines. This is especially useful when photographing 

printed circuit boards and other small electronic components. 

A self-cleaning sensor unit will help ensure that there are 

minimal dust particles present, which allows for clearer 

images. Any dust particles on the lens can cause interference 

and hinder the process of capturing an image of the device. A 

tripod can be used to help stabilize the camera over the device 

to allow for a more focused image. By selecting a camera 

with a minimum of 12 megapixels, the enumeration team can 

be confident there are enough details captured in the image. 

If scope and budget allow, a camera with a higher megapixel 

count should be chosen to enable the enumeration team 

members to capture additional detail in their images. An 18–

55 mm f/3.5–5.6 lens was used for taking images of the 

component under test. This lens is versatile, allowing for 

images of the overall device and adequate images of the 

printed circuit board (PCB). Conformal coating, a protective 

film placed over integrated circuits and PCBs, can present an 

issue when taking photographs. Namely, the conformal 

coating can produce a glare when attempting to capture 

images of components, causing the text on the component to 

be unreadable in the image. 

4) Magnification 

Some form of magnification will be required to read 

identifying text on components, identify anomalies, and 

count pins, in some cases. Various tools such as microscopes, 

magnifying glasses, or jeweler’s loupes can be used for this 

purpose. The power of magnification needed depends heavily 

on the types of components and subcomponents expected to 

be enumerated. Additionally, lighting and stage options need 

to be considered as tints of lighting can affect conformal 

coating differently and stage sizes can impede microscope 

use. Versatility is also key in identifying key features 

accurately and efficiently. The team currently uses a 

jeweler’s loupe to move the viewer easily and uses a 

binocular compound microscope for areas that require a 

higher magnification. The team is considering more advanced 

options that can be found in the Conclusions and Future of 

Work section.  

B. Electronic Tools for Enumeration Assistance 

Enumeration can be a manually intensive task. The 

hardware systems and software packages received can range 

from small with fewer than ten components up to very large 

with hundreds of components. Documenting all of these 

components, handling the images and datasheets associated, 

and ensuring the data conforms to the schema and JSON 

format can be a challenging task. For this reason, eliciting the 

use of electronic tools can ease the burden on the tester to 

ensure each of these challenges are met appropriately.  

1) Output Generation 

One electronic tool that can be helpful for ensuring 

information is formatted correctly is an output generation 

tool. In this case, the tool may present the user with a frontend 

web page in which the tester inputs details into appropriately 

labeled text fields. These values can be used to generate the 

JSON output file in such a way that there are no concerns 

about correct formatting. The tool can contain more 

complexity to represent the relationships between two 

components but ensure appropriate and consistently 

formatted output is necessary.  

2) Software Enumeration Scripts 

As discussed in the software enumeration section, a 

significant portion of the basic software enumeration can be 

automated with a script to collect the file name, file path, file 

type, and hashes. This script takes advantage of several 

Python modules to collect information such as hashes and 

extension determination. The software enumeration script 

also outputs to the desired JSON format. The aforementioned 

script is shown in the Basic Detail Enumeration subsection. 

VII. RESULTS AND OUTPUT 

The standardized process of enumeration is still being 

developed and agreed upon by high levels of government and 

industry. Due to this, comprehensive examples of 

enumerations are not publicly available due to the sensitivity 

of the information.  

1) JSON Structure 

After an enumeration is performed, the data collected 

and generated needs to be stored in a consistent structure that 

will make entry into a database seamless. One way to 

structure data is to use a JSON file format. JSON stores 

information in key-value pairs in which the key is unique and 

the value can either be a static value or another JSON object. 



For example, the following JSON is valid in that the value 

associated with the key name is a static value. 
{ 

“name”: “Alice” 
} 

The next example shows a more complex JSON structure 

in which the value associated with the key person is another 

JSON object. 
{ 

“person”: { 
“name”: “Alice”, 
“age”: 30, 
“profession”: “programmer” 

} 
} 

The data from an enumeration will be stored in a JSON 

structure, which contains all the pertinent details collected 

and generated throughout the enumeration process. Each 

component (hardware), file (software), and relationship will 

have a separate JSON object in the file. Relationship objects 

exist to allow a user to understand how two components, or 

two files are related to each other. For example, if a 

microprocessor is on a circuit board, the microprocessor is a 

child of the circuit board. In the case of software, if a file 

hello.c exists within the directory C_Files, then the file 

hello.c is a child of the directory C_Files. By leveraging these 

relationships, a user is able to represent the structure of a 

software package or hardware system and understand where 

within the larger system/package an individual 

component/file exists.  

2) Proposed Data Schema 

JSON is a useful format for structuring the data, but to 

achieve consistency, we need to define what fields we expect 

and what the content of those fields should look like. For this 

we need to define a JSON schema. The schema allows us to 

define: 

• Fields to be collected 

• Human-readable descriptions of the fields 

• Examples for data collectors to see 

• Expectations for tracking changes 

• Logical relationships/dependencies between fields. 

Perhaps more importantly, the schema facilitates rapid 

quality control because it can be used to validate submitted 

JSON data and point to errors made in collection. This 

provides a level of assurance that the data submitted from 

enumeration matches expectations. Enforcing this 

consistency makes entry into a database automatable. If the 

JSON conforms to the schema, then each field in the JSON 

file can be mapped to a field in a database. 

3) Repository Motivation and Objectives 

Repositories can come in many forms and are generally 

shaped by the nature of the data that will be stored in them. 

Some examples of potential repository forms include 

databases (ex: MySQL, Postgres, NoSQL, MariaDB). While 

specifics of the storage are outside of the scope of this 

document, the primary motivations for the repository are 

important to understand as part of the complete process. 

The primary objectives of the repository are to archive 

the data and perhaps more importantly to make it accessible 

for reuse. Using the well-structured data collection can 

facilitate direct ingestion into a database. From there it is 

important to consider how the data will be indexed for search 

and to ensure that the structure you choose aligns well with 

the anticipated research. Answering the following questions 

at the onset will help ensure that the resulting data is well 

aligned with the intended use. 

• Is string searching sufficient? 

• Do you need to traverse relationships in the query? 

VIII.  CONCLUSIONS AND FUTURE WORK 

Developing and integrating a standard enumeration 

process is essential to securing critical infrastructure and the 

associated supply chains. The proposed enumeration is well 

formatted to service hardware and software related products 

to create a more thorough method of data collection and 

analysis. Current methods are sufficient but additions to 

accessible tools and available information would better 

situate teams in crafting complete enumerations, and 

ultimately, analytic conclusions. 

While enumeration is an integral step in understanding 

the risk associated with a system, it is only one of the first 

steps in completing a full risk analysis. Enumeration informs 

the tester of the system components but does not provide any 

risk level indicator. Some current challenges and limitations 

being experienced by those developing and implementing 

enumeration procedures include differences in terminology 

and catering to varying levels of expertise and tools available. 

In order to have a longstanding and successful methodology, 

terminology must be standardized across industry so cross 

pollination of information and ideas can occur. Additionally, 

this standardized process needs to be scalable for complexity 

of the device as well as the existing capabilities an 

enumeration team may have. After enumeration, performing 

PAI research on each component will inform the tester of any 

known and documented susceptibilities associated with the 

component that influences the overall risk. In addition to what 

is publicly available, performing hands on analysis can assist 

in discovering new risk indicators. When enumeration is 

performed in conjunction with PAI research and analysis, a 

more complete risk profile can be generated for the system.  

Future work should include the funding for an 

enumeration on a piece of obsolete hardware and software to 

thoroughly demonstrate and document the process.  

A. Tools to Consider 

1) Handheld Microscope 

Adding a handheld microscope to physical tools could 

prove to be beneficial in not only imaging but also 

documentation. There are a wide variety of handheld 

microscopes on the market with differing specifications 

based on intended use. A handheld microscope with dynamic 

range, polarization, large working distance, and a wide-angle 

lens will allow closer and clearer imaging than a camera with 

an 18–55 mm lens. Additionally, the versatility of a handheld 

device allows the user to angle the microscope in a manner 

that a traditional microscope would be unable to reach.  



2) Digital Microscope 

Still, there are more advanced digital microscopes that 

can be used to construct virtual three-dimensional 

representations of the product as well as up to 6,000 times 

magnification. Determining which microscope, if any, will 

enhance current enumeration procedures will depend on cost, 

the ability of team members to learn how to use, how the 

added features influence data collection, and any added 

security risks.  

3) Additional Lens and Lighting Options 

A 100 mm f/2.8 macro lens would be a great additional 

lens. A macro lens would enable capturing high-quality 

images of the text on small components, which are 

traditionally hard to read by the human eye. Additionally, 

having multiple LED lamps or overhead lights would allow 

for better images by providing proper lighting from several 

angles without emitting much heat. An LED light and the 

macro lens would allow taking quality images of the PCB 

with minimal problems from conformal coating. 

4) Vendor/Manufacturer Supplied BOMs 

Detailed BOMs from vendors would help confirm the 

contents of a device and make finding discrepancies easier. 

Additionally, having access to such information could allow 

enumeration teams to have varying levels of disassembly 

performed depending on the client’s needs. For example, 

confirming parts are present by comparing to the BOM from 

the vendor or manufacturer would be a faster process than 

discovering, identifying, and confirming a component is 

supposed to be in the system. The time spent on enumeration 

would depend heavily on the type of information already 

provided and also would influence what types of tools would 

be necessary for the type of enumeration.  
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Abstract—The Software Bill of Materials (SBOM) has emerged
as a possible tool to mitigate information asymmetry within
the security market. By promoting transparency throughout
the supply chain, stakeholders now have crucial information
that can support decisions throughout a product’s lifecycle.
This pre and post-procurement decision support aligns with the
evolving cybersecurity paradigm and supports well-established
economic models. Our research identifies the need for more
effective communication within the current security market.
While SBOMs may present an effective and viable option, their
current instantiation is not suitable for all consumers. We explore
how SBOMs can be made more usable. This paper seeks to
draw from our research to discuss the economic benefits of
communicating security. Particularly, we focus on how both
visualizing SBOMs and integrating SBOM information into
labels can increase transparency, which increases consumers’
willingness to pay.1

Index Terms—Security, Labels, SBOM, Permissions, Secure
Supply Chain

I. INTRODUCTION

The concept of a lemon’s market was introduced in 1970
to describe the U.S. second-hand car market [2]. The term
lemon refers to a used vehicle with hidden issues or defects
that may not be readily apparent to a buyer. Unscrupulous
sellers may attempt to mask underlying issues by investing in
cheaper superficial improvements (e.g., new exterior paint or
interior detailing) [16].

A lemon market can be characterized by three key factors.
First, information asymmetry exists, wherein the seller holds
more information about the quality of the goods than the buyer.
Second, the buyer rationally assumes that the goods offered for

1This research was supported in part by CTIA and the Comcast Innovation
Fund. We acknowledge support from the US Department of Defense [Contract
No. W52P1J2093009]. This material is based upon work supported by
the U.S. Department of Homeland Security under Grant Award Number
17STQAC00001-07-00. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the U.S.
Department of Homeland Security, Comcast, CTIA, Indiana University, nor
the U.S. Department of Defense.

sale are of inferior quality since the seller has not sufficiently
proved the quality. Finally, the development and sale of high-
quality goods become financially impractical, as there are
no reliable means for a buyer to assure quality [2], [16],
[28], [31]. Essentially low and high-quality goods become
indistinguishable. This results in a situation where buyers are
unwilling to pay a premium for a potentially higher-quality
good, fearing it may end up being low quality. This threat of
inconsistent quality leads to a lack of consumer confidence
and decreased demand across the entire market.

A lemons market is normally a two-sided market, where
one person is selling a good and one person is buying a good.
However, technology creates more complicated markets [23].
For example, the mobile app market is more intricate due
to the existence of three major stakeholders: the developer,
the buyer, and the marketplace competition (often in the
form of a duopoly) [49]. Mobile app marketplaces need to
simultaneously cater to the needs of developers, while at
the same time instilling trust in buyers. More explicitly, a
marketplace must appeal to developers, since app availability
increases a smartphone’s usability and functionality, which
drives hardware purchases; simultaneously, the marketplace
must maintain buyers’ trust in the hosted applications to ensure
continued marketplace utilization. This leads to the need for
clear benefit communication [49]. Without it, consumers may
lack confidence, especially when there are disparate ratings
across multiple marketplaces (i.e., one has only positive re-
views and the other has negative reviews).

Information asymmetry is the result of a communications
problem. In this paper, we will use experiments designed to
peel back the layers of the lemon market to foster better
communication. We focus on how visualizing SBOMs and
integrating SBOMs into labels can both be used to increase
transparency and mitigate the lemons market in terms of
security and privacy. In doing so, we demonstrate that while
SBOMs may be complex, they hold the key to providing a
more safe and secure technology market.



II. BACKGROUND & RELATED WORKS

A challenge arises in how privacy and security risks are
communicated to users. Various measures, such as runtime
permissions, manifest presentations, Apple tracking trans-
parency, and Apple privacy labels have been implemented to
address this issue [6], [29], [34], [45]. The core argument
is that providing more information to users enables them to
make better decisions. When users have access to better risk
communication, they can demand higher security and privacy,
which increases their willingness to pay for secure prod-
ucts [12], [15], [22]. This creates an incentive for developers to
develop better products. Without this signal, developers with
superior products may never enter the marketplace, leading to
a decrease in overall quality and the persistence of a security
lemons market [2].

A. Risk Communication

To improve risk communication and change market behav-
ior, we can start with some assumptions from the early days
of risk communication – show users they are choosing a risky
option and that it is better not to take risks. But if users have
no choice (e.g., they have to share phone contacts in order
for the application to work), they will acquiesce. Therefore,
we need to create partnerships to encourage developers to
request fewer permissions, thus building long-term trust in
marketplaces. Additionally, it empowers users to select the
most secure and privacy-preserving apps, in turn decreasing
information exfiltration. This is, of course, the goal of risk
communication.

Risk communication also tells us that security should be
a gain. We can leverage prospect theory, which suggests that
people prefer gains over the probability of loss [27]. Currently,
all users see are gains. They are making decisions on marginal
gains and losses, not the final outcome. No one is choosing to
be vulnerable allowing hackers access to their data. However,
they are making incremental gain and benefit choices that
lead to this outcome. Therefore, we should present security
and privacy as gains in our risk communication strategy. We
need to communicate more effectively using models that are
shown to work in benefit communication and apply them to
risk communication.

Studies have shown that offering phone owners better choice
points for permissions, and ways to prioritize higher-quality
permissions, can lead to more informed decisions [5], [32],
[34], [45]. This technical problem can be addressed through
an economics-based solution. Currently, decisions are solely
based on benefits, and developers have no incentive to have
correct privileges or protect data. There is no cost for being
risk-maximizing. By using simple indicators to communicate
risks and benefits at the moment of decision, customers are
more informed [5], [20]. Our underlying assumption is that app
purchases drive developers’ engineering choices. To achieve
better risk communication, we must provide clear information
about risks and benefits, empowering users to make secure
decisions and prioritize their privacy.

B. Security Labels

To address these challenges, the National Institute of Stan-
dards and Technology (NIST) has proposed the use of security
labels [37], [38]. In 2023, the Federal Communications Com-
mission (FCC) revealed the U.S. Cyber Trust Mark, stemming
from NIST’s security labeling recommendations [18], [52]. On
March 14, 2024, the FCC voted to use this label for wireless
consumer Internet of Things (IoT) products [19].

Again, the same multiple decision-makers are playing a role
in this process (i.e., developers, buyers, and marketplaces).
And again, developers will not invest in creating secure, less
privileged products if buyers do not prioritize security. If we
want buyers to care more about security, labels and risk com-
munication must be attention-grabbing, easy to comprehend,
and aligned with users’ mental models [6], [9]. Presenting this
information at the time of decision-making is crucial.

A good example is the United States’ Smoking Kill label,
which is clear and straightforward, effectively conveying the
risk without requiring extensive understanding of medical
harms [21]. There are similar labels in Australia, which are
even more effective by using graphic imagery [24], [50].
All these labels serve as a warning, conveying the message
that smoking leads to death without the need for detailed or
convoluted medical jargon. However, the field of computer
science still struggles to achieve such clear and urgent risk
communication; it expects users to understand technical terms
or implicit impacts associated with risk.

C. Software Bill of Materials

Complementary to NIST’s labeling effort, the National
Telecommunications and Information Administration (NTIA)
is working on a software listing called a Software Bill of Mate-
rials (SBOM). This has been described as an ingredient list for
systems. NTIA defines an SBOM as a nested inventory of all
the components, information, and supply chain relationships
that contribute to a piece of software [41].

Bills of materials have long been standard practice in
manufacturing environments to identify all materials used in
the manufacture of a product. Similarly, an SBOM enables
secure use by identifying all software components; thus, it
can be used to trace vulnerabilities embedded in complex
code packages [51]. The minimum level of information creates
interoperability and allows for the traceability of components
through a product’s supply chain. While an SBOM is impor-
tant, by itself it is not sufficient to create a market for safe,
secure software and operations.

D. The SBOM Lifecycle

The SBOM lifecycle occurs over four cyclic phases: soft-
ware evaluation, generation, operations, and verification. In the
generation of an SBOM, we want to identify the components,
represent them correctly, and prune them so that components
that are of no concern are removed. For verification of the
SBOM, we might do static analysis, configuration file analysis,
real-time runtime analysis; we will want some cryptographic
attestations of these. For using SBOMs in operation, we



integrate it with our threat modeling, map vulnerabilities to
service, and identify mitigations. Then we update the code and
do software evaluation, where we map against current SBOMs,
identify differentiations, look at how the dependencies occur
for different services, and evaluate customer-specific use-
cases.

Fig. 1: The four phases of the SBOM lifecycle.

In theory, this idea of a well-defined software lifecycle,
consisting of requirements, planning, software design, testing,
and release, is sound. In practice, software development and
deployment can be more chaotic and iterative than this simpli-
fied model suggests. It requires constant vigilance to identify
vulnerabilities and maintain a secure codebase throughout the
software’s lifecycle. Especially when we discover something
wrong started in the requirements phase and we have to
redevelop it, iteratively updating the code as we learn more.
How then do we support users and developers in this con-
stant feedback, nonlinear lifecycle? In this paper, we conduct
experiments to identify ways of communicating these vulner-
abilities. Applying the lessons learned can make unfriendly
SBOMs more friendly to a variety of stakeholders.

However, we need to maintain some level of complexity
to have value for technical stakeholders. For example, se-
curity labels only serve the least expert and do not address
operational concerns. They are inadequate for experts needing
technical information. SBOMs address this requirement gap,
though their current instantiation is not designed to be inte-
grated into labeling efforts. Another consideration is SBOM’s
consistent update and validation, providing a more accurate
representation of a product’s current security posture. A static
label, on the other hand, represents the validation within a
moment in time, which may not accurately reflect the reality
of a dynamically evolving security ecosystem.

E. Vulnerability Disclosures
The significance of patching can be traced back to events

like the Therac-25, a medical linear accelerator used for cancer
radiation therapy. Eleven machines were installed, and six
people were seriously injured, with numerous other complaints
about the device. Still, Therac did not fix it until the U.S.
Food and Drug Administration (FDA) forced them to do
so [30]. The lack of timely resolution resulted in severe
injuries to patients, highlighting the critical need for efficient
vulnerability disclosure and response processes.

While often a vendor will acknowledge and quickly patch
a vulnerability, other times they may take months to respond,
and sometimes outright deny the existence of said vulnerabili-
ties. Still, vulnerability reporting and 3rd party analysis create
tremendous value in the ecosystem [26]. However, the scale
of vulnerabilities has surpassed human evaluation capacity. In
2020, the National Vulnerability Database identified 18,349
vulnerabilities; in 2023, it had grown to 28,819 a year [39].
It is no longer possible for humans to adequately evaluate
all these issues, and in 2024, NIST paused its enrichment
efforts of Common Vulnerabilities Exposures (CVEs) [40].
This highlights the importance of automation in assessing,
framing, and prioritizing vulnerabilities.

The discovery of a vulnerability is often challenging, but
once it is identified, applying that vulnerability and determin-
ing the scope and impact on systems is a bigger challenge.
And when we introduce bugs into this ecosystem, the com-
plexity increases again. The SBOM is critical in managing
increasingly complex software ecosystems [51]. And it is a
critical tool for future automation efforts. Currently, SBOMs
are represented by a machine-readable file structure such as
JavaScript Object Notation (JSON). This allows machines to
quickly parse and build nested inventories so that when a
vulnerability is identified it can be properly managed. SBOMs
can be used to determine when to invest based on the status,
technical impact, level of access, and likelihood of an attack.

Fig. 2: An example of what a few packages in an SBOM look like
in JSON format.

III. METHOD & EXPERIMENTS

In this section, we discuss how SBOMs can be used to
mitigate a lemons market. First, we draw a similarity to a
visualizer we developed for Manufacturer Usage Description
and how SBOM data can be represented to provide a more



complete understanding of its interaction. Next, we will de-
termine which security factors users may find the most salient
within the presented SBOM. Finally, we seek to determine if
consumers would be willing to pay for more secure products.
These experiments demonstrate that while SBOMs in their
current form may not be usable, they have significant value if
they can be communicated in the right way to the right users.

A. Visualizing SBOMs

We can gain valuable insights from app permissions, soft-
ware development practices, and access control through the
Manufacturer Usage Description (MUD). MUD is a machine-
readable access control list designed for IoT devices, ensuring
secure device-specific access control without the need for cus-
tomizing hardware controls. The idea is to simplify onboarding
and facilitate device integration by sharing MUD files. The
goal is to enable easy plug-and-play usage for all users [3].

1) Method: To assess the usability of the MUD-Visualizer,
we conducted a comparison study where 52 participants were
divided into two groups: a control group using standard
textual MUD files and an intervention group using the MUD-
Visualizer, shown in Figure 3. We use the control to evaluate
the effectiveness of visualization. Both groups were tasked
with answering 23 questions regarding the information pre-
sented in the MUD. For example, participants were tasked
with identifying which remote servers or local devices were
allowed to interact with other devices on the network based on
their MUD file. Additionally, we asked basic questions related
to the protocols permitted by the devices, such as IP version,
port numbers, and whether TCP or UDP was used. The
MUD-Visualizer has been developed to simplify information
presentation, allowing increased usability and understanding
of interconnected information.

Fig. 3: The MUD-Visualizer can help visualize the connected nodes
as well as display the traffic data.

2) Results: Using the Software Usability Scale (SUS) for
both the control and intervention, we can determine the
groups’ usability; an aggregate score of 68 is considered
to have average usability [4]. Participants in the control

group scored 55.19, while those in the intervention scored
77.02. This higher score is indicative of increased usability of
complex information. We used the Mann-Whitney rank sum
test to determine that this difference between the groups was
statically significant, p < .001. When analyzing the time to
selection, as well as the accuracy of selection, we again see the
intervention outperforming the control. The MUD-Visualizer
took significantly less time to use, almost a third less time
than the control. Additionally, the accuracy difference was
statistically significant, where participants using the MUD-
Visualizer had a median accuracy of 100.00%, while the
control only had a median accuracy of 78.26%.

Fig. 4: Median accuracy between the control (i.e., plain) and the
intervention (i.e., mudviz).

3) Implications: This visualization approach has the po-
tential to expand to be used for SBOMs. When users receive
the manufacturer’s usage device access control list, they gain
insight into the components of their device. Similar to an
SBOM, the MUD is machine-readable but not easily accessible
to humans. To support developers in generating and visualizing
MUDs, they require proper support. As demonstrated in our
study, an effective method to do this was the MUD-Visualizer.
Simply allowing visual manipulation instead of relying solely
on written access control rules increased accuracy. This visu-
alizer concept aligns with SBOM generation; creating a map
of dependencies, where all other dependencies naturally flow
as part of the overall SBOM’s upstream connections. Adding
or removing components becomes intuitive, as users do not
have to review the entire SBOM for each change. This not
only makes it computationally efficient but also useful to those
interacting with the code.

B. SBOM Visualization Tools

While automation will drive the initial vulnerability identifi-
cation, human interaction is important to determine the critical-
ity of the vulnerability, scope, and impact. Organizations have
finite resources and cannot remediate every risk. Visualization
tools help map complex interdependencies, allowing analysts



to assess the broader implications beyond automated outputs.
Combining automation for detection and human expertise for
contextual analysis creates a more comprehensive approach to
managing security risks. However, for human expertise to be
valuable, decisions must be accurate. Recall, that the MUD-
Visualizer demonstrated a high correlation between accuracy
and accessibility, and we can apply this finding to SBOMs.

1) Method: In this study, we compared two open-source
SBOM visualization tools (i.e., It-Depends and DeepBits)
against a machine-readable JSON file generated with the Soft-
ware Package Data Exchange (SPDX) standard. It-Depends
focuses on identifying dependencies and flags packages with
vulnerabilities, as shown in Figure 5. This tool lacks detailed
information, such as the source of the vulnerability [53]. In
Figure 6, we show the use of DeepBits, a commercial AI-based
SBOM generation suite [13]. This tool provides source infor-
mation on package vulnerabilities, including CVE identifiers.
For our study’s control, we use JSON files using the SPDX
standard, an open standard for representing SBOMs [48].
We use the JSON file format to provide a more traditional,
machine-readable SBOM to compare against the other two
visualization tools. An excerpt of the JSON file format is
shown in Figure 2.

Fig. 5: It-Depends shows the interconnected dependencies between
vulnerable packages.

This study was based on vulnerability identification and mit-
igation tasks. Specifically, we evaluated SBOM’s acceptability
and accuracy by randomly distributing participants into one of
the three conditions (i.e., It-Depends, DeepBits, JSON). Within
each condition, participants were presented with a series of
code components and asked to determine the existence of a
vulnerability, any dependencies, and any mitigation steps.

Fig. 6: A DeepBits generated graphic can show CVEs in code
packages

2) Preliminary Results: This project is currently ongoing;
however, a primary objective of this study is to determine
whether visualizations enable SBOM usability. We have re-
cruited 70 participants, who were randomly distributed to one
of the three groups. All participants assigned to It-Depends
(19) and DeepBits (22) completed the task. However, of the
29 participants assigned to the JSON file, only 17 completed
the tasks. Both visualizations demonstrate how users can
more efficiently engage with vulnerability information. Further
analysis is needed to assess how these relate to performance
and user experience. Additionally, the current results are based
on 70 participants, where the majority of participants lack
experience with SBOMs. As SBOMs become more common
in software development, we anticipate more familiarity with
SPDX’s JSON file format.

3) Implications: The lower completion rate from the JSON
condition indicates that users experience more cognitive load
and frustration when working with less visual tools. In prac-
tice, this may delay the assessment of a vulnerability’s scope
and impact, prolonging exposure to an organization. However,
while visualizations are a solution, this integration is still
a challenge. With the complexity and necessity of tools to
make SBOMs usable, is it realistic that SBOMs will ever be
used? Only if they can be readily identified and integrated.
When users are burdened with a vast number of fragmented
SBOMs, regardless of format, they will never use them.
Instead, having a comprehensive view of all the components
and their dependencies creates usability.

C. Integrating SBOMs into Labels

Labels are designed to be used at the point of purchase, as
it synthesizes technical information into a simple, graphical
design. On the other hand, SBOMs, in their current form,



are not user-friendly, as they are designed for longer-term use
to track vulnerabilities throughout the supply chain. Ideally,
combining SBOMs with labels will strengthen the security
of products, encouraging consumers to make more security-
conscious choices over a product’s lifecycle. The efficacy of
both labels and SBOMs will be a function of their reliability
and relevance. In this experiment, we explore which security
features are most important to consumers and how they can
be used to convey implicit aspects of an SBOM [8], [10].

1) Method: This experiment began with a study of se-
curity guidelines to gauge their efficacy in practice [14],
[33], based on sources from the Federal Trade Commission
(FTC) [11], National Highway Traffic Safety Administration
(NHTSA) [35], Federal Bureau of Investigation (FBI) [17],
Online Trust Alliance (OTA) [42], NIST [47], and Open Web
Application Security Project (OWASP) [43]. The resulting
union of the 131 best practices was 56 unique recommenda-
tions. As federal labeling efforts would primarily impact users
within the federal acquisition system (i.e., suppliers, vendors,
and buyers), we include additional federal guidelines [36]–
[38], [46] and AI & ML factors [48].

We used these 73 security factors in a virtual card sorting
exercise to identify insights into participant decision-making.
The 66 participants were recruited and asked to identify
the relative importance of a given factor for a specific pur-
pose (e.g., supports transport encryption as a component of
secure operations). Specifically, participants were presented
with a security feature that was associated with one of five
security categories (e.g., authentication, secure onboarding).
Each feature was placed into one of four categories (i.e.,
very important, important, less important, or not important)
according to the degree to which they would influence a
participant’s purchasing decision.

2) Results: As we assume consumers of SBOMs would
have some technical literacy, we selected participants with
some expertise in coding. In addition, previous work had found
that only the more technically literate users would engage
with the technical information presented on labels. We identify
the attitudes towards a specific category using measures of
central tendency and dispersion to rate the distribution of
responses. Results from the study are aggregated into five
separate security categories and represented in Figure 7. The
initial identification of top ten items for label design are:

1) Sensitive personal information
2) Two-factor authentication
3) Brute force protection
4) Transport encryption
5) Standards compliance
6) Vulnerability process
7) Specialized hardware requirements
8) Encryption at rest
9) Required consent of data sharing

10) System backups
The study also aimed to identify the relationship between

security factors and different groups. The results show only
education and technical acumen had any significant correlation

with any security factors or categories. And even then, it was
only marginally influential between variables.

Fig. 7: Aggregate responses are categorized into security categories.

3) Implications: From this study, we can see that security
labels, and to a higher degree, SBOMs, are a significant
research challenge. However, SBOMs have significant upside
if leveraged properly, extending beyond purchasing decisions
to secure operations post-purchase. Ensuring secure operations
involves integrating with threat modeling, mapping vulnerabil-
ities to services, linking with the attack chain, and identifying
mitigation options. A critical question then emerges: will
companies invest in security? Knowledge of vulnerabilities
is essential to evaluate appropriate return on investment, and
sharing this information across organizations could increase
investment within the ecosystem. The existence of SBOMs,
as a mechanism of information sharing, increases investment
simply by decreasing uncertainty. SBOMs should ideally en-
hance the situation by improving information flow. Next, we
will determine if consumers would be willing to pay for more
transparent security.

D. Willingness to Pay for Security

Willingness-to-pay is the maximum amount of money a
consumer is willing to spend to acquire a good or service,
denoting the value they place on a particular item [25]. Em-
pirical results of multiple laboratory investigations illustrate
that consumers will pay for security and demonstrate the
importance of quality and brand to consumers [1], [7], [8],
[12], [15], [22]. Additional research in willingness to pay
for security and privacy indicates a greater willingness to
pay for privacy [1], [22], [44]; however, security and privacy
are complex, ever-changing, and often intertwined. Modern
privacy includes dimensions that are clearly aligned with
security: risk, integrity, and trust. Moreover, if privacy is the
goal, security is the enabler. In this experiment, we seek to
understand if consumers will pay more for increased security.

1) Method: To determine consumers’ willingness to pay,
we conducted a simulated purchasing experiment. We sur-
veyed 599 participants and gave each $15, informing them



they would receive their product and any remaining funds
at the end of the study. Participants were then divided into
six experimental groups: five interventions based on different
security indicators and one control with no indicators. Products
were labeled with these security indicators to determine if
they would influence choice. We utilized Amazon marketplace
listings to provide external validity since these listings already
have built-in economic and product trade-offs. Additionally,
participants are more likely to authentically engage with
these listings to process information across product descrip-
tions, pricing structure, customer reviews, product ratings,
and product features/designs. Since these listings mirror ac-
tual economic influences consumers face, representing more
multi-dimensional decision dynamics, it allows us to better
determine the impact of security in the marketplace.

2) Results: A key research question centers around whether
security labels can increase a consumer’s willingness to pay
for a product. To assess this we evaluated the pricing for each
label compared to the control and employed a Mann-Whitney
U Test, which allowed us to compare the distributions of our
samples to determine whether they were statistically different
from the control. Given the design of our experiment, any
deviation in spending between the labeled groups and the
control group could reasonably be theorized to reflect more
security-conscious decision-making, as security labeling was
the only variable introduced. Our results indicate that in terms
of general consumers, there are no statistically significant
differences when compared to the control. This suggests that,
overall, security labels do not drive a collective increase in
participants’ willingness to pay for more secure products.

However, when focusing on consumers who are already
predisposed to caring about security, we saw an increase of
16.5% above non-security-aware consumers and 11.3% above
the control. These results were statistically significant, indicat-
ing a willingness to pay among Security-Aware participants.
The increase was less pronounced within the Privacy-Aware
participants, and not statistically significant. This suggests that
privacy concerns alone do not substantially elevate willingness
to pay for security features.

Willingness to Pay
SA S&PA PA

Non-Security-Aware +16.5% +22.0% +4.4%
Control +11.3% +20.7% +4.9%

Intervention +10.4% +19.3% +3.4%

TABLE I: Percent increase for Security-Aware (SA), Privacy-Aware
(PA), and Security&Privacy-Aware (S&PA) participants vs. Non-
Security-Aware, Control, and Intervention participants. For example,
SA participants were willing to pay +16.5% more for security
compared to non-security-aware consumers.

3) Implications: We can apply three lessons learned from
this experiment – the importance of simplicity, the need to
communicate economic value to the consumer, and the role of
familiarity. An effective awareness campaign could not only
emphasize the significance of security but also provide clear
and accessible information about the benefits and implications
of cost savings. Over time, increased awareness and trust in

security could significantly enhance the overall security mar-
ket, as individuals would come to expect it. Communicating
security’s value proposition is critical as general consumers
often do not understand underlying benefits and the economic
trade-offs (i.e., higher upfront investment in security may save
more money in the long term).

IV. CONCLUSION

In this paper, we reviewed how information asymmetry can
lead to market failure. We explored the historical underpin-
nings of a lemons market, used to describe a used car market,
and we applied a similar framework for new technologies.
Studying this phenomenon highlighted that even in the digital
age, where a vast amount of information is easily accessible,
information asymmetry can persist. This persistence of a
lemons market results in adverse consumer interaction, due
to hidden or obscured information, ultimately deteriorating
the overall quality of goods in the market. We reviewed two
methods that could mitigate this: visualizing SBOMs and using
SBOM information in security labels. In doing so, it should
drive an increase in consumers’ willingness to pay.

Ultimately an SBOM, supported by user-friendly interac-
tions and the right tools, has the potential to foster a market
for safe and secure software across its lifecycle, from devel-
opment and verification to operations and purchase support.
By providing transparent and easily consumable information
about complex software, the SBOM becomes a catalyst for
informed decision-making. This peels back the layers of the
lemons market for any device that is reliant on software code
as a foundation. Overall, the SBOM can correct how the
marketplace interacts with stakeholders, aligning itself with
established mental models.
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A Systems Engineering Approach to Policy Analysis: 
Addressing the Need for a Cyber Backstop 

Jenna McGrath, Michael Grappone 
LLNL 

 
This report presents the process of designing a cyber backstop policy tool system. A cyber 
backstop provides guidance and requirements for the federal government and private reinsurance 
and insurance industry stakeholders to share the financial burden related to a catastrophic cyber 
attack. The proposed backstop framework is modeled after existing successful terrorism and 
natural hazard backstop programs. The backstop considers the unique requirements that arise 
with cyber threats; for example, the difficulty of attribution, the cascading consequences, and the 
quickly evolving nature of sophisticated cyber attacks. 
 
Despite a growing cyber insurance market, a catastrophic cyber event targeting critical 
infrastructure would impact more cyber risk policy holders than can feasibly be covered by the 
insurance and reinsurance markets. Additionally, many (re)insurers do not cover acts of war, 
with the reasoning being that attacks of this nature are too costly to insure and the potential 
losses from such an event would be unsustainable for the (re)insurance industry. To provide 
adequate coverage for cyber catastrophes, a cyber backstop framework is required to determine 
how to share the burden of an extremely costly catastrophic cyber event. This cyber backstop 
will provide guidance into what portion of the recovery from the event is covered by private 
insurance and what portion will require government-backed financial intervention.  
 
Our report analyzes a series of cyber backstop system designs. We use existing policy tools and 
insurance backstop programs as examples and models in designing our backstop system. These 
programs include: the Terrorism Risk Insurance Program (TRIP), implemented after the 
September 11th attacks under the Terrorism Risk Insurance Act (TRIA); the National Flood 
Insurance Program (NFIP) which aims to provide federal flood insurance to regions where 
private insurance is unavailable; and the United Kingdom-based PoolRe program, where private 
insurers are billed a premium in order to provide a buffer threshold of funds to cover insured 
losses from a terrorist attack.  
 
We consider various pathways in designing our policy tool, including (1) an entirely new 
insurance concept, (2) adapting an existing framework, and (3) creating a new program based on 
an existing framework.  
 
We use these acceptance criteria: (1) our system shall functionally handle the needs of all 
stakeholders, (2) cover every type of relevant cyber incident, and (3) maintain records of all 
interactions with the system. After multiple iterations to define and select our concepts and 
system context, we conclude that the best path forward is to design a new policy tool using an 
existing program’s framework (specifically, TRIA/TRIP).  
 
We demonstrate how our system could process various examples of operational scenarios and 
use cases. We define the system’s requirements and provide a system architecture to demonstrate 
the tool’s implementation. We address various risks to the system through mitigation efforts.  



 
We conclude that the cyber security backstop we have described can provide a policy tool to 
successfully address the growing risks of cyber attacks and the financial burden, uncertainty, and 
risk they place on governments and private insurance. 



Acceptability and Accuracy with SBOM Data and Visualizations  
Xinyao Ma, Peter Caven, Zitao Zhang, Ambarish Gurjar, L. Jean Camp 

Indiana University Bloomington 
 
The Software Bill of Materials (SBOM) enables transparency throughout the supply chain. 
SBOMs have the potential to support actionable, timely, usable risk communication based on 
dependency information and data in the larger vulnerability ecosystem. With effective risk 
communication SBOMs can support risk-aware decision-making as code is authored and altered. 
Toward this goal, the Linux Foundation developed training materials for the software package 
data exchange (SPDX) SBOM generator. Similarly, the CycloneDX working group has training 
resources for its own generators. Beyond training, multiple visualizations have been developed. 
Our research compares the straightforward provision of SBOM data with two popular open-
source visualization tools: ItDepends and DeepBits. 
 
We implemented a human subjects experiment to determine the degree to which visualizations 
enabled our participants to accurately and efficiently identify the existence of vulnerabilities and 
their mitigation. (All human subjects research is approved by the IRB.) We asked participants to 
answer questions about specific real-world code using either one of the two visualizations and 
the raw SBOM provided in a JSON format. The JSON script was generated with SPDX. The 
purpose of this research is to answer the following research questions: 
Q1: Do participants improve their efficacy when using visualizations? 
Q2: How does any change in efficacy vary between different visualizations? 
Q3: How usable are the visualizations? 
Q4: Are participants’ perceptions of their accuracy aligned with their accuracy? How does this 
vary between visualization and raw JSON? 
 
\We have recruited 69 participants who either have a computer science background or coding 
experience. Of these, 49 stated that they were familiar with or had knowledge of SBOMs. All the 
participants were randomly distributed to one of the three conditions by the Qualtrics survey 
platform. In each condition (ItDepends, DeepBits, JSON), the participants were presented with a 
series of code components, one at a time. For each component, they were asked to identify a 
vulnerability and the dependencies that contained it. They were asked to determine if a different 
component contained any vulnerabilities, and if so, what these vulnerabilities were. Once this 
was completed, the participant was asked how to mitigate the vulnerability. In order to make the 
task feasible and ensure all participants were working from the same information base, every 
participant was provided a one-click link to the description and the mitigation of every 
vulnerability in the experiment. We then inquired about their experience using the standard NSA 
task load index. 
 
We propose to present on the accuracy of participants, their perception of accuracy, as well as 
the reported usability. We propose to present a detailed description of the experiment design and 
a completed analysis of the results. Here we can only provide preliminary observations from 
current data. Our current results are that participants interacting with the ItDepends visualization 
are the most accurate. The accuracy across the three tasks was not uniform. The JSON format 
provided the least accuracy, unsurprisingly as it was the least human readable. In fact, 12 out of 
29 participants did not complete the tasks after being randomly allocated to the JSON 



experimental group. Conversely, those completing the tasks using JSON ranked its usability as 
higher than those using and ranking the visualizers. 
 
The experiment is on-going. We are recruiting additional participants. It will be closed before the 
event. Based on the responses of the reviewers and organizers, we could demonstrate 
or invite participation. We are open to conversations about engaging with interested participants 
in think-aloud inperson walkthroughs of the tasks or collaborating to customize tasks for their 
organizations. 
 
Future work includes design of effective visualization, with the goal of integrating more 
inclusive information and targeting it based on developer expertise. We will also evaluate the 
accuracy and consistency of the tools. We designed our research to focus on usability and 
acceptability. However, there was significant variance in the displays of what should ideally 
be the same data across the three presentations. Different visualizations identified different 
vulnerabilities. Neither the documentation of the generator nor the visualization tool 
provided clear explanations for the difference.  



An Introduction to the Federal Acquisition Security Council (FASC) 
Sangeetha Ranadeeve 

DHS CISA 
 
The Federal Acquisition Security Council (FASC) was established by the Federal Acquisition 
Supply Chain Security Act of 2018 in response to the need to ensure a government-wide 
approach to evaluate threats and vulnerabilities in government Information and Communications 
Technology and Services (ICTS) supply chains and address supply chain security risks. Chaired 
by OMB, the FASC is an interagency council with representatives from General Services 
Administration; Department of Homeland Security (DHS); Office of the Director of National 
Intelligence (ODNI); Department of Justice; Department of Defense (DOD); and Department of 
Commerce. This presentation provides an overview of the FASC, its authorities and functions, 
and the responsibilities of the Information Sharing Agency (ISA) – CISA on behalf of DHS. 



Breaking Down the IIoT Cyber Labeling Effort for US Cyber Trust 
Mark Applied to Smart Meters and Solar Inverters 

Ian Johnson, Animesh Pattanayak 
PNNL 

 
IoT devices were once an edge of technology, found only in the homes of the techy savvy 
individuals. Today, IoT devices have permeated into electronics, appliances, and consumer 
products. Most homes have an IoT device whether a smart TV or a voice assistant device like 
Amazon Alexa or Google Home. These devices, while convenient and entertaining, bring 
security concerns associated with the increased number of devices connected to one’s home 
network. 
 
A July 2023 press release from the White House announced a new Cybersecurity Labeling 
Program for Smart Devices. In this release, the Biden-Harris administration outlines the plan for 
the FCC’s proposed U.S. Cyber Trust Mark to be incorporated into this plan to strengthen 
cybersecurity and improve privacy for individuals utilizing IoT devices in their home. 
 
In support of this effort, over the course of the last year, a team of researchers, engineers, and 
analysts from six DOE National Laboratories have been investigating the applicability of a 
labeling program applied to IIoT. This research will be particularly pertinent to energy sector 
OEMs who manufacture IIoT products and end-users of these products, including both energy 
sector asset owners and home enthusiasts. 
 
The intent of a cybersecurity label applied to IIoT is to provide information that could inform 
consumer choice and awareness when purchasing, installing, and operating internet connected 
energy devices. In this presentation, we aim to break down the following components of our 
research process: 

• Research performed to understand existing standards applicable to a label for consumer-
facing energy infrastructure along with voluntary input from vendor partners 

• Development of initial list of proposed label elements 
• Receipt of feedback through stakeholder workshops and 
• Government coordination with key stakeholder offices including NIST, FCC, and SETO 
• Receipt of public feedback and incorporation into our recommendations 
• Ongoing process of revising the proposed label elements to better accommodate public 

feedback and vendor feedback – close alignment of initial label elements with NIST IR 
8259 series 

• Considerations taken during design and development of our recommendations 
• Deep dive into the proposed recommendations to be delivered (the final report is still in 

progress but will be complete by end of FY24). 



Closing the Visibility Gap in Critical Systems Software Supply Chains 
Derek McCarthy 

NetRise 
 

 
This presentation will explore the critical software visibility gap in today's supply chains, 
especially within critical systems. We’ll discuss how a lack of transparency in software 
components can expose organizations to significant vulnerabilities and risks. This presentation 
will highlight issues such as the age of software components, presence of thousands of known 
vulnerabilities in brand new firmware/software and identification and analysis of other supply 
chain artifacts such as credentials, misconfigurations and cryptographic material. Using real-
world data, we will illustrate how addressing this visibility gap can bolster security measures and 
reduce the risk of supply chain attacks. Artifacts covered in the presentation will include, but not 
be limited to: industrial control systems, telecommunications equipment, server firmware, 
critical windows applications, containers and virtual machines. 



DOD Product Assurance Playbook Process for Commercial-Off-The-
Shelf Products 
Cassie Crossley 

Schneider Electric 
 

 
The Product Assurance Playbook process, which is in design with the DOD CIO office, Exiger, 
Schneider Electric, and The Chertoff Group, evaluates the supply chain for commercial-off-the-
shelf (COTS) products. This presentation describes the phases of the playbook, as well as details 
the method for examining the software bill of materials (SBOMs), hardware bill of materials 
(HBOMs), vendor development, and vendor manufacturing. Risks associated with the product 
such as foreign-owned controlling interest (FOCI) and tier X (4th+ party) suppliers are identified 
so the vendor can document mitigations and/or plans of action. To highlight the differences 
between the playbook and the CyTRICS process, an example of a COTS smart power meter that 
was piloted through this process will be shown. 



Leveraging SBOMS for Vulnerability Management 
Cassie Crossley 

Schneider Electric 
 

 
There is some debate as to how SBOMs can enhance vulnerability management practices, and 
some believe that collecting SBOMs from internal teams or suppliers is too difficult and time-
consuming. Learn how Schneider Electric has collected thousands of our product SBOMs and 
how we are leveraging the SBOMs as part of our corporate product CERT to quickly analyze and 
focus our attention when time is of importance. This presentation describes how we modified our 
policies and processes to collect, generate, and store thousands of SBOMs. You will hear how 
we have leveraged SBOMs during the Log4j and OpenSSL vulnerability events. Then we will 
conclude with key learnings, suggestions, and opportunities for improvement. 



PHICS: Programmable Hardware Image Collection System 
C. Weitz, G. Gloria, M. Kirkland 

PNNL 
 

 
The increasing scrutiny of supply chain of critical infrastructure has made the development of 
Hardware Bill of Materials (HBOMs) an appealing solution for identification of risk. However, 
HBOMs are not currently provided by vendors and manufacturers of control system equipment 
at large. The lack of first-party HBOMs has created a vacuum of quality supply chain data in the 
hardware that comprises key energy-critical infrastructure. Filling this gap requires third-party 
HBOMs to be generated until vendor-provided HBOMs are available.  
 
Third-party enumerations require identifying the electronic components that comprise the critical 
infrastructure technology in question. This usually requires physical disassembly and 
photographing of the device, a heavily manual process that does not scale easily. Other solutions 
avoid physical disassembly by utilizing X-ray, CT, and Ultrasound imaging technology to 
identify components. These solutions require expensive equipment, trained staff, and may have 
other technical limiting factors (i.e. limited sample size, struggle with shielded integrated 
circuits, etc.).  
 
PHICS offers to solve the burden of manual, time-consuming enumeration by providing open-
source, user-friendly, inexpensive hardware that can reduce the burden of manual enumeration 
photography and identification. This is just a prototype version designed by a Computer 
Numerical Control (CNC) - controlled routing table modified to utilize a digital microscope.  
 
PHICS utilizes a combination of CNC via the Mostly Printed CNC project with a commercial 
Dino-Lite digital microscope. The software is created using Python to interface the hardware and 
perform semi-automated enumeration.  
 
The digital microscope has been made fully functional and software controllable. As a result of 
finishing the functionalities in the microscope, PHICS has produced detailed imagery from 
commonly difficult component enumerations and has significantly decreased the amount of time 
necessary for recording traditionally lengthy enumerations. 



Software Composition Analysis Tools:  
SCRM Value Add or Lossy Noise Machines 

Robert Erbes, Micaela Gallegos 
INL, LLNL 

 

Software supply chain risk management (SCRM) depends upon accurate information regarding 
the software components that comprise any given software system. The collection of components 
included in a software package can be organized within a software bill of materials, or SBOM. 
SBOMs are ideally generated when the software components are put together, such as at compile 
time, but for many reasons that has not and is not always possible. For example, legacy or 
proprietary software packages often do not have SBOMs available to downstream consumers of 
that software. It’s not just end users that are affected, manufacturers themselves also must deal 
with this problem.   
 
To answer these questions, the market has seen the rise of several commercial software 
composition analysis (SCA) tools. These tools aim to peer into completed software systems, 
automatically identifying hidden software dependencies and looking up known vulnerabilities 
associated with those dependencies to enable end-users to enhance their cyber supply chain risk 
management processes. These tools are potentially a huge boon to end users of legacy and 
proprietary software – and a potential bane, depending on how accurate they are. 
 
This research asks that question – how accurate are currently available binary SCA tools – and 
provides answers to several other questions: What does it mean to be “accurate”? What 
limitations do the tools have in identifying common edge cases that take place in modern 
software development? Can they help you avoid a devastating supply chain attack, or is it all just 
noise? 
 
After researching SCA tools on the market, we identified three vendors that fit our use case and 
would provide analysis on compiled binaries. Using these tools, we submitted firmware for 
critical infrastructure devices for analysis and SBOM generation. The SBOM outputs were then 
cross referenced with SBOMs generated through manual analysis for comparison. In addition to 
the firmware samples, we also submitted edge case samples based off a popular open-source 
library that were specifically crafted to evaluate each tools’ ability to accurately identify 
components. These samples were customized to be consistent with modifications we have seen 
in modern software development as well as a couple that are representative of supply chain 
attacks. 
 
In the end, we found that accuracy in component identification varied across tools and edge case 
difficulty. To learn more, be sure to attend our talk! 



The Current State of C-SCRM 
Nikkia S. Henderson 

DHS CISA 
 

Nikkia Henderson will be providing an overview of C-SCRM. This presentation will serve as an 
opportunity to continue conversations around C-SCRM challenges and topics and explore ways 
to address these. It will explore the life cycle of previous incidents and uncover future 
considerations that could be taken to increase resiliency in our supply chains.  The audience will 
be a deepened understanding of C-SCRM, current vulnerabilities and challenges, and left with a 
call to action to how to address these. Additionally best practices such as increased collaboration, 
holistic adoption, and increased collaboration will be strongly encouraged post conference 
attendance. Participants will be left with thought provoking ideas to operationalize C-SCRM and 
methods to implement and mature internal C-SCRM programs and initiatives. 



The Software Supply Chain Business Case 
Duncan K. Sparrell 
sFractal Consulting 

 

Building trust in critical digital systems costs money. Or does it save money? The definition of a 
business case is “a justification for a proposed project or undertaking on the basis of its expected 
commercial benefit”. This presentation will help the audience understand, and quantify, the 
commercial benefits of understanding your software supply chain, as well as the work, the tools, 
and the costs necessary to do so. The author will begin by describing the threats to critical 
systems and the risks of not addressing them – including how to quantify those risks for your 
particular business. Use cases will be reviewed, building on the work in the National 
Telecommunications and Information Administration (NTIA) and Cybersecurity and 
Infrastructure Security Agency (CISA) working groups. Example use cases will be shown from 
vulnerability management, licensing, regulatory compliance, and end of life; including how to 
leverage across all these use cases to build your business case; and how to craft the business case 
in terms a Board would understand and relate with. Work in various standards development 
organizations (SDO’s) will be reviewed, including reviewing the alphabet soup of acronyms in 
this space as well as various recent events such as SBOMarama and the Cybersecurity 
Automation Village. But understanding our supply does take investment in both staff and money. 
Various costs will be reviewed that must be taken into account, and tradeoffs among alternatives. 
The presentation will conclude by summarizing the elements to your business case for 
establishing the right level of investment to establish the right level of trust for your particular 
business. 
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