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Abstract Internal variability in the climate system can contribute substantial uncertainty in climate
projections, particularly at regional scales. Internal variability can be quantified using large ensembles of
simulations that are identical but for perturbed initial conditions. Here we compare methods for quantifying
internal variability. Our study region spans the west coast of North America, which is strongly influenced by
El Niño and other large-scale dynamics through their contribution to large-scale internal variability. Using
a statistical framework to simultaneously account for multiple sources of uncertainty, we find that internal
variability can be quantified consistently using a large ensemble or an ensemble of opportunity that
includes small ensembles from multiple models and climate scenarios. The latter also produce estimates of
uncertainty due to model differences. We conclude that projection uncertainties are best assessed using
small single-model ensembles from as many model-scenario pairings as computationally feasible, which has
implications for ensemble design in large modeling efforts.

1. Introduction

Quantifying regional uncertainty in climate projections is important for understanding the forced response to
anthropogenic activities and planning for climate change. Compared to global changes, regional changes can
have higher uncertainty in projections, not only because of the relatively coarse resolution of global models
and the uncertainties in model physics parameterizations but because internal variability can have a greater
impact at the regional scale. To help quantify internal variability, several modeling centers have devoted sub-
stantial resources to creating large ensembles based on a single-model configuration (Deser et al., 2012, 2014;
Kay et al., 2015). These simulations represent different realizations of possible outcomes due to internal vari-
ability in the model climate. As such, a large ensemble can be used to isolate the role of internal variability in
the model climate.

At the regional scale, future trends can vary widely among ensemble members even when produced by
the same model and when the projected global mean near-surface air temperature trends of each ensem-
ble member are nearly the same (Deser et al., 2016). Additionally, differences among climate models can
be amplified at the regional scale because of inadequacies in how processes are represented. For example,
changes to the large-scale circulation patterns of the atmosphere are more challenging to predict than global
mean temperature and yet are more directly relevant to understanding the implications of climate change
at the regional scale (Seager et al., 2014; Xie et al., 2015). An ability to distinguish between uncertainty due
to model representation and that due to internal variability can inform both risk assessment and further
model development.

To evaluate uncertainties due to model disagreement in projections of climate change, a multimodel ensem-
ble is needed. The Coupled Model Intercomparison Project (CMIP) has developed the experimental protocol
and organized data for numerous multimodel climate studies. CMIP archives climate projections provided by
modeling centers from around the world, following multiple emissions scenarios based on different socioe-
conomic development pathways. Additionally, some centers provide small ensembles, with up to about 10
members from the same model. Henceforth, we refer to these as single-model ensembles. Many studies of the
CMIP projections focus on intermodel differences only, with more limited use of the single-model ensembles.

Few studies comprehensively evaluate both model disagreement and internal variance in uncertainty esti-
mates. Here we address whether it is necessary to create a large single-model ensemble to quantify internal
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variance and where resources might best be allocated to constrain the range of possible future climate region-
ally, by identifying the greatest sources of uncertainty. We focus on regions that span the midlatitudes in an
area strongly influenced by large-scale circulation. The relative importance of internal variability and the sen-
sitivity to greenhouse warming are different for each region, as well as for different seasons. This allows for a
more thorough comparison of approaches. We also compare internal variance with other sources of uncer-
tainty in projections and how the balance among these changes on decadal time scales. We use the terms
variance component and uncertainty component interchangeably, although we acknowledge that these
have distinct meanings in other contexts.

Hawkins and Sutton (2009, hereafter HS09) introduced a method to quantify the portion of the uncertainty
in climate change projections that can be attributed to internal variability relative to the uncertainty due
to model disagreement and future greenhouse gas emissions. For internal variability, HS09 calculated the
variance based on deviations from a fit to the climate variable of interest and hence can use a multimodel
ensemble without any single-model ensembles. Methods like HS09 assume that all intermodel variance, after
removing higher-frequency fluctuations, is due to model disagreement. While a valid approximation at the
global scale, with regional differences averaged out, much of the intermodel variance at the regional scale
can actually be explained by internal variability alone (Deser et al., 2012). As a result, the assumption of HS09
could lead to an overestimate of model uncertainty.

Subsequent studies have developed alternative approaches for partitioning the uncertainty into internal,
model, and scenario sources. Yip et al. (2011) introduced a method based on the commonly used analy-
sis of variance (ANOVA) statistical approach that makes use of the small single-model ensembles provided
in the CMIP archive. This ensures more internal consistency than HS09; the total variance of a climate vari-
able across the simulations will equal the sum of the variance contributed by each uncertainty source. Later
work extended this approach to relax the requirement of a balanced data set (Northrop & Chandler, 2014,
hereafter NC14); that is, the number of scenarios and ensemble members from each model does not need
to be identical, so an entire CMIP database can be used, even if one model has more ensemble members
than another.

This study compares approaches for estimating the internal variance and its contribution to the overall uncer-
tainty in projecting regional climate changes. To address whether a large single-model ensemble is necessary
to quantify internal variance, we combine a large single-model ensemble with a multimodel ensemble from
CMIP, as described below. Our results can inform ensemble design for estimating internal variability, and hence
significance of trends, in projected climate change at regional scale.

2. Data and Methods

Our primary region of interest is the northwestern United States, which is defined to include all model grid
cells within 42∘N to 49∘N and 124∘W to 111∘W (hereafter “the Northwest”). Other regions along the West
Coast of North America are defined similarly with their own latitude and longitude boundaries, as indicated.
We have found that the variance estimates are within the confidence intervals whether we include or exclude
the ocean grid cells, as time series that exclude them are highly correlated with those averaged over the
entire region.

For a large single-model ensemble we use the Community Earth System Model large ensemble (CESM LE, Kay
et al., 2015). We use 40 ensemble members, all following the RCP 8.5 emissions scenario (Riahi et al., 2011).
For a multimodel, multiscenario ensemble of opportunity, we use the projections from phase 5 of the CMIP
(CMIP5, Taylor et al., 2012) that span the entire 21st century. The CMIP5 ensemble contains small ensembles
from many models across four scenarios based on different representative concentration pathways (RCPs,
van Vuuren et al., 2011) for anthropogenic emissions. Additionally, we combine the two ensembles to con-
sider the effect of adding a large single-model ensemble to the CMIP5 ensemble (hereafter the “combined
ensemble”). In another case we use only one simulation per model/scenario pairing from CMIP5, combined
with the CESM LE (hereafter the “reduced combined ensemble”).

For each climate variable in our set of model projections, we first average monthly data over our region and
then compute the time series of the annual or seasonal mean. Model grid spacing varies from as little as 70 km
to as much as 350 km. Most model grids are in the range of 100–200 km across. We compute the anomaly
for each projection by subtracting that model’s historical ensemble mean (for 1970–1999) from all ensemble

GOLDENSON ET AL. 927



Geophysical Research Letters 10.1002/2017GL076297

members being used by the method from the future time series. Then we derive variances as defined by each
respective method.

Using the CESM LE alone, we apply a decadal running mean to the anomalies and then compute the variance
across ensemble members as a function of time. Finally, we average the variance across time to get a single
estimate of the internal variance.

To estimate multiple sources of uncertainty and their relative importance, we use multiple approaches, begin-
ning with the HS09 method to calculate internal variability. The HS09 approach uses only a single ensemble
member from each model in the CMIP5 ensemble for which all four scenarios are available. Internal vari-
ability is estimated from the residuals of a fourth-order polynomial fitted to the anomalies.The residuals are
decadally smoothed, and the variance of the smoothed residuals is taken across all times and scenarios and
finally averaged across models. The result is a time-invariant estimate for internal variance. We note that a fit
to a fourth-order polynomial yields artificially high intermodel variance in the final decade due to a fitting arti-
fact (see supporting information). This dispersion is more notable in time series with a lot of decadal variability
and little trend but is less pronounced with a locally weighted scatterplot smoothing (LOWESS)-filtered time
series in place of the polynomial fit because the LOWESS filter only includes local values in the fit. We adopt
the LOWESS filtering method for this reason. Unlike HS09, we weight all models equally because assigning
weights based on ability to simulate the historical period, when all models stray from reality, can be mis-
leading (Stainforth et al., 2007). In another departure from HS09, we do not interpolate the projections to a
common grid before calculating the regional means. Since our regions are relatively large, errors that may
be introduced by differences in model grids should be small compared to the uncertainty in the variance
estimates themselves.

We also use the method of NC14 to quantify internal variability using the CMIP5 ensemble, the combined
ensemble, and the reduced combined ensemble. For any given time, the NC14 method treats each climate
model value from each of the simulations as a sample belonging to a particular climate model and scenario,
which are factors that control variance in the statistical model. Various statistical approaches are possible to
partition the variance due to each source in some manner so that

Yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + 𝜖ijk (1)

is satisfied for each Yijk , where Yijk is the deviation from the mean across all samples (𝜇). The parameter 𝛼 is the
deviation from 𝜇 due to model i, 𝛽 is the deviation from 𝜇 due to scenario j, and 𝛾ij is a nonlinear interaction
term that depends on both model and scenario. The residuals (𝜖ijk) that cannot be explained by any of the
three previous factors are assumed to be due to internal variance.

Yip et al. (2011) were the first to take a more formal statistical approach than HS09, using a classical ANOVA.
The ANOVA solution, however, requires that the data set be balanced—the same number of samples must
be present for each model and scenario. The NC14 innovation is to use a random effects model (see, e.g.,
Searle et al., 2006) instead, which does not presume a balanced data set. While all of these approaches only
approximate the true partitioning of uncertainties, we prefer the NC14 method because it can make use of all
available information from all simulations that have been conducted across all models.

NC14 suggest two alternatives to estimate a solution to a random effects statistical model of the variance com-
ponents. We adopt their restricted maximum likelihood (REML) statistical model to self-consistently estimate
at once the variance due to internal variability, intermodel differences, scenario, and nonlinear interactions
between model and scenario.

Maximum likelihood (ML) estimators assume that the available data are drawn from a specified probabil-
ity distribution. The likelihood function is based on a multivariate normal probability density. The available
data constrain the search for the variances that maximize this likelihood function. REML is a variant on ML
that maximizes the likelihood after fixed effects are already included, to account for the degrees of free-
dom in the fixed effects. These types of estimation require an iterative search for coefficients for each of
the variance components (e.g., model or scenario). In this application, the residual variance that cannot be
explained by the fit is attributed to internal variance. Thus, all of the components of variance add up to the
total variance, whereas there is no such constraint in HS09. The 95% confidence intervals are simulated by
parametric bootstrapping—using simulated data based on the statistical model to recalculate the variance
estimates 1,000 times.
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The NC14 method includes a fourth nonlinear component for interactions between model and scenario,
hereafter referred to as the “model-scenario interaction component.” Physically, this can be interpreted in at
least two ways. This component tends to be well defined (where the confidence intervals do not include 0)
toward the end of the century. This could reflect nonlinearities in the response of the climate system itself
to varying amounts of forcing from the different scenarios. In other words, model-dependent scenario differ-
ences, reflected in the potentially nonlinear model climate response to greenhouse gas forcing, would appear
in the interaction component. The interaction component could also be interpreted as the component of
model disagreement due to non–greenhouse gas forcing differences between the scenarios. Indeed, the sce-
narios represent different pathways with respect to greenhouse gas emissions, aerosol emissions, and land
use-associated land cover change. The aerosol and land cover forcings do not increase monotonically from
one scenario to the next like the greenhouse gas forcings do. Thus, differences in models corresponding to
different aerosol-radiation or aerosol-cloud interactions and land-atmosphere interactions would appear as
scenario-dependent model differences, indicated by the interaction term.

The NC14 method estimates variances after smoothing with a decadal running mean. When we apply the
NC14 method to regional-scale precipitation time series, a decadal running mean is not sufficient to remove
the substantial subdecadal variability that is present at the regional scale. As a result, we further smooth
the time series of variance components at the end to improve readability of the plots. For this step, we
apply a LOWESS filter, similar to that used in place of the fourth-order polynomial for the HS09 method.
Versions of the figures without this extra smoothing are displayed in the supporting information along with
confidence intervals.

The NC14 study used CMIP3 (Meehl et al., 2007) projections, with only three available scenarios, so they cau-
tioned that an undersampling of socioeconomic scenarios could bias the results. The Bayesian alternative
presented in NC14 specifies a weakly informative prior for the scenario uncertainty component, which we
conclude is inappropriate for time series that exhibit little sensitivity of the trend to scenario, as is the case for
precipitation in the regions we consider.

3. Results

In section 3.1 we begin by evaluating uncertainty estimates for temperature and precipitation in the
Northwest from internal variability and the other uncertainty sources. Then, adopting the NC14 method, in
section 3.2 we assess the influence of the ensemble type on the estimates. Finally, in section 3.3 we consider
differences due to season and region.

3.1. Variance Components Across Methods
The internal variance of surface temperature for a particular region can be estimated in a variety of ways, as
described in section 2. Perhaps the most straightforward approach is to compute the variance of the CESM LE;
since it is a single model and scenario, the variance is entirely due to internal variability. Estimates of internal
variance for temperature averaged globally and for the Northwest and several other regions are summarized
in Figure 1. We take the variance among the decadal running mean time series of temperature from the CESM
LE (denoted as 𝜎2 in the Figure 1 legend). This is comparable to the estimates of internal variance arrived at
with the HS09 method.

Estimates of the internal variance with the NC14 method vary with time. However, in Figure 1 we give just
the average across the entire period of the projections, which provides the most stable estimate since there
is currently no evidence that internal variance will systematically increase or decrease with time. For the esti-
mates using the NC14 method Figure 1 shows the 95% confidence intervals. Using the NC14 method yields
internal variance estimates that are consistent with the simpler estimate with the CESM LE. The HS09 method
estimates are frequently outside the range of the NC14 confidence intervals for the case with the highest total
number of simulations (N, reported in the supporting information). Other seasons and regions have lower
HS09 method estimates (see also Figure S1), suggesting that the HS09 method is not systematically biased
high relative to the NC14 method. The internal variance estimates for the global annual mean temperature
are slightly higher than the published values in HS09 and NC14 based on the CMIP3 ensemble.

The corresponding results for all variance components, based on the HS09 and NC14 methods, are shown
as a function of year in the supporting information (Figures S4 for temperature and S5–S7 for precipita-
tion). Figure 2 shows the temporal evolution of the variance components for the Northwest precipitation.
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Figure 1. Internal variance estimates for various methods, data, and regions, as indicated, with 95% confidence intervals
for the NC14 method.

In the Northwest there is very little trend in annual mean precipitation, so the scenario has very little effect,
whereas internal variance is substantial.

In Figure 2 the variance by component is presented both as a fraction and in an absolute sense. Qualitatively,
the HS09 method fractional variance in Figure 2e is reasonably similar to the NC14 method results in Figure 2f,
but model disagreement is higher. For the HS09 method, some of the intermodel variance is almost certainly
due to internal variance, as noted in section 1. With only one ensemble member per model/scenario com-
bination, HS09 systematically conflates internal variance with model disagreement. This limitation does not
affect the internal variance component in HS09 because it is estimated in an entirely independent manner.

3.2. Variance Components by Ensemble Choice
We choose to adopt the NC14 method to compare, in a consistent manner, internal variance estimates for
temperature and precipitation in the CMIP5 ensemble, the combined ensemble, and the reduced combined
ensemble. Figure 1 shows that the estimates of internal variance for near-surface air temperature are similar

Figure 2. Comparison of methods for variance in model projections for the Northwest annual mean precipitation. Variance is presented (a–d) as total and by
component in an absolute sense ((mm/day)2) and (e–h) as a fraction of the total. Colors indicate component for model (blue), interaction (cyan), scenario
(green), internal (orange), and total variance (black). Figures 2a and 2e show the modified HS09 method, Figures 2b and 2f show the NC14 method using CMIP5,
Figures 2c and 2g show the NC14 method using the combined ensemble, and Figures 2d and 2h show the NC14 using the reduced combined ensemble.
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Figure 3. As in Figures 2c and 2g for the Northwest using the combined ensemble, but for (a, c) December–February
mean precipitation and (b, d) June–August mean precipitation.

regardless of the ensemble(s) for the NC14 method, but the precision declines when the estimates are based
only on the reduced combined ensemble.

In the NC14 method, adding the CESM LE to the CMIP5 ensemble makes little difference to the variance
estimates. The internal variance is already well characterized on the basis of all of the small single-model
ensembles in the CMIP5 ensemble, from which we have a total of 288 integrations. Including the CESM LE
adds another 40, only ∼14% more integrations; thus, the difference between Figures 2b and 2f and Figures 2c
and 2g is small.

The variance estimates for precipitation provide a strong example of the importance of having small
single-model ensembles. In the reduced combined ensemble, shown in Figures 2d and 2h, the differences
from the other columns are notable. Because the behavior of each model is constrained by only one ensem-
ble member, it cannot be determined whether the differences between models are due in part to internal
variance. Because the reduced combined ensemble has only one ensemble member per model for every
model except one, intermodel variance could at times be inflated. The HS09 method is also based on only
one ensemble member per model for each scenario. Although the NC14 method has a more sophisticated
way of calculating the variance components, it can still misattribute variance to model differences or internal
variability if there are insufficient ensemble members to reliably distinguish between the two. Additionally, in
Figures 2d and 2h we see an inflated interaction component in all years, which can be taken as an indicator
that the reduced combined ensemble is too unbalanced in number of single-model ensemble members to
produce accurate estimates of the partitioning of variance.

Further evidence of the inadequacy of the reduced combined ensemble is the noisier estimates for inter-
model variance in the unsmoothed version of Figure 2 (Figure S5 in the supporting information). With only
one ensemble member per model/scenario combination for most models, decadal fluctuations influence the
model disagreement component. The small single-model ensembles of CMIP5, on the other hand, can ensure
that decadal fluctuations are not misattributed as a part of the model’s forced response. Thus, small ensembles
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Figure 4. Fractional variance of regional annual mean precipitation for the five regions indicated by the
latitude-longitude boxes shown in brown on the map. Fractional variance is plotted as in Figure 2g, to the left of the
region to which each corresponds. The central plot (outlined in red) is a duplicate of Figure 2g for the Northwest. Axes
of subplots as in Figures 2 and 3.

are most important for obtaining a robust estimate of the model disagreement component of uncertainty
without convolving some internal variance into this estimate and also improving the accuracy of the internal
variance estimate.

3.3. Season and Region
Precipitation trends in the Northwest are opposite in sign for winter (December–February) and summer
(June–August): models generally show increases in winter and decreases in summer precipitation. Total pre-
cipitation, and its fluctuations, are much larger for winter precipitation. Figure 3, for the combined ensemble,
has larger internal variance for winter. Although internal variance is lower in summer in an absolute sense,
it occupies a similar fractional variance in both seasons and the annual mean. Total uncertainty is lower in
an absolute sense in summer because both model disagreement and internal variance are lower. The larger
contribution of the model-scenario interaction term for the Northwest during summer than winter could be
related to the soil moisture-precipitation feedback in the eastern part of the region, which is a region of rel-
atively high land-atmosphere coupling (Koster et al., 2004). The larger proportional variance due to scenario
uncertainty and the model-scenario interaction term indicates that although projected trends in summer
precipitation are small, they are just as important as internal variability by the end of the century.

To make sure that these results are robust across the topographically diverse western North America, in
Figure 4 we compare two regions north of and two south of the Northwest. From north to south across
this range of latitudes, the sign of the annual mean precipitation trend ranges from positive to negative.
Regardless of the magnitude of the forced trend, the fractional contribution of internal variance to the overall
uncertainty is large up and down the west coast of North America. Where the magnitude of the forced trend
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is larger, the scenario uncertainty occupies a larger fraction of the partitioned total variance. This is notable
at the higher latitudes in Alaska and British Columbia where increases in precipitation are dominated by the
“wet-get-wetter” thermodynamic response (e.g., Figure 3 of Seager et al., 2010) to warming, which varies with
scenario. In the region that includes Baja California, the interaction term is larger in the second half of the cen-
tury than at other latitudes, and we speculate that this could be due to model-dependent shifts in the Hadley
circulation in response to the varying amounts of warming in each scenario.

4. Discussion and Conclusions

By applying the NC14 method to the CMIP5 ensemble, the combined ensemble, or the reduced combined
ensemble, we were able to produce a summary of fractional contributions to the uncertainty in projections
that properly accounts for the substantial internal variability at the regional scale. Noting the width of the
confidence intervals on all of the variance components (see Figure 1 and supporting information), the esti-
mates of internal variability produced by different methods are consistent with one another. If we only want
to estimate internal variance, any of these would suffice. However, we caution that the fractional variance
plots do not capture the uncertainty in these variance estimates and that it is substantial. Those data sets
that include the small single-model ensembles (as in the CMIP5 and combined ensembles) do result in more
precise estimates of model uncertainty and internal variance.

Our conclusions are based on a set of regions along the west coast of North America, where internal variability
is a major source of uncertainty in temperature and precipitation projections. We emphasize the importance
of a seasonal analysis where seasonal trends may have opposite signs. For example, during the Northwest
summer, the projected trends are smaller than in winter, but the scenario and interaction terms become frac-
tionally more important later in the century. The relative importance of each source of uncertainty also varies
across the regions considered, but internal variance is important for all of them.

Using the CMIP5 ensemble alone can serve to quantify internal variance over spatially averaged domains as we
have done here. To communicate the role of internal variance visually, however, large single-model ensembles
are valuable because maps of results from individual ensemble members, which differ entirely due to internal
variance, can be compared.

Compared to internal variance, model uncertainty estimates were more influenced by the method and
ensembles used. We find that it is helpful to have small ensembles from as many models as possible to
properly distinguish the forced response from decadal fluctuations, which the HS09 method and reduced
combined ensemble fail to do. Properly characterizing disagreement is important to assess the current state
of understanding and identify areas where additional model refinement is warranted.

Given improved process understanding and more accurate model representations, model disagreement is,
in principle, reducible. While climate sensitivity explains intermodel differences in global mean tempera-
ture response, processes such as orographically forced mesoscale circulation can be more important at the
regional scale. Varying model representations of El Niño and the jet stream should also affect model uncer-
tainty in the midlatitude regions we selected. Additionally, models do not consistently predict how either
of these climate features will change with global warming. Uncertainty in large-scale circulation features
and cloud microphysical process representation could lead to significant model differences in large-scale
precipitation projections as well.

For scenario uncertainty, we note that the NC14 method yields a greater fractional contribution of the emis-
sions scenario to the total uncertainty than the HS09 method. The confidence intervals are wide for scenario
uncertainty (see supporting information) because it is insufficiently constrained by only four discrete pos-
sibilities from the continuous distribution of possible emissions trajectories. It would also be interesting to
consider the sensitivity of the scenario uncertainty estimate to additional scenarios that prescribe both higher
and lower emissions, even if these are considered less likely trajectories. Projects like ScenarioMIP (O’Neill
et al., 2016) could easily double the number of scenarios, offering the opportunity to narrow the range among
estimates of scenario uncertainty.

In ensemble design there must be a balance between the computational expense of additional scenarios
and model variants, and the number of realizations for each model/scenario pair. Stouffer et al. (2016) note
that the number of ensemble members required varies with the field in question and is constrained by
available computational and archiving capability. We have shown that to robustly quantify each component
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of the projection uncertainties in key temperature and precipitation metrics, ensemble design benefits
from the inclusion of small single-model ensembles for many model/scenario combinations. Adopting a
framework for quantifying uncertainty that can make use of all available information, like NC14, allows
us to assess improvements in the state of knowledge as models develop and additional experiments
are conducted.
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