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H I G H L I G H T S

• Statistical models for predicting grid stress using weather data are developed.

• The relative importance of weather variables and observed time scale are evaluated.

• Models fit to specific operation zones provide benefits over a globally-fitted model.

• Temperature, absolute humidity, precipitation, and previous days’ precipitation are key predictive variables for all zones.
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A B S T R A C T

Understanding the conditions associated with stress on the electricity grid is important in the development of
contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related
grid stress and the relationship with weather conditions were examined using data from the eastern United
States. Penalized logistic regression models were developed and applied to predict stress on the electric grid
using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature
improved model performance. Several candidate models and combinations of predictive variables were ex-
amined. A penalized logistic regression model which was fit at the operation-zone level was found to provide
predictive value and interpretability. Additionally, the importance of different weather variables observed at
various time scales were examined. Maximum temperature and precipitation were identified as important across
all zones while the importance of other weather variables was zone specific. The methods presented in this work
are extensible to other regions and can be used to aid in planning and development of the electrical grid.

1. Introduction

Extreme events, such as heat waves and drought, have historically
posed reliability challenges for the electric grid by simultaneously in-
creasing electricity demand, affecting natural resource availability for
power generation and power plant cooling, and reducing the capacity
and efficiency of power plants and transmission lines [1]. For example,
during the summer 2003 heat wave in Europe, which was the hottest
since 1500 in Switzerland and led to upwards of 15,000 deaths in
France alone [2], electricity demand for cooling peaked coincidentally
with the shutdown of multiple nuclear power plants in France due to
restricted access to cooling water. Similar conditions occurred in the
southeastern U.S. during the summer of 2007 when a combination of a
heat wave and drought led to reduced generation and higher electricity
prices across the Tennessee Valley Authority [3] and in Connecticut in

2012 when high water temperatures reduced cooling efficiencies and
led to the shutdown of the Millstone Nuclear Power Station [4]. Perhaps
the best-known incident occurred in 2003, when an extended period of
heat over the eastern U.S. contributed to a series of events leading to a
failure of the electricity grid that at its peak impacted over 50 million
people in the U.S. and Canada [5].

The electricity sector has contingency planning and reserves in
place to maintain reliability during periods when the grid is stressed,
but these plans are based on the historical frequency and severity of
extreme events. The future effectiveness of these contingency plans may
be in question due to climate non-stationarity: the expectation of
changes in the frequency, duration, or intensity of climate extremes
such as heat waves due to climate change [5–9]. Similarly, periods of
extreme drought in the future will have significant impacts on elec-
tricity production by reducing the amount and temperature of water
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available for cooling power plants [10]. Planning and operations teams
within the electricity sector need to understand the risks presented by a
non-stationary climate to perform capacity planning and revise opera-
tional protocols as needed (e.g., [4,11,12]). Understanding the “new
normals” for climate and weather and their implications for energy
sector vulnerability is the subject of ongoing research at the U.S. De-
partment of Energy (DOE) and its national laboratories [4], including
Pacific Northwest National Laboratory (PNNL) [13]. Because of the
complexity of the U.S. electric grid – the Eastern Interconnection (EIC)
[14] has been called “the most complex machine in the world” [15] –
understanding the interactions among weather, natural resources,
electricity supply and demand, and transmission and distribution sys-
tems is a significant science challenge.

The first step in understanding the time-evolving vulnerability of
the electric grid to climate change is to understand the environmental
conditions that generate stress on the current configuration of the grid.
This paper focuses on the development and application of a robust
statistical model designed to identify the weather conditions associated
with stress on the electric grid in a specific service area. We focus on
weather-induced grid stress in this work, which will be referred to
generically as grid stress throughout the rest of this manuscript. We
define grid stress as a function of the load, in megawatts (MW), and the
locational marginal price (LMP), in dollars per megawatt hour
($/MWh). LMP indicates the marginal cost of supplying the next in-
crement of energy in a particular zone of the electric grid. As load in-
creases (for example, during a heat wave), LMP rises as system dis-
patchers call on increasingly more expensive resources from within the
zone or purchase power from the transmission system—whichever is
cheaper. We define grid stress events as those days in which both the
load and LMP reach unusually high levels.

A significant amount of work has been done to forecast electrical
load based on seasonality, weather, and socioeconomic conditions. Our
approach is novel because we develop a predictive model of grid stress
as opposed to electrical load and because we model a wide range of
weather variables, including time lags and variable interactions,
whereas most other studies focus on temperature [16–18] or tempera-
ture-derived variables.

A literature review indicates that electrical load modeling efforts
use two primary classes of models: neural network models and statis-
tical or probabilistic models. Numerous studies detail methods for using
neural networks or fuzzy logic to forecast load (e.g., [19–22]). These

approaches are often lacking in interpretability as there is inherently
very little transparency in these types of models, thus understanding
what drives variability in electrical load is not straightforward.

It is widely recognized that temperature plays a key role in driving
energy demand [14,23] and many statistical studies have utilized
temperature or metrics derived from temperature (e.g., heating degree
days) to predict future electrical loads using statistical models (e.g.,
[16–18,24]). A small subset of these models attempt to leverage other
weather information such as humidity [25–27] and wind speed [26].
Our review did not discover any previous studies focused on a multi-
variate prediction of grid stress.

We investigated the following research questions: (1) Can a general
framework for predicting grid stress, which might be applied to other
study regions, be developed? (2) How predictable is a grid stress event
given weather observations as explanatory variables in a statistical
model (i.e., how well can the model perform)? and (3) What are the key
weather-related variables, other than temperature, that can aid in
predicting grid stress events?

The remainder of this work is presented as follows: In Section 2 we
discuss the available data, steps taken in data processing, and methods
for identifying grid stress events in the observational record. We de-
scribe our statistical modeling framework and methods for model fitting
and evaluation in Section 3. In Section 4 we present our results from
fitting statistical models to predict grid stress. Finally, we close with a
discussion of our results and a summary of future research needs in
Section 5.

2. Data

2.1. Study region

We selected the PJM Interconnection within the EIC1 for our study
because its historical load and LMP data were publicly available for a
large number of years.2 PJM operates a wholesale electric power
market that spans a large portion of the EIC.3 PJM's market extends into

Fig. 1. Map of the 20 PJM control zones.

1 http://www.pjm.com/library/~/media/about-pjm/pjm-zones.ashx.
2 https://esuite.pjm.com/mui/index.htm.
3 https://energy.gov/oe/services/electricity-policy-coordination-and-implementation/

transmission-planning/recovery-act-0.
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a total of 13 states and Washington D.C., with a population of more
than 61 million people served and a net generating capacity of
177,683 MW as of December 31, 2015 [28]. The PJM Interconnection is
broken down into 20 control zones, which are the fundamental spatial
scale of analysis in this work (Fig. 1).

2.2. Identifying grid stress events

In this work we were interested only in heat-related grid stress (as
opposed to cold-related stress), thus we considered non-holiday week-
days (when peak loads tend to be higher due to the use of commercial
buildings) during the months of June, July, August, and September. The
time frame used was 2005–2015. Grid stress days over these date
ranges were defined in terms of the measured load and LMP using the
following criteria: (1) The maximum daily load exceeded the 90th
percentile of maximum daily load values and (2) the maximum daily
LMP exceeded the 90th percentile of maximum daily LMP values. The
first criterion establishes that the peak load was unusually high for the
day in question while the second criterion establishes that the LMP was
unusually high in response to the demand. The maximum daily load
values within each zone were population-adjusted, by dividing load
values by the annual population4 and then scaling to the 2015 popu-
lation estimate, to allow load values to be comparable over multiple
years. Four of the PJM zones (ATSI, DEOK, EKPC, RECO) were not
examined because data were not available for the entire time period
due to the constantly evolving configuration of zones. We focused our
evaluation on the remaining 16 zones whose boundaries and config-
uration remained stable for the entire study period.

The choice of the 90th percentile in maximum daily load and LMP
values to define a grid stress day was determined by an exploratory
analysis of change points (the point at which the distribution of values
changes significantly) in the relationship between the two variables. We
found that the 90th percentile approximates the change point in most
PJM zones. Fig. 2 illustrates this for two zones. In Fig. 2, the rate of
change of LMP with respect to maximum daily load increases when
both values exceed their 90th percentiles compared to data below the
90th percentile. Analogous plots for all PJM zones are included in
Figure S1 of the Supplementary Material. In addition to helping focus
our analysis on the extreme conditions that are most worrisome to grid
operators, considering both load and LMP helps us avoid selecting days
when a non-weather-related event, such as a forced outage, might have
been the primary reason for high LMPs. Table 1 gives the number of
grid stress days for each zone that were identified over the June-Sep-
tember 2005–2015 time period.

PJM emergency message data have potentially useful information
for understanding how stress on the power grid manifests at the op-
erational level; however, challenges exist in using these data to identify
grid stress days. The majority of the PJM emergency messages are as-
signed to the regional level (PJM-RTO) as opposed to specific zones,
making it a challenge to use these data to characterize zone-specific
events. Moreover, challenges exist in understanding the cause-and-ef-
fect influences of specific messages. For example, the presence of a hot
weather alert may be indicative of a heat-related grid stress event, or it
may set in motion the appropriate actions to mitigate stress on the grid.
Due to these challenges, it is not feasible to utilize specific messages to
define a grid stress day. However, we cross-checked the grid stress days
determined by the two criteria above against PJM emergency messages
to confirm emergency warnings were issued and/or actions were taken
to relieve the load pressure on or before the grid stress day. By not
including the emergency messages in our definition of a grid stress day,
our working definition of grid stress can be applied in energy markets
other than PJM where detailed emergency messages may not be readily
available. A detailed description of the challenges associated with the

emergency message data and their association with grid stress days is
given in Section 2 of the Supplementary Material.

2.3. Weather data

Hourly surface meteorology observations from weather stations
across the U.S. are available in the NOAA ISD-lite data set.5 Our work
used weather data from 2005–2015, the same period for which we
obtained PJM load and LMP data. The meteorological data from
2005–2015 served as an input data set from which training data sets for
our statistical model were selected. There were 420 stations within the
PJM territory that had a sufficiently complete data record from
2005–2015. We used four base hourly meteorological variables
(Table 2): Air temperature (Temp), wind speed (WindSpeed), sea-level
pressure (Pressure), and precipitation (Precipitation). Precipitation in
the ISD-lite data set is reported as an hourly-mean rain rate, which we
converted to a binary variable so that a day with any measurable pre-
cipitation was recorded as 1 and days with no precipitation were re-
corded as 0. From the ISD-lite data we derived absolute humidity
(AbsHum) and relative humidity (RelHum). Additionally, to capture
weather conditions that may be persistent over consecutive days, such
as would occur during a heat wave event, four-day lagged weather
variable values were calculated by taking the average of the previous
4 days for each of the six weather variables (Table 2). We considered
and evaluated many different potential lag periods to include in model.
In order to limit the collinearity of variables, we evaluated the corre-
lation of different lagged variables to the value of the variable for the
current day. Four days was the minimum amount of time required for
all weather variables to reach minimal correlation with the day zero
value (analogous to a decorrelation time scale). Additionally, a sensi-
tivity study showed that for lags longer than four days, no significant
gains in model performance were observed. Results from this analysis
are included in Section 3 of the Supplementary Material. The inclusion
of lagged variables resulted in a total of 12 weather variables (6
weather variables + 6 lagged variables) used as input to the statistical
models.

Because our analysis was done on the spatial scale of PJM zones, the
daily weather variables from each station within a given zone were
population weighted so that combined they represented the weather
that was impacting the largest amount of people within each zone. To
accomplish this, we subsetted a 1/8° population dataset [29] for all the
grid cells within each PJM zone. These grid cells were assigned to the
nearest weather station using Haversine distances, which give the
shortest distance between two points on a sphere. The total population
assigned to each weather station was divided by the total population
within the zone to create a weighting for that station. All variables from
each station were multiplied by this population weight, reducing the
daily weather variables per station to daily weather variables per zone.
Because the available weather stations and the location and spatial
distribution of the population both varied from year-to-year, the po-
pulation weights were recalculated each year using interpolated
county-level census data.6 From each of the hourly variables, with the
exception of temperature, we computed the daily mean population
weighted values for each zone. Instead of a daily mean temperature,
population weighted daily maximum temperature was used to capture
the occurrence of extreme heat. Daily mean values were calculated for
other variables because several of the variables have minimal varia-
bility within a day and their means are often more representative of the
true conditions compared to their maximum values. For example, wind
speed is highly variable and the maximum value may only occur for a
few minutes within a given day.

4 https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml.

5 https://www.ncdc.noaa.gov/isd/data-access.
6 https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml.
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3. Modeling framework

3.1. Statistical models

A large number of models are available to researchers for classifi-
cation. For this application, we considered models that have a binary
response variable (1 = grid stress day and 0 = not a grid stress day) for

a set of training data and used a given set of weather values as potential
explanatory variables. A range of different classification models and
approaches were considered and evaluated. We found that penalized
logistic regression (PLR) [30] performed well and provided an inter-
pretable model that allowed us to investigate our research questions.
PLR provides a closed-form model for classification and shrinks the
coefficients of variables with little predictive information to 0 so only
useful explanatory variables are retained. We then focused on different
variable sets and formulations of the model to address the research
questions defined in the Introduction. The specific equations for the
PLR models used in this paper are given in Section 4 of the
Supplementary Material.

3.2. Explanatory variable sets

Temperature information is easily available to grid operation teams
and can be used to assess the potential risk of grid stress. It is the pri-
mary and often only weather variable considered by load forecasters, as
detailed in the Introduction. Thus, we considered a model using only
maximum temperature as an explanatory variable as a baseline model
for comparison purposes.

Fig. 2. Scatterplot of maximum daily load (x-axes; MW) versus maximum daily LMP (y-axes; $/MWh) for the CE (left) and JC (right) PJM zones derived using weekday data from
June–September 2005–2015. The dashed blue vertical and horizontal lines show the 90th percentiles of both distributions and the solid red line is a nonparametric smoothing spline fit to
the data. We defined grid stress days as those points in the upper-right quadrant of the joint distributions. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 1
The name of each of the 20 zones within the PJM Interconnection, the abbreviation we
assigned to each zone, postal service abbreviations representing the states that each zone
services, and the total number of grid stress day identified over the period 2005–2015.

Zone name Zone ID States of
service

Grid stress
days

Atlantic City Electric Company AE NJ 49
American Electric Power Company, Inc. AEP IN, OH, KY,

VA, WV
42

Allegheny Power AP PA, WV, MD,
VA

43

American Transmission Systems, Inc. ATSI OH, PA –
Baltimore Gas and Electric Company BC MD 42
Commonwealth Edison Company CE IL 34
Dayton Power and Light Company DAY OH 36
Duke Energy – Ohio and Kentucky DEOK OH, KY –
Virginia Electric and Power Company DOM VA, NC 34
Delmarva Power and Light Company DPL MD, DE 40
Duquesne Light Company DUQ PA 42
Eastern Kentucky Power Cooperative EKPC KY –
Jersey Central Power and Light Company JC NJ 48
Metropolitan Edison Company ME PA 51
PECO (formerly Philadelphia Electric

Company) Energy Company
PE PA 48

Potomac Electric Utilities Corporation PEP MD 37
PPL (formerly Pennsylvania Power and

Light) Electric Utilities Corporation
PL PA 44

Pennsylvania Electric Company PN PA 47
Public Service Electric and Gas Company PS NJ 48
Rockland Electric Company RECO NJ –

Table 2
Observed and derived meteorological variables obtained from the NOAA ISD-Lite data
set.

Observation Name Units

Raw Variables
Temperature Temp °C
Wind speed WindSpeed m s−1

Sea-level pressure Pressure hPa
Precipitation Precipitation Binary (1 = yes, 0 = no)
Derived Variables
Relative humidity RelHum %
Absolute humidity AbsHum g m−3
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Two additional sets of explanatory variables were considered. One
set was comprised of the 12 values from the aforementioned weather
variables and their corresponding lags (Section 2.2). We refer to this set
as the “in-zone” variable set. To evaluate the importance of weather
conditions occurring in other parts of the PJM Interconnection, we
created a second set of explanatory variables made up of the “in-zone”
variable set combined with the 6 basic weather variables from each of
the other 15 PJM zones. We refer to this set as the “across-zone” vari-
able set. These two variable sets can be thought of as capturing locally-
occurring grid stress events (“in-zone”) as well as grid stress events that
form as a result of hot temperatures occurring further away and being
transmitted across the Interconnection (“across-zone”).

3.3. Temperature thresholds for grid stress

Grid stress was never observed with population weighted max-
temperatures less than 27.9 °C (Fig. 3). Because of this there was little
use in training the models on days where that temperature is never
reached, so we removed any day in which the population weighted
max-temperature was below 27.9 °C from the training or testing data.
We classified all such days as non-grid stress and the probability of grid
stress was assigned to be zero. These days were also not included in the
evaluation of model performance. The remaining days with max-tem-
peratures over 27.9 °C contained a mixture of grid stress and non-grid
stress days, with no single temperature threshold uniquely separating
the two. A secondary effect of the decision to remove days with max-
temperatures colder than 27.9 °C was that it helped balance the sample
sizes of the two data classes (grid stress and non-grid stress) we sought
to distinguish. Data with major class imbalances can cause serious is-
sues in fitting a binary classifier [31]. By eliminating days with a
temperature under 27.9 °C, the ratio of grid stress days to non-grid
stress days decreased from approximately 1:25 to 1:10 within each
zone.

3.4. Model evaluation

We used cross-validation [32] to evaluate the performance of the
statistical models. The practice of cross-validation, dividing data into
training and testing data, is used to estimate how accurately a pre-
dictive/classification model will perform in practice. Random sampling
of days is one possible way of dividing data into training and testing
sets. However, this method could have confounded results, since lagged

variable values from previous days were included in some of the sets of
explanatory variables. We evaluated model performance by leaving out
observations from each year from 2005 to 2015 in turn, one at a time.
This is a stratified leave-one-out cross-validation method. For example,
we left out data from 2015 and trained the model using data from 2005
to 2014, then evaluated model performance based on the 2015 data. We
repeated this until all years were evaluated as a testing data set. Cross-
validation was also used to determine a reasonable range for the
shrinkage parameter, λ, in the penalized logistic regression model. In
these types of models, the shrinkage parameter controls how much
regression coefficient estimates are shrunk to prevent overfitting the
model to the training data. The shrinkage parameter was chosen in a
grid search of values between 0.0002 and 0.01 by increments of 0.0002.

We calculated several metrics of model performance for each testing
data set. Table 3 gives a list of these metrics and their definitions. We
focused on positive predictive value (PPV), balanced accuracy (BACC),
and the F1 measure as they are relevant and more informative when
class imbalance is present and correctly predicting positive events is of
particular interest [33]. PPV gives the proportion of positive predictions
that are made which are correct. BACC averages the proportion of
correctly predicted positives and negatives. The F1 measure takes into
account both false negatives and false positives. BACC, PPV, and the F1
measure all range from 0 to 1, with larger values indicating better
model performance.

Fig. 3. Observed maximum temperatures on grid stress days (shaded bars) and non-grid stress days (white bars) within the training data set. This data was taken as all summer days in
which the maximum temperature was above 27.9 °C.

Table 3
Metrics for evaluating model performance and their definitions.

Metric Definition

True Positives (TP) Number of grid stress days correctly predicted
True Negatives (TN) Number of non-grid stress days correctly

predicted
False Positives (FP) Number of non-grid stress days incorrectly

predicted as grid stress days
False Negatives (FN) Number of grid stress days incorrectly predicted

as non-grid stress days
Balanced Accuracy (BACC) 0.5 * [TP/(FN + TP) + TN/(FP + TN)]
Positive Predictive Value

(PPV)
TP/(TP + FP)

F1 measure 2 * TP/(FP + 2*TP + FN)
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4. Results

4.1. Global vs zone-specific models

We first consider whether it is sufficient to fit a single model for all
zones or if there are benefits to fitting individual models for each zone.
We fit a PLR model to training data from all zones at once, thus forcing
the estimated regression coefficient of each variable in the model to be
equal across zones. We refer to this as a “Global” model. We also fit a
PLR model to each zone’s training data separately, allowing the variable
effects to vary from zone to zone. We refer to the set of these as “Zonal”
models. Fig. 4 shows the BACC, PPV, and F1 measure values for each
zone using the “in-zone” variable set as input to the Global and Zonal
models. In all but 3 zones (BC, PEP, and DOM), the BACC values are
higher for the Zonal model compared to the Global model. The F1
measure values are higher for the Zonal models compared to the Global
model for all but 1 zone (PEP). However, trends in PPV values are less
consistent across zones. For 9 of the 16 zones, the PPV value using the
Global model is higher than the Zonal models. The PPV values are lower
in most Zonal models due to an increase in the number of false positives
predicted compared to the Global model. Zonal models falsely predicted
grid stress 31.7% more often than the Global model. This is equivalent
to an average of 2.9 more false positives per year across all of PJM.
Higher F1 and BACC values in most zones for the Zonal model com-
pared to the Global model are largely due to 41.3% more false negatives
predicted by the Global model. This is equivalent to the Global model
failing to predict grid stress for an average of 12.9 more days per year
across all zones.

The Zonal models more often correctly classifies grid stress days, but
do so at the cost of an increase in the number of false positives. There
are costs associated with both falsely predicting grid stress and failing
to predict grid stress that should be taken into account when choosing
between a Zonal and Global modeling approach. The decreased skill of

the Global model to predict grid stress indicates that the weather
characteristics associated with grid stress are variable across PJM
zones. We use Zonal models throughout the rest of this work because
the number of false positives generated by the Zonal models are sub-
stantially fewer than the number of false negatives from the Global
model.

4.2. Weather variable set comparisons

As explained in Section 3.2, we developed a baseline model for
evaluation purposes that uses only in-zone maximum temperature to
predict grid stress. To create this baseline model, we fit a logistic re-
gression model for each zone with maximum temperature as the ex-
planatory variable. The BACC values for this baseline model ranged
from 0.57 to 0.78, PPV performance for each zone ranged from 0.39 to
0.74, and the F1 measures ranged from 0.13 to 0.48. The mean model
performance metrics, averaged across all zones, were 0.68, 0.62, and
0.31 for BACC, PPV, and F1 values, respectively. Fig. 5 shows the F1
measure of the baseline model plotted by zone. In general, maximum
temperature is more predictive of grid stress for zones along the east
coast compared to zones further west.

We then fit PLR models for each zone using the “in-zone” variable
set to evaluate what improvements, if any, can be made in our ability to
predict grid stress compared to the temperature only baseline model.
Fig. 6 gives a summary of these models’ performance compared to the
temperature only models. The PLR models using the “in-zone” variable
set consistently outperform the temperature only model in terms of F1
measure and BACC value for all zones with the exception of JC, which is
a small zone along the coast of New Jersey (Fig. 1). The PPV for the “in-
zone” variable set outperforms the baseline model for all but four zones
(JC, ME, DPL, and DOM), where differences between the models were
less than 0.03. Overall, this analysis demonstrates that the inclusion of
other meteorological variables in addition to maximum temperature

Fig. 4. Model performance metrics for PLR models fit to data from all zones at once (Global) and separate models fit to each zone (Zonal).
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generally leads to improved model performance.

4.3. Predictive weather variables

Penalized logistic regression models shrink the coefficients of vari-
ables that are not useful in the model to zero, thus useful variables are
identified by their non-zero weights. Examining the variables selected
by the optimal PLR model in each zone indicates which weather vari-
ables are most useful for predicting grid stress days. For the Global PLR
model, maximum temperature, mean relative humidity, and mean re-
lative humidity as well as the four-day lagged derivations of each of
these variables were found to be useful in predicting grid stress days.
Additionally, while mean day 0 precipitation across all PJM zones was
found to be useful, its four-day lag was not retained. This suggests that
rain in the days leading up to a grid stress event is not a robust predictor
of grid stress. Further examination of the sign of the estimated coeffi-
cients for the retained variables in this model found 3 of the useful
variables (maximum temperature plus mean absolute and relative hu-
midity) had positive coefficients. In other words, an increase in any one
of these variables (holding all other variables constant) results in an

increased probability of grid stress for a given day. In contrast, mean
precipitation had a negative coefficient, indicating that precipitation is
negatively correlated with the predicted probability of grid stress.
Intuitively this makes sense because large mean precipitation values in
the Global model are likely associated with widespread precipitation
and extensive cloud cover across the PJM Interconnection – both of
which would act to suppress maximum temperatures.

We also examined the Zonal PLR models and the variables selected
for each zone using the “in-zone” variable set. Fig. 7 shows the number
of times each weather variable (broken down by specific time lags) was
selected in the optimal model for each zone. The combination of vari-
ables selected in each zone is unique, but some variables are selected
very often across zones. Maximum temperature and mean absolute
humidity were included in the optimal model for each of the 16 zones.
This verifies that maximum temperature has demonstrable value for
predicting grid stress, confirming what we saw in the performance of
the temperature only model in Section 4.2. Precipitation and the four-
day lagged precipitation were selected in 15 of the 16 zonal models.
Further investigation showed that the effect (estimated coefficient) of
the day 4 lagged precipitation variable was negative in some zones and

Fig. 5. The F1 measure of the temperature only model plotted by
zone.

Fig. 6. Model performance metrics for Zonal PLR models with maximum temperature as the only explanatory variable (Temp. Only) and models using the full “in-zone” variable set (In-
Zone).
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positive in other zones. This inconsistent effect is likely why the vari-
able was not selected in the Global model. In most zones, the mean
wind speed tended to be included in the model as was the mean relative
humidity and the four-day lagged variables for mean wind speed,
maximum temperature, and mean absolute humidity. This suggests that
extended periods of warm temperatures (increases the likelihood) or
widespread precipitation (decreases the likelihood) are predictive of
grid stress.

One benefit of the PLR models is that a closed form of the equation
used to predict grid stress can be obtained and the impact of specific
variables on the probability of grid stress can be evaluated (while
holding all other variables constant). The estimated coefficients reflect
the change in the predicted log odds ratio, the log of the probability of
grid stress divided by the probability of non-grid stress, of grid stress for
each one unit change in the variable of interest, while holding all
variables constant. For example, Table 4 gives the selected variables
and estimated coefficients (rounded to 3 decimal places) for the optimal
PLR model fit using the “in-zone” variable set in the PN zone. For every
1 °C increase in the maximum temperature in PN, the log odds ratio of

grid stress increases by 0.923. In other words, the odds of a grid stress
day becomes 2.517 (exp{0.923} ≈ 2.517) times more likely on
average. Increases in the mean absolute humidity also lead to an in-
crease in the average log odds ratio. This is also true for the four-day
lagged mean absolute humidity, but it has smaller overall impact on the
probability of grid stress compared to the current mean absolute hu-
midity. The mean wind speed and precipitation are negatively corre-
lated with grid stress. Overall, maximum temperature and mean abso-
lute humidity had positive estimated coefficients in all 16 zones and
precipitation had a negative estimated coefficient for each model in all
15 zones where precipitation was included in the model. We found that
mean wind speed had a negative estimated coefficient for all zones
where mean wind speed was included in the model. The coefficients for
mean absolute humidity and mean pressure had mixed signs depending
on the zone (6 were positive and 6 were negative for mean absolute
humidity and 6 were positive and 5 were negative for mean pressure).

4.4. Comparison of IN-Zone and Across-Zone models

Electrical grids are inherently connected across regions or zones of
service. Thus, it is natural to consider whether weather conditions (and
thus energy demand) in other zones might provide information that
allows for improved prediction of grid stress in a single zone of interest.
We investigate this concept by fitting an additional set of PLR models in
each zone using the “across-zone” variable set, which contains weather
variables for each of the 15 other PJM zones as potential explanatory
variables. Fig. 8 shows the optimal PLR models’ F1 measure, PPV, and
BACC for each zone using both the “in-zone” and “across-zone” variable
sets as potential explanatory variables.

Including the information from other zones can improve model
performance in some of the zones. The models using the “in-zone”
variable set outperformed those using the “across-zone” variable set

Fig. 7. Number of zones in which a variable was included in the best
PLR model fit using the “in-zone” variable set.

Table 4
Estimated coefficients for best PLR model using the “in-zone” variable set in
the PN zone.

Variable Estimated coefficient

(Intercept) −33.660
max_Temp 0.923
mean_AbsHum 0.569
Precipitation −1.342
mean_AbsHum_lag4 0.093
Precipitation_lag4 0.342
mean_Pressure_lag4 −0.004
mean_WindSpeed_lag4 −0.099
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across all three metrics for half of the zones. In contrast, using the
“across-zone” variable set provided some improvement in at least one
of the metrics for the other half of the zones. All three metrics are
improved for the models using the “across-zone” variable set for DPL
and DUQ. We examined the characteristics (geographic location, po-
pulation, etc.) of zones for which the “across-zone” variable set pro-
vided value compared to zones for which the “in-zone” variable set was
the best, but found no clear patterns or explanations. For the zones
where using the “across-zone” variable set provided value, we also in-
vestigated which other zones’ weather information was retained in each
model. In some cases, geographically close zones were retained in
combination with other zones, but this was not true for all cases. For
example, the optimal “across-zone” model for DPL retains weather in-
formation from two zones which are geographically close (AE and BC)

and two zones further away (AP, CE). The model for DUQ includes
weather information from six other zones (CE, DPL, JC, PE, PEP, and
PN) of which only PN is geographically adjacent. A subset of zones: AE,
CE, DAY, JC, and PS, showed improvement in some combination of
BACC and F1 measures for the model using the “across-zone” variable
set, although improvements were relatively small for AE, JC, and PS.
The difference in model performance for these zones was due to an
increased number of true positives for the “across-zone” model, how-
ever in each of these cases there was also an increase in the number of
false positives.

In an effort to better understand potential relationships among
zones, we investigated the co-occurrence of grid stress in PJM. We then
examined if any of the relationships discovered were preserved in the
zones for which the model using the “across-zone” variable set provided

Fig. 8. Model performance metrics for PLR models using the “across-zone” variable set (Across Zones) and using the “in-zone” variable set (In Zone).

Fig. 9. Map of clusters resulting from analysis of grid stress co-oc-
currence hierarchical clustering analysis.
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improvement over the “in-zone” variable set. For each pair of zones, we
first calculated the proportion of grid stress days identified in either
zone that occurred in both zones. This value can be thought of a metric
of similarity between each pair of zones with respect to the co-occur-
rence of grid stress. Figure S4 in the Supplementary Material gives these
values for all pairs of zones. We then performed hierarchical clustering
with complete linkage [34] using the matrix of similarity values. The
resulting dendogram, a tree diagram that illustrates results of clustering
algorithms and shows the distance between clusters, revealed five
clusters of zones. Fig. 9 shows the zones and resulting clusters based on
the co-occurrence of grid stress events. The co-occurrence of grid stress
has some clear geographic structure, as clusters are made up of zones
that tend to be geographically close to one another.

For zones where the model using the “across-zone” variable set
outperformed the “in-zone” model, we examined which other zones
were retained in the model. For four of these zones, weather informa-
tion from other zones in the same cluster were retained. For example,
the PLR model using the “across-zone” variable set for CE retained
weather information from DAY and AEP only. The analogous model for
AE included weather information from JC, PS, ME, and PE. In contrast,
some zones tended to pull weather information primarily from other
clusters. For example, DPL retained information from one other zone in
its cluster, AE, but also retained weather information from BC, AP, and
CE - all of which are from a different cluster. Similarly, the model from
DOM kept weather information from one zone in each of the other
clusters (AE, AP, BC, and DAY). The net result of this analysis is that,
while there is a clear co-occurrence of grid stress in geographically-
contiguous zones (i.e., there are clear clusters), there are no clear trends
that demonstrate that providing weather information from other zones
in the same cluster will always improve the performance of the grid
stress model.

5. Discussion

In this paper we described the steps of formulating a statistical
model, in this case penalized logistic regression (PLR), to predict grid
stress events based on observed or, potentially, predicted weather
variables. Our goals were to determine how well such a model could
perform and if variables other than temperature, which is commonly
used across the industry, had explanatory value. We utilized a PLR
model because it performed well in an initial analysis of several varying
types of competing statistical models. Additionally, a PLR model has a
closed-form expression and thus provides interpretable results. Future
studies might do a comprehensive evaluation across a suite of possible
statistical classification models. Any such study should focus on the
performance as well as the interpretability of the results of each po-
tential model.

Using data from the PJM Interconnection, daily load and locational
marginal price (LMP) values were used to identify summertime week-
days where there was stress on the electrical grid. This analysis was
done independently for each of the 16 PJM control zones for which
there was sufficient data. We saw no clear trends in the number of grid
stress days across the 11 years we analyzed. However, a potential area
for future study is the application of these models for predictions of grid
stress events under a range of future climate scenarios.

We explored both global and zone-specific models and determined
that modeling grid stress at the zone-specific level provided measurable
improvements in the classification of grid stress days. The global model
systematically under-predicted grid stress frequency across zones,
leading to an increase in false negatives compared to models fit to in-
dividual control zones. We explored which weather variables had
consistent predictive value across multiple PJM zones. A model using
only the in-zone daily maximum temperature as a predictive variable
was most valuable for zones located along the east coast. The perfor-
mance of these temperature-only models decreased moving westward
from the coast. We found that the incorporation of weather variables

and lagged weather variables other than maximum temperature led to
improved predictive performance across all but one zone, where the
difference between the temperature-only model and a model using the
full set of available weather variables was marginal. While the optimal
weather variables for predicting grid stress varied from zone to zone,
maximum temperature, mean absolute humidity, precipitation, and day
4 lagged precipitation were found to be important in almost all of the
16 PJM zones.

We also compared the optimal zone-specific PLR models using a
variable set that included only in-zone weather information to zone-
specific PLR models using a variable set that included weather in-
formation from all PJM zones. We found that adding weather in-
formation from other zones improved model performance in half of the
zones. Exploration of zone characteristics (e.g., population and geo-
graphic location) revealed no clear patterns that could explain why
some zones benefited from including weather information from other
zones. We found that the co-occurrence of grid stress between zones
was linked to the geographic proximity of zones. A clustering analysis
identified five clusters of zones in which grid stress days tended to occur
together. For zones where including weather data from other zones was
beneficial, we observed that some zones retained weather information
from within its cluster while others retained information across clusters.
Overall, these results indicated that there is value in including weather
information from other zones. However, given the lack of consistent
patterns among zones where this was true, our approach of including
weather information from all other zones and allowing the PLR model
to select which are important could likely be improved upon. Future
work is needed to investigate whether incorporating information about
the transmission structure of an operating region would result in better
model performance.

Assuming that data is available, the methods presented in this work
could be extended to other regions of the electrical grid in the U.S.
Additionally, the models developed could generate predictions and
probabilities of grid stress for future climate scenarios (under the as-
sumption that the configuration of the grid is the same as at the time the
models were developed). These types of statistical models could thus be
used to assess risk and aid in planning of capacity expansion to ensure
adequate power supplies during periods of heat-related grid stress. If
the current electric industry trends toward more expansive collection
and sharing of higher resolution data were to continue, analytic tools
and model formulations such as those presented in this work will be-
come increasingly important and useful to grid operators and capacity
expansion planners.
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