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Executive Summary 

The use of electric vehicles (EVs) in the United States has grown significantly during the last 
decade. So much so that the U.S. Department of Energy (DOE) asked Pacific Northwest 
National Laboratory (PNNL) to perform an authoritative study of the impacts of EVs at scale on 
the electric grid. “At scale” was defined by high-penetration scenarios performed earlier by the 
Electric Power Research Institute (EPRI) and the International Energy Agency (IEA). During the 
discussion of scope with DOE, it became clear that EVs at scale affect the electric infrastructure 
fundamentally in two different ways: (1) EVs affect the electric infrastructure at the point of 
common coupling, which for most EV charging stations (also referred to as EV Supply 
Equipment) is a connection to the distribution system, either at home, at a workplace, or at a 
public charging station; and (2) EVs at scale affect the bulk power system as an aggregated new 
load.  

This Phase I study focuses on the bulk power electricity impacts; distribution system analysis is 
left for the follow-on Phase II study. Because of a sense of urgency related to performing the 
analysis and publishing the results, PNNL recommended that the study focus on the Western grid 
(i.e., the Western Electricity Coordinating Council [WECC]). The WECC already has a 
commonly agreed-upon data set for a future grid scenario—the WECC 2028. By using the 
WECC 2028 scenario, PNNL used the best available future grid scenario definition that included 
load growth assumptions, generation retirements and additions, as well as transmission 
expansions. The analysis was based on a production cost modeling approach using the ASEA 
Brown Boveri Gridview tool. 

This EV-at-scale Phase I analysis addressed the following two key questions of interest to DOE 
related to the impacts of EV at the bulk power level at the time when EVs are deployed at scale: 
1. Are there sufficient resources in the U.S. bulk power grid to provide the electricity for 

charging a growing EV fleet? This question addresses the system adequacy.  
2. What are the likely operational changes necessary to accommodate a growing EV fleet? This 

question addresses changes in 

• generation mix 
• production cost  
• challenges and benefits of accommodating the new EV loads. 

The study is unique because it represented for the first time not only the projection for light-duty 
but also for medium-duty and heavy-duty electric vehicles (LDVs, MDVs, and HDVs). It should 
be noted that this study did not include a capacity expansion analysis that searches for cost-
optimal investments of new grid infrastructure given the new EV loads. Instead this study 
focused on the resource adequacy question of high EV adoption as the WECC grid planners 
defined the evolution of the bulk power system to the year 2028. 
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Key Outcomes of the Study 

Assumptions About the Penetration of EVs 

This analysis applied for the following penetration assumptions for 2028 expressed as a national 
figure: LDVs: 24 million, MDVs: 200,000, HDVs: 150,000. The national figures were applied to 
the WECC footprint by a 0.4 scaling factor. 

Modeling of Load Profiles of LDVs, MDVs, HDVs for the 2028 Scenario 

The following load profiles were established. LDV load profiles were generated by National 
Renewable Energy Laboratory using the EVI-Pro tool. MDV and HDV load profiles were 
modeled by PNNL. Load profiles are shown in the figures below. 

 
Figure S.1. LDV: Aggregate EV charging profiles for LDVs at the base temperature (25°C). 

 
Figure S.2. MDV: Average daily load shape to charge 1000 MDVs with night charging, such 

that vehicles will be charged by the departure time the next morning. Identical to 
the LDV maximum delay charging strategy. 
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Figure S.3. HDV: Charging profiles of simulated HDVs from stations across each time zone. 

The vertical axis represents the total megawatts used when accounting for all speeds 
of charging ports. 

 
Figure S.4. Illustration of WECC base load and added EV load for “Home High power No 

Delay charging.” EV load consists of 9 million LDVs, 70,000 MDVs, and 94 HDV 
charging stations. (The left frame represents summer load, the right frame winter 
load.) 

Major Findings 

2028 resource adequacy is likely to be sufficient for high EV penetration assumption.   

• Under a high-penetration scenario with national electric fleets of ~24 million LDVs, 200,000 
MDVs, 150,000 HDVs for a 2028 time frame, we are not expecting resource adequacy issues 
in the WECC under normal operating conditions (normal system, weather, and water 
conditions). The corresponding electric fleet sizes for the WECC footprint are 9 million 
LDVs, 70,000 MDVs and 94 HDV charging stations.  

EV resource adequacy can be doubled with managed charging strategies. 

The EV resource adequacy for the entire WECC interconnection was estimated for a likely 
unmanaged charging scenario under which most LDVs were charging at home starting in the 
evening (Home High power No Delay: HHND). Unmanaged charging is predicated on 
arrival time at home in the evening, when we assumed that the charging process begins. The 
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maximum number of LDVs when projected to the national fleet was about 30 million 
(national value) or 9 million for the WECC footprint. Alternatively, if managed charging was 
applied by hypothesizing a price-minimization scheme, the EV resource adequacy could be 
expanded to 65 million (national fleet number) or 19.6 million for the WECC. This suggests 
a significant opportunity to substitute additional generation and transmission requirements 
with smart charging strategies and much better utilization of the existing grid. Figure S.5 
shows the limited resource adequacy for unmanaged and managed charging. Note, the 
resource adequacy limit is set when the unserved energy becomes greater than zero. 

 
Figure S.5. Limits of resource adequacy for unmanaged charging (red) and managed charging 

(blue) based on unserved energy under increasing LDV penetration scenarios. Note 
that the LDV penetration numbers on the x-axis are the national penetration 
numbers. Penetration numbers for MDVs and HDVs were kept constant at 200,000 
and 150,000, respectively. The WECC numbers must be scaled back by a factor of 
0.3 because the WECC is projected to operate 30% of the national LDV EV fleet. 

• At the maximum number of LDVs, the authors found transmission congestion to be the 
limiting factor, which means that there are some available power plants in the WECC but the 
electric power could not be delivered to the load centers because of transmission limitations. 
The largest transmission congestions were in California (Paths 15, 26). 

Operational changes can be made to accommodate EVs. 

• The additional generation for charging EVs is likely to be provided by natural gas combined 
cycle plants and combustion turbine s predominantly throughout the WECC (85%–89% of all 
new generation). See hourly marginal generation for WECC by technology for two different 
charging scenarios in Figures S.6 and S.7. 

• Storage is used in California to meet the peaks set by EVs. Hydropower generation in 
Washington State is redispatched to resemble a commonly observed charging/discharge cycle 
of an energy storage technology. No new hydropower generation is expected because 
hydropower generation is energy limited—no more water is expected in the Columbia River 
system.  

Unmanaged 
charging Managed charging 
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• All EV charging load is likely to reduce renewable curtailments between 25% and 75% based 
on when EVs are charged. Managed charging could reduce the curtailment the most by an 
additional 16%. 

 
Figure S.6. Generation dispatch delta (with and without EVs) for an average summer day under 

the HHND (High power Home charging No Delay) charging scenario. 

 
Figure S.7. Generation dispatch delta (with and without EVs) for an average summer day under 

the HHWD (High power Home charging With Delay) charging scenario. 

• The production cost implications due to the additional load varied from 3% in Arizona, 
where there is some available coal generation, to 23% in California, where combustion 
turbines are required to meet the peak load set by EVs. It should be noted that all cost 
estimates were done keeping the generation capacity constant. It is likely that capacity 
expansion in anticipation of additional load may mitigate the cost increase, particularly, if the 
additional generation is renewable generation resources.  

• Managed charging has significant operational benefits in solar-rich areas such as California. 
It reduced the duck curve in two ways: (1) it reduced the coincident peak (duck height) and 
(2) it reduced the ramp requirements in the evening when the sun sets (steepness of the 
duck’s neck). 
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In addition, the authors analyzed EV-at-scale impacts for Washington State using the WECC 
results. The results of this higher resolution analysis are as follows: 

• Unmanaged EV resource adequacy for Washington State is approximately 1 million LDVs 
and 4,600 MDVs under normal system, weather, and water conditions. With managed 
(smart) charging, the resource adequacy can be increased to 2.7 million LDVs. 

• Washington State hydropower resources may need to be redispatched to accommodate 
unmanaged EV load. 

• The average production cost implications of high LDV penetration are minor and vary 
between 4% and 9% based on the generation mix of the utility organization. 

• The authors recognize congestion in the transmission system that already exists during high 
loading in the winter. Congestion is likely to be exacerbated with new EV loading with 
unmanaged charging, because of transfers from Canada to Washington, Washington to 
Oregon, and eastern Washington to western Washington under normal system, weather, and 
water conditions. 

The bulk power analysis had inherent limitations. 

The employed production cost modeling approach using a grid data set that represents a 2028 
future grid realization comes with some inherent limitations.  

The production cost model solves the generator unit commitment and economic dispatch 
problem given the available generators, the transmission system, and hourly loads in the WECC. 
It can identify system inadequacy by revealing sufficient generation and/or transmission 
capability to serve loads. It also provides insights into production costs and locational marginal 
prices on an hourly bases. However, this approach does not consider the evolution of the grid 
infrastructure as new investments are made. As a consequence, the production cost tend to 
increase with load additions as more expensive generators are being dispatched. In this analysis, 
the authors added new EV load beyond what the WECC members estimated in the 2028 data set 
to test the system adequacy question. Thus, the production cost implications are expected to be 
higher than if grid evolutions had been considered.  

The illustrative distribution system analysis offered insightful results for Phase II analysis. 

An illustrative distribution system analysis was presented that demonstrated the mechanism of 
how to perform a distribution system analysis and what the expected results and outcomes are. 
This illustrative example indicated the following:  

• Factors most likely to limit the additional growth of EVs are thermal overloading or reaching 
the rated capacity of grid assets in the distribution system under fast charging conditions.  

• Voltage violations may occur under fast charging conditions that feature high ramping loads 
during fast charging events.  
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1.1 

1.0 Introduction  

The use of electric vehicles (EVs) in the United States has grown significantly during the last 
decade. So much so that the U.S. Department of Energy (DOE) asked Pacific Northwest 
National Laboratory (PNNL) to perform an authoritative study of the impacts of EVs at scale on 
the electric grid. “At scale” was defined for each vehicle segment differently. For light-duty 
vehicles (LDVs), the high EV penetration scenario by the Electric Power Research Institute 
(EPRI) was chosen; for medium-duty vehicles (MDVs), the International Energy Agency (IEA) 
recent forecast was chosen; and for heavy-duty vehicles (HDVs), a brief survey was chosen. 
Several conversations ensued between DOE staff, various engineers representing the automotive 
manufacturers and electric utility companies through a membership in the U.S. Drive 
Partnership,1 and PNNL to define the scope of the study. It became clear that EVs at scale affect 
the electric infrastructure fundamentally in two different ways: (1) EVs affect the electric 
infrastructure at the point of common coupling, which for most EV charging stations (also 
referred to as EV Supply Equipment) is a connection to the distribution system, either at home, at 
a workplace, or at a public charging station; and (2) EVs at scale affect the bulk power system as 
an aggregated new load.  

The bulk power system consists of electric generators and the high-voltage transmission network 
that delivers the electricity to distribution systems. DOE decided to focus first on the bulk power 
electricity impacts before transitioning to analysis of the distribution systems. Thus, the Phase I 
analysis documented in this report focused on bulk power, while the Phase II analysis will focus 
on the impacts of target future distribution systems.  

Because of a sense of urgency related to performing the analysis and publishing the results, 
PNNL recommended that the study focus on the Western grid (i.e., the Western Electricity 
Coordinating Council [WECC]). The WECC already has a commonly agreed-upon data set for a 
future grid scenario—the WECC 2028. The same is not true for the Eastern Interconnection, and 
assembling such a data set for the Eastern Interconnection would have been too time-consuming 
given the expected timeline for the project. The Electric Reliability Council of Texas (ERCOT) 
does have data sets for a future grid build-out; however, given the short period of performance 
for the Phase I analysis, this PNNL study only focused on the WECC because of its currently 
available data set.  

For this WECC bulk power EV-at-scale impact study, DOE was interested in addressing two 
main questions: 
1. Are there sufficient resources in the U.S. bulk power grid to provide the electricity for 

charging a growing EV fleet? This question addresses system adequacy.  
2. What are the likely operational changes necessary to accommodate a growing EV fleet? This 

question addresses changes in 

 
1 U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a 
non-binding and voluntary government-industry partnership focused on advanced automotive and related energy 
infrastructure technology research and development (R&D). More information is available at 
https://www.energy.gov/eere/vehicles/us-drive 
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• generation mix 
• production cost  
• challenges and benefits of accommodating the new EV loads. 

The analysis attracted the attention of Washington State agencies, particularly that of the 
Departments of Transportation and Commerce. Both departments are interested in better 
understanding some of the potentially limiting electricity supply challenges that will be faced as 
Washington develops new electrification of transportation strategies for the state. Washington 
State requested that the study interpret the implications of the EV-at-scale impact analysis for the 
state. Because no new simulation work needed to be done (Washington State is part of the 
WECC), this request was incorporated into the study scope and the associated implications are 
discussed in this report.  

This EV-at-scale Phase I study is unique in that for the first time a grid impact study was 
performed using projected EV load scenarios that included all three categories of on-road 
transportation: LDVs, MDVs, and HDVs. Many studies conducted, reaching back 10 years, have 
focused on LDVs by hypothesizing EV infrastructure and associated load profiles. This study is 
the first that posits MDV and HDV charging profiles in addition to LDV load assumptions. With 
recent announcements made by Amazon.com Inc. about purchasing 100,000 EV delivery trucks 
from Rivian for expected delivery by 2024,1 it was considered prudent to include this new 
vehicle category in the analysis. Furthermore, because major manufacturers of Class 6–8 trucks 
are currently demonstrating HDV applications, we included heavy-duty long-haul applications as 
well.  

This report summarizes the EV-at-scale Phase I study, starting with all major input assumptions 
and scenario definitions, followed by a comprehensive discussion of the results for the WECC. A 
separate section is devoted to the discussion of the results for Washington State. The WECC bulk 
power analysis is then summarized and conclusions are provided from the perspectives of the 
grid planning community and the EV charging infrastructure sector. The report closes with 
insights about challenges related to addressing the impacts of EVs and/or the grid on distribution 
systems, which will be the subject of the Phase II study.  

Appendices contain supplementary information about the selected MDVs and their 
characterization (Appendix A); the HDV model and algorithm (Appendix B); county-to-
balancing authority mapping for the WECC (Appendix C); 2028 WECC load profiles (Appendix 
D); the regional distribution of unserved energy over various LDV penetration scenarios 
(Appendix E); graphs of the seasonal flows under increasing LDV penetration for the WECC 
paths (Appendix F), and Washington State flowgate impacts (Appendix G).  

 
.

 
1 https://www.theverge.com/2019/9/19/20873947/amazon-electric-delivery-van-rivian-jeff-bezos-order 
 



 

2.1 

2.0 Methodology  

The workflow for the bulk power analysis is shown below in Figure 2.1. It followed a very linear 
process starting with the identification of the EV penetration scenarios. We considered not only 
LDVs, but also MDVs and HDVs, because they are expected to penetrate the market very soon. 
Once the penetration scenarios are defined, which includes hypothesizing the numbers of electric 
LDVs, MDVs, and HDVs on the landscape, the charging profiles need to be estimated. For 
LDVs and MDVs, we assumed that most vehicles would be charged at their home locations. For 
the HDV segment, we posited a long-haul business case, in which an EV truck departs from one 
location and drives across the county, charging at different locations. This required some new 
transportation modeling approaches, which were developed as part of this project. Finally, the 
aggregated future EV loads represented by LDVs, MDVs, and HDVs were added to the 
projected non-vehicular load forecast.  
This completed the data development and preparation for the grid modeling, designated in  

 as a “perform production cost modeling.” The analysis used a production cost model of the 
WECC representing the transmission as a nodal network with generation nodes, where electricity 
is generated and transmitted through the transmission network to the load nodes. Given a certain 
hourly load for each load node for an entire year, the model solves for the least cost generator 
dispatch to meet all loads. The outputs from such a model are generally very large, specifying the 
operational profile of each generator for each hour in the entire system. Resource adequacy 
issues, which are represented as unserved energy at a certain location in the network at a certain 
time, are extracted from the model. The average and marginal costs for generation by regions 
and by months can be generated to gain insights into the operational changes between cases with 
and without EV loads.  

  

 

 

 

 

 

 

 
 
Figure 2.1. Workflow of the bulk power analysis. (Note: The distribution system analysis, 

framed as Phase II activity, is shown here to indicate how consistency between bulk 
power and distribution system analysis can be achieved.) 
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Figure 2.1 also points to the fact that in order to maintain consistent load assumptions between 
the bulk power and the distribution system analyses, the charging load profiles need to be 
mapped appropriately to their respective level of aggregation. The bulk power analysis specifies 
the loads by balancing authority. The distribution analysis requires load data by substation nodes. 
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3.0 Definition of EV Penetration Scenarios 

Assumptions were critical for the outcome of this analysis. This section discusses assumptions 
related to LDVs, MDVs, and HDVs, and identifies their sources. In each case, national adoption 
and mapping of the EV fleets to balancing authorities are addressed. Where no appropriate data 
exist, we used proxy data and provide some rationale explaining the reasoning for their use. 

3.1 Light-Duty Vehicles 

3.1.1 National Adoption 

For this study, we assumed adoption trajectories based on Alexander’s EPRI study (Alexander 
2017). The EPRI study reviewed key EV projections performed by institutions such as DOE, the 
National Renewable Energy Laboratory (NREL), U.S. Energy Information Administration 
(EIA), Natural Resources Defense Council, Navigant Research, and Google.org to establish 
proxies for high, medium, and low EV penetrations. The sources for the literature review can be 
found in the Technical Update by Alexander (2017). Figure 3.1 shows the projection scenarios as 
total national values. i 

 
Figure 3.1. EV sales projections (Source: Alexander 2017). 

While the EPRI study projected EV penetration out to 2050, for the purpose of this EV-at-scale 
study, we used the 2028 values only. The year 2028 was chosen as the study year because it is 
the furthest year out into the future for which data exist that describe a commonly acceptable 
realization of a bulk power grid in the Western United States.  



 

3.2 

The EV fleet sizes (EVs on the road) for 2028 for the three scenarios (low, medium, high) are 
listed in Table 3.1. 

Table 3.1. Fleet size of EV projections by scenarios. 

Scenario 
Fleet Size in No. of 

EVs in millions 
Low 2.3 
Medium 10.8 
High 23.6 

The EPRI study provided a regional EV allocation methodology that was based on several 
factors. First, it factored in the influence of the regulatory requirements enforced in the “Section 
177” states (CA, OR, CN, ME, MD, MA, NJ, NY, RI, VT); that is, states that have adopted the 
California Zero Emission Vehicle program (Clean Air Act 1990). These regulations have 
established a constraint on the manufacturers for minimum sales of EVs. The numbers for 
regional EV sales projections in addition to the recent sales history for EVs and non-EVs were 
used to generate county-specific EV penetration numbers. These county-level projections were in 
turn aggregated to form state-level and—for grid-modeling purposes—balancing authority-
specific projections.  

It should be noted that this analysis only used the high-penetration scenario with a nationwide 
penetration of 23.6 million LDVs in 2028. The low-penetration number appeared to be too 
pessimistic. We omitted the medium penetration scenario because we considered it not to be an 
interesting scenario after we learned the results from the high-penetration case.   

For practical purposes, we refer to the high-penetration LDV number as 24 million, but the true 
number for all calculations remained 23.6 million.  

3.1.2 Mapping LDV EV Fleet to Balancing Authorities 

The end goal of this study is to superimpose the additional load from the charging of EVs on the 
electrical power systems model to assess potential impacts of EVs at scale on the electric grid. 
As explained in further detail later in this report, the electrical model aggregates loads, both EV 
and regular, by county and then into balancing authorities (BAs). BAs are collections of 
generation, load, and transmission assets that are dispersed geographically. The assets within 
each BA are managed by a single entity, the balancing authority, which is responsible for 
maintaining generation-load balance within the area. The electrical model used for this study—
the WECC model—includes representation of power grid assets from the western states of the 
United States. There are a total of 34 BAs in the WECC that vary significantly in terms of the 
geographic area they serve, and the quantity of load and generation they balance (see Figure 3.2). 
For example, Seattle City Light covers an area around the city of Seattle, whereas, the California 
Independent System Operator services a large area covering the majority of the state of 
California. For this study, the goal is to superimpose the additional EV load on existing BA-
specific load available in the electrical model. Toward this end, it was essential to map EV fleet 
projections to the geographic areas covered by the 34 BAs in the WECC (see Figure 3.3). 
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Figure 3.2. Heat map of electric LDV penetration assumptions in the WECC region. 

 
Figure 3.3. Balancing authorities in the WECC region. 

The EV fleet projection data generated by EPRI currently provide the data at the state level. The 
data in this form are not useful because multiple BAs sometimes operate in a single state. For 
example, the state of Arizona has eight BAs operating within its territory. To effectively map the 
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EV fleet charging load to BA load, the fleet data had to be broken into more granular chunks. 
Toward this end, the state-level EV fleet projection data were divided into county-specific data 
within the state. The county-specific LDV registration data for 2019 were used as a reference 
point to identify what percentage of the total number of vehicles in a state was registered in 
every county. This proportion was then extended to the state-specific EV fleet projection 
numbers generated by EPRI for 2028. One shortcoming of this approach is that it assumes all 
counties have the same proportion of EVs and gasoline-powered LDVs across the state. Table 
3.2 shows a sample of county-specific data for the state of Arizona, where the EV fleet size for 
2028 was projected to be 499,538 vehicles.  

Table 3.2. Distribution of the EV fleet projection across Arizona counties for 2028. 

Counties in 
Arizona 

Number of EVs in 
2028 

COCONINO 10,214 
MARICOPA 294,495 
NAVAJO 8,650 
YAVAPAI 19,667 
YUMA 16,839 
GREENLEE 817 
GILA 4,373 
PINAL 25,961 
COCHISE 11,032 
PIMA 64,644 
SANTA CRUZ 6,547 
APACHE 5,314 
GRAHAM 2,772 
LA PAZ 1,957 
MOHAVE 17,930 

The next step in the process involves the aggregation of the data for the above-listed counties 
into the geographic regions represented by BAs. This was performed by visually comparing the 
map of BA service territories with the state county maps. In cases where the BA boundary did 
not align exactly with county boundaries, the county was awarded to the BA that contained most 
of its area. In addition, in cases where the geographic size of the BA was significantly smaller 
than the size of the county, the county was awarded to the larger BA in the vicinity. As 
mentioned earlier, the state of Arizona has eight BAs operating within its territory. Using this 
approach, the EV fleet projection data for Arizona in Table 3.2 were aggregated into the five 
BAs listed in Table 3.3.  

A similar approach was followed for all the states and BAs in the WECC to arrive at the BA-
specific EV fleet projection for 2028 presented in Table 3.4. Note that of the 34 BAs, only 29 
BAs are represented because those remaining were too small to assign to counties. County-to-BA 
mapping for all of WECC can be found in Appendix C. The total number of LDVs in the WECC 
for the 24 million LDV estimation is 9 million, which is about 40% of the national number.  
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Table 3.3. 2028 EV fleet projection by BA in Arizona. 

Counties in Arizona Balancing Authority 
Projected EV Fleet Size 

for 2028 
Coconino 

AZPS 349,865 
Maricopa 
Navajo 
Yavapai 
Yuma 
Greenlee PNM 817 
Gila 

SRP 30,334 
Pinal 
Cochise 

TEPC 82,224 Pima 
Santa Cruz 
Apache 

WALC 27,973 
Graham 
La Paz 
Mohave 
AZPS = Arizona Public Service; PNM = Public Service Company of New Mexico; SRP = 
Salt River Project; TEPC = Tucson Electric Power Company; WALC = Western Area Power 
Administration, Lower Colorado Region. 

Table 3.4. 2028 projected EV by balancing authority. Note: The total for WECC is 9 million 
LDV EVs or about 40% of the national projections of 24 million. 

Balancing 
Authority 

2028 Projected LDV 
EV Fleet Size 

AVA 93,959 
AZPS 349,865 
BANC 265,341 
BPAT 451,510 
CHPD 11,583 
CISO 3,637,413 
DOPD 12,302 
EPE 62,044 

GCPD 14,387 
IID 383,160 

IPCO 45,843 
LDWP 1,409,956 
NEVP 189,025 

NWMT 34,823 
PACE 244,537 
PACW 45,535 
PGE 184,827 
PNM 110,118 
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Balancing 
Authority 

2028 Projected LDV 
EV Fleet Size 

PSCO 413,475 
PSEI 382,376 
SCL 103,813 
SRP 30,334 

TEPC 82,224 
TIDC 41,548 
TPWR 33,224 
WACM 191,738 
WALC 27,973 
WAUW 6,187 
WWA 234 

TOTAL 8,859,354 

3.2 Medium-Duty Vehicles 

3.2.1 National Adoption  

The literature about MDV EV market penetration projection is very thin. We only found two 
recent studies that estimated future truck and bus penetration. The IEA, in its Global EV Outlook 
2019 (IEA 2019), published EV projections for the United States for 2030. We used the 
aggressive growth scenario—“EV30@30” or 30% market share for EVs by 2030. The market 
share definition includes all vehicle classes as the IEA study specifies them: LDV, bus, and 
truck. The 30% market share is very similar in size to the 30% EV sales assumptions made in the 
EPRI study (Alexander 2017) for LDVs for the 2030 projection. For the “truck” vehicle segment, 
the IEA study projects about 2.5 million vehicles worldwide for 2030. There is no further 
description of attributes of the “truck” segment that would lend itself to mapping it into the 
vehicle class definition established by the U.S. Department of Transportation.  

Furthermore, the study does not break out the number of trucks for the United States. It only 
specifies the electric energy requirements for the electric truck segment for the United States. 

Using the IEA assumption for energy conversion and miles traveled for the truck segment, we 
can estimate from the energy requirements the number of trucks projected for 2030, by using the 
following values provided by the IEA:  

• energy conversion for trucks: 0.42–0.3 miles/kWh, used mid-point 0.36 miles/kWh 
• miles traveled for trucks per year: 13,750 to 56,875 miles, used 50,000 miles 
• annual electric energy consumption of 30 TWh. 

We can estimate 216,000 trucks for 2030 as the IEA EV30@30 estimate. We proposed to use 
200,000 as the total U.S. MDV estimate in this study for the 2028 study year. Below, we 
describe how to map the U.S. total numbers into states and BAs 
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3.2.2 Mapping the MDV EV Fleet to Balancing Authorities 

The regional sharing of the national total number of trucks is predicated on the assumption of the 
use-case of an electric truck. We assumed that the near-term application for an MDV truck 
would be a delivery service similar to that of a United Parcel Service or Federal Express business 
model. We assumed that delivery services would first be adopted in metropolitan areas that 
feature a lot of stop-and-go driving rather than in rural areas that feature higher average travel 
velocities. An electric drive vehicle may be more competitive than an internal combustion engine 
vehicle under stop-and-go and low-speed travel conditions, particularly in cities and jurisdictions 
where clean air regulations (non-attainment zones) may drive zero-emission vehicle policies.  

Because of the above rationale, we developed a sharing algorithm based on the populations of 
cities. U.S. cities above 100,000 population were selected; 313 cities met this criterion. The total 
number of electric MDVs was then applied based on a proportional percentage of the population 
of the 313 cities. Figure 3.4 shows the number of metro areas by states in the WECC. There are 
123 metro areas in the WECC. The total number of electric MDVs for the WECC are 70,000 or 
about 35% of the assumed national electric MDV fleet of 200,000. 

 
Figure 3.4. Number of metro areas by states in the WECC. 

The locations of the metro areas were then mapped into the BAs and the number of electric 
MDVs were added up by BA.  
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3.3 Heavy-Duty Vehicles 

3.3.1 National Adoption 

For the HDV segment, we exclusively limited the EV projections to the long-haul freight 
application. We applied an abbreviated Delphi method by interviewing truck experts from 
PACCAR Inc. and Tesla, Inc. to elicit reasonable total EV fleet numbers for Class 8 long-haul 
trucks. Based on information derived from the conversations, we proposed an optimistic number 
of 150,000 electric HDVs for the 2028 study year.  

3.3.2 Mapping the HDV EV Fleet to Balancing Authorities 

The mapping of HDV electric energy consumption was done differently than the mapping of 
LDV and MDV electric energy consumption. Unlike LDVs and MDVs, HDVs travel cross-
country and do not return back to their “home” station every night. Thus, the location of charging 
changes all the time. We applied a simplified transportation model that models an HDV fleet and 
records when and where HDV vehicles are charging. More detail about the simplified HDV 
transportation model is provided in Section 4.3.  

We report the charging patterns by charging stations. The charging stations for the simplified 
transportation model are shown in Figure 3.5 below. Additional details about the charging station 
locations and their real-world relevance are provided in Appendix B. The energy consumption 
from each charging station is then directly mapped to the BAs.  

There are a total of 271 HDV charging stations nationally and 94 in the WECC. 

 
Figure 3.5. Locations of the HDV model charging stations along a simplified interstate network 

and their corresponding BA boundaries mapped against the U.S. map for better 
visualization.  
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4.0 Developing Charging Profiles  

4.1 LDV Profile for 2028  

The LDV load profile was generated by NREL using the electric vehicle infrastructure projection 
(EVI-Pro) tool, a bottom-up model developed through a collaboration between NREL and the 
California Energy Commission (CEC; Wood et al. 2017, 2018; Bedir et al. 2018). EVI-Pro 
projects EV charging profiles at different locations for LDVs based on household travel data and 
assuming that future EVs will be driven in a manner consistent with present-day gasoline-
powered vehicles. Consumers were assumed to prefer to perform the majority of charging at 
their homes or workplace locations, depending on the scenario. EVI-Pro then estimates charging 
requirements at public Level 2 (L2) and corridor/community direct-current fast charger (DCFC) 
stations as necessary. EVI-Pro uses detailed data about personal vehicle travel patterns, EV 
attributes, and charging infrastructure characteristics that influence the energy needs and 
charging profiles. Moreover, EVI-Pro considers energy requirements for heating and cooling the 
vehicle cabin, leading to different charging needs in different climate zones. It simulates 
charging profiles for an EV fleet for weekdays and weekends. The analysis included the 
following inputs: 

• EV fleet composition in different scenarios includes different shares of the following: 
– plug-in hybrid electric vehicle 20 (PHEV20) with a nominal electric driving range of 20 

miles 
– PHEV50 with a nominal electric driving range of 50 miles 
– battery electric vehicle 50 (BEV250) with a nominal electric driving range of 250 miles. 

• Charging infrastructure characteristics: 
– Home Level 1 (L1) charging station with a maximum charge rate of 1.4 kW (120V, 12A) 
– Home L2 charging station with a maximal charge rate of 9.6 kW (240V, 40A) 
– Work L2 charging station with a maximal charge rate of 6.2 kW (208V, 30A) 
– Public L2 charging station with a maximal charge rate of 6.2 kW (208V, 30A) 
– Public DCFC with a maximal charge rate of 150 kW. 

• Charging strategy: 
– No delay when arriving at the charging station (i.e., each vehicle starts charging as soon 

as it is plugged in, and remains plugged in until it is fully charged or taken on another 
trip). 

– The maximum delay when arriving at the charging station such that each EV is fully 
charged when unplugged to start the next trip (home and workplace stations only). 

The following charging strategies or charging scenarios were considered, including no delay or 
maximum delay but no smart charging strategy based on electricity supply-side considerations 
(these scenarios provide bounds for the EV charging flexibility, but not an optimized charging 
strategy): 

1. Reference case: “home dominant, low power charging, no delay” 
a. Vehicles are assumed to prioritize home charging. 
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b. Home charging rates are relatively low (mix of L1, L2). 
c. Charging begins upon arrival at the destination. 

2. Scenario 1: “home dominant, high power charging, no delay” 
a. Vehicles are assumed to prioritize home charging. 

b. Home charging rates are relatively high (all L2). 
c. Charging begins upon arrival at the destination. 

3. Scenario 2: “home dominant, high power charging, max delay” 
a. Vehicles are assumed to prioritize home charging. 

b. Home charging rates are relatively high (all L2). 
c. Charging at home and the workplace is delayed as much as possible. 

4. Scenario 3: “work dominant, low power charging, no delay” 
a. All vehicles making trips to a workplace are assumed to have access to and prioritize 

charging at a workplace charger. 
b. Home and the workplace charging rates are relatively low (mix of L1, L2, DC). 

c. Charging begins upon arrival at the destination. 
5. Scenario 4: “work dominant, low power charging, max delay” 

a. All vehicles making trips to a workplace are assumed to have access to and prioritize 
charging at a workplace charger. 

b. Home and workplace charging rates are relatively low (mix of L1, L2, DC). 
c. Charging at home and the workplace is delayed as much as possible. 

Scenario definitions are provided in Table 4.1. 

Table 4.1. Scenario definitions. 

Scenarios HLND HHND HHWD WLND WLWN 
EV Fleet 
Composition1 

PHEV20 5.1% 
PHEV50 25.6% 
BEV250 69.3% 
Total 100% 

Home Charging L1 32% 0% 0% 24% 24% 
L2 43% 91% 91% 31% 31% 

Work Charging L1 1 0% 0% 10% 10% 
L2 3 0% 0% 21 21 
DC1 5% 1% 1% 3% 3% 
Public L2 17% 7% 7% 12% 12% 

 
1 Fleet composition stems from EPRI (Alexander, 2017) 
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Scenarios HLND HHND HHWD WLND WLWN 
Charging strategy Max delay 0% 0% 100% 0% 100% 
HHND = Home High power No Delay; HHWD = Home High power With Delay; HLND = Home Low power No Delay; 
WLND = Work Low power No Delay; WLWD=Work Low power With Delay. 

The charging profiles are shown in Figure 4.1 for the charging scenarios for an EV fleet of 1000 
vehicles. The ambient air condition is 25°C as the base temperature.  

 
Figure 4.1. Aggregate EV charging profiles for LDVs at the base temperature (25°C). 

As modeled in EVI-Pro, the EV charging load changes in different climate zones because of the 
different ambient temperatures, as shown in Figure 4.2. The differences in EV energy use 
capture the additional cooling and heating energy requirements at different ambient 
temperatures. For extreme hot and cold air temperature conditions, the peak demand (kW) can be 
increased between 30%–40% for the reference scenario with a similar proportional increase in 
energy increase (kWh), compared to reference temperature of 25°C. It should be noted that 
particularly under hot conditions, the additional 40% of peak demand increase places a 
significant burden on the grid because other building loads are likely to peak as well because of 
intense air-conditioning use.  

PNNL decided to use the worst-case temperature scenario, in which all of the zones for the 
electric system modeling are assumed to be modeled under the hottest conditions (40°C). This 
assumption leads to over-estimation of the likely energy requirements.  
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Figure 4.2. Ambient temperature dependency representing the additional cooling and heating 

energy requirements. 

4.2 MDV Modeling for 2028 Charging Profile 

MDV modeling tools for estimating the potential charging profile for EVs in this class of 
vehicles are lacking. Thus, we established a very high-level model that is parameterized to 
provide some indication of how future charging profiles may look. It is predicated on vehicle 
Classes 4 and 6 (Figure 4.3) according to the Federal Highway Administration (FHWA 2013). 
The vehicle class is relevant for the assumed average energy requirements for a vehicle of this 
class to drive 1 mile (kWh/mile). The use of an MDV modeled in this project resembles a 
delivery business operating a 1-shift business where drivers would start in the morning from a 
common truck yard with a fully charged electric truck. The delivery routes are of varying 
distances. Each driver returns to the truck yard after completing the delivery route. Charging is 
assumed to occur at the truck yard. 
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Figure 4.3. MDV classes (FHWA 2013). 

4.2.1 Modeling Approach 

The delivery route distances were assumed to align with NREL’s Fleet DNA Project Data Set 
(NREL 2019). Furthermore, each vehicle was assumed to start to charge to its full capacity at the 
end of the day’s trip. To obtain an aggregate average daily load profile of the above fleet of 
electric delivery trucks, the following set of parameterized assumptions was specified: 
1. Trip start time for first trip of the day: Trip start time is drawn from a normal distribution 

with a mean of 7:00 AM and a standard deviation of 0.5 hours. The assumption is based on 
U.S. Census Bureau data (U.S. Census Bureau 2016). 

2. Trip length: Trip length is modeled according to NREL’s Fleet DNA Project Data set 
(NREL 2019). The trip lengths are represented as a normal distribution with a mean of 110 
miles (177 km) and a standard deviation of 15 miles (24.1 km). The trip length is capped at 
130 miles (209.2 km) in order to stay within an arbitrarily imposed battery size limit of 200 
kWh, which assumed a fuel efficiency of 1.44 kWh/mi (0.89 kWh/km). 

3. Charging rates: Three charging technologies are assumed to be available at the truck yard 
with charging rates of 50, 150, and 300 kW. The charging rates are randomly assigned to 
trucks and trips assuming that all trucks could accept up to 300 kW of charging rates. 

4. Battery size: Battery sizes are randomly chosen from a range of discrete values of 80, 90, 
160, and 200 kWh. The values are aligned with original equipment manufacturer (OEM) 
announcement of electric trucks by Ford, eCanter – Daimler, Chanje (see Appendix A.1). 

5. Speed: The speed assumptions are drawn from NREL’s Fleet DNA Project Data Set for the 
delivery vans. The speed-trip length relationship corresponds to the length of trips described 
above (NREL 2019).  

6. Number of stops: The average number of stops, adopted from NREL’s Fleet DNA Project 
Data set for delivery vans, is assumed to be 130. The length of average delivery stops is 
assumed to be 53 seconds and is adapted from NREL’s data set (NREL 2019).  
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7. Additional trip generation assumptions:  
a. Each trip starts with 100% state of charge (SoC).  

b. Each trip ends before 20% SoC. It is assumed that the driver never fully depletes the 
battery to the allowable 20% SoC before arriving at the home truck yard. There will be 
no opportunity charging somewhere outside the yard. 

8. Charging strategy: This project assumes that because of the relatively high charging rates 
and the number of EV trucks that are charged simultaneously, that all of the charging will be 
performed during off-work hours, which is after drivers return from their delivery trips and 
not before 6 PM. We modeled strict night charging with the onset of charging not before 6 
PM with a delay that assured that the vehicle would be fully charged by the estimated 
morning start of the next day.  

The end-of-the-day SoC of each truck was computed given the assumptions above. Ten thousand 
trips were generated with different vehicle battery sizes and an assumed fixed efficiency of 1.44 
kWh/mile, resulting in aggregated daily charging load profiles for the MDV segment.  

4.2.2 MDV Load Shape 

The load shape in Figure 4.4 was obtained by first obtaining the normalized load shape from the 
10,000 randomly generated trips and scaling it by the daily energy requirement of 1000 MDVs.  

 
Figure 4.4. Average daily load shape to charge 1000 MDVs with night charging, such that 

vehicles will be charged by the departure time the next morning. Identical to the 
LDV maximum delay charging strategy 
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4.2.3 Exploration of Sensitivities of Assumptions 

To explore the sensitivities of some arbitrarily chosen parameters to the overall results, we 
performed a sensitivity analysis. The following sensitivity cases were defined:   

• Reference case with parameters described above 
• Case-1: Low charging rate with charging rates of 22–50 kW 
• Case-2: High charging rate with charging rates of 300 kW 
• Case-3: Narrow spread of start time (mean: 7 AM, standard deviation: 0.1 h) 
• Case-4: Wide-spread start time (mean: 7 AM, standard deviation: 1.5 h). 

Figure 4.5 shows the influence of varying key parameters on the daily charging profile. By and 
large, the charging profile does not vary significantly, because it is very constrained by the few 
night hours (6 PM to 7 AM the next day). 

 
Figure 4.5. Sensitivities to parameters and average load shape to charge 1000 MDVs using 

evening, random delayed charging. 

4.3 HDV Modeling for 2028 Charging Profile 

The HDV segment for this study was represented by Class 8 long-haul trucks and their use cases 
as they transport goods across the nation. A transportation model was developed to gain a better 
understanding of the potential charging profiles that may emerge as electric HDVs drive long-
distance routes throughout the U.S. interstate highway network.  

The simulation used the U.S. Department of Transportation’s (DOT’s) data about HDVs derived 
from the Bureau of Transportation Statistics (BTS 2017), and driving rules mandated by the 
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Federal Motor Carrier Safety Administration (FMCSA 2013). Together, these data were used to 
approximate a simplified U.S. highway network connecting U.S. cities for simulating driving 
routes with considerations of recharging requirements because of depleted batteries. In addition, 
the DOT mandatory resting periods were implemented in the simulations.  

Figure 4.6 represents a simplified U.S. interstate network connecting 56 cities with charging 
stations along depicted routes. Cities are represented by squares, and every city includes 
charging stations. The map includes a total of 271 charging stations, represented by circles, and 
they were placed along roadways no more than 100 miles away from other charging stations. 
Each station was assumed to have slow (50 kW), medium (300 kW), and fast (2000 kW) speed 
charging ports available. The choice of the number of cities was arbitrary, but the locations and 
connectivity among the cities were modeled after the U.S. interstate system. The charging 
stations were assumed to have an unlimited supply of charging ports at discrete charging rates of 
50, 300, and 2000 kW. We recognize that 2000 kW charging stations do not currently exist, but 
we assumed that by 2028 extreme fast charging may become available.  

 
Figure 4.6. Simplified U.S. map and highway network used to simulate HDV truck routes and 

charging profiles along roadside stations. The 271 charging stations are represented 
by small circles, and the 56 cities are represented by blue squares. 

We performed a simulation that includes an arbitrary number of 35,000 trucks driven over a 
period of one week with distances that represent that DOT statistics. The simulation randomly 
chose routes with destinations determined using BTS statistics, and gave preference to those 
cities through which a high tonnage of freight was being imported and exported and that had a 
high population level in the city’s metro area. Trucks had a uniform battery size and energy 
conversion (kWh per mile) that determined driving ranges in the simulation. Charging profiles 
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from different stations were tracked throughout the simulations. Doing so allowed for the 
approximation of charging needs for electric HDV trucks and their contribution to power 
requirements that need to be supplied from nearby grid stations. Total charging profiles could be 
scaled up to represent a larger number of trucks on the road. 

Because no publicly available technical specifications exist for Class 8 trucks, we estimated the 
battery size and vehicle efficiency on the conservative side from the grid perspective, meaning 
that the energy efficiency assumed would most likely represent a low value. Furthermore, the 
battery size was assumed to be on the large side, which would lead to fewer charging events with 
high electric energy transfers from the grid to the battery compared to a smaller battery that 
would require more frequent charging. The trucks used in this simulation were each assumed to 
have a 1500 kWh battery capacity. Trucks were assumed to travel at an average speed of 50 
mph. The truck performances were uniformly set to 3 kWh/mile. 

The simulation results accumulated across each time zone are displayed in Figure 4.7, in which 
the results for the total megawatts used in each time zone are presented. These plots account for 
the accumulated profiles from all three charging speeds made available in the HDV simulation. 
These plots indicate that the total megawatt usage load peaks are shared during the noon hours 
when most trucks must recharge because of a depleted battery after the morning driving. In 
addition, it is worth noting that all time zones shared similar load peaks, reflecting the preference 
for fast charging ports for mid-day charging in the late morning and early afternoon, medium 
speed charging ports mostly for use in the early evenings, and slow charging ports used for over-
night charging. These emergent results are generated from dependencies on route distances from 
BTS freight transportation data and driver rest requirements mandated by FMCSA regulations. 
Aside from starting all simulations at 6:00 AM local time, no other day-night cycle patterns were 
enforced, thus daytime and over-night charging behavior is emergent only from model 
assumptions. 



 

4.10 

 
Figure 4.7. Charging profiles of simulated HDVs from stations across each time zone. The 

vertical axis represents the total megawatts used when accounting for all speeds of 
charging ports. 

In the HDV transportation model presented here, route destinations are partially based on 
artificial yet reasonable routes dependent on the tonnage of goods moved into and out of gateway 
cities. Because this does not allow for many of the other major U.S. cities in the model to act as 
route destinations, the model relied on population levels to mitigate this shortcoming. Additional 
data about route information and driver timetables would allow for more realistic conditions for 
how drivers move trucks around the highway network. Doing so would require using a more 
accurate map, which would also move the model toward an overall more realistic representation 
of real-world transportation trips.  

Major U.S. cities served as starting and destination points for driving routes, and were sampled 
as such using probabilities dependent on both the tonnage of import and export freight through 
gateway cities and the population of the city’s metro area. Smaller cities did not act as a starting 
or destination city, rather they were included as nodes in the roadmap network where major 
interstate highway interchanges are located. 

Truck trips were simulated over the entire distances. In several cases, trips took several days to 
complete. Charging profiles were then estimated over a week-long simulation and averaged for a 
24-hour period for each charging station. Finally, charging contributions from each charging 
station were then mapped into the BAs, as illustrated in Figure 3.5. 
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4.4 Combining LDV, MDV, and HDV Profiles to Establish EV Loads 
for the 2028 WECC Grid  

For the ensuing grid simulation, the individual EV class-specific charging profiles for each BA 
needed to be combined to arrive at an aggregated hourly EV load profile for a 2028 penetration 
scenario that needed to be added to the existing projected electric load from residential, 
commercial, and industrial customers.  

Figure 4.8 through Figure 4.11 indicate the aggregate stacked charging profiles for Scenario 1 
“home dominant, high power charging, no delay,” which applies only to the electric LDV fleet. 
This scenario was considered the most likely LDV charging scenario under which the majority of 
the charging load occurring in the evening hours.  

 
Figure 4.8. Stacked 24-hour charging profile for the California Independent System Operator 

balancing authority indicating the number of vehicles and charging events by 
vehicle class. 
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Figure 4.9. Stacked 24-hour charging profile for the Los Angeles Department of Water and 

Power balancing authority indicating the number of vehicles and charging events by 
vehicle class. 

 
Figure 4.10. Stacked 24-hour charging profile for the Seattle City Light balancing authority 

indicating the number of vehicles and charging events by vehicle class. 

 

LDWP LDV MDV HDV
No of vehicles (LDV, MDV) 
and charging events (HDV)

1,409,956     14,801   

% of WECC vehicles 14% 21%

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

kW

LDWP

LDV MDV HDV

SCL LDV MDV HDV
No of vehicles (LDV, MDV) and 
charging events (HDV)

259,532    1,569      

% of WECC vehicles 3% 2%

0

100,000

200,000

300,000

400,000

500,000

600,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

kW

SCL

LDV MDV HDV



 

4.13 

 
Figure 4.11. Stacked 24-hour charging profile for the Nevada Power balancing authority 

indicating the number of vehicles and charging events by vehicle class. 

As expected with the selected scenario for these profiles, that is, home-focused charging at high 
power with no time delay, the overall charging profiles, and specifically, the LDV profiles, have 
peak energy requirements during evening hours when typical EV owners are home and start 
charging their vehicles as soon as they get home. Generally speaking, HDV charging occurs 
throughout the day in all locations, and MDV charging occurs in the mornings and the evenings. 
See the previous sections for additional details about the assumptions used for each type of 
profile. 
Figure 4.12 below shows the aggregate stacked charging profile for Seattle City Light (SCL) for 
three different charging scenarios. The SCL profiles are generally representative of other regions. 
Again, as expected with the different scenarios, the charging profiles vary accordingly by hour. 
The largest energy requirements stem from LDV charging and thus the impacts in terms of 
setting a peak are driven by the LDV load shape.  
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(a) 

 
(b) 

 
(c) 

 
Figure 4.12. Aggregate stacked charging profile for Seattle City Light: (a) Home High power 

No Delay; (b) Home High power With Delay; (c) Work Low power No Delay. 
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5.0 Modeling the Western Grid for a 2028 Scenario 

The United States is made up of three interconnections: the Western Interconnection (WECC-
U.S.), Eastern Interconnection (EI-U.S.), and Electric Reliability Council of Texas (ERCOT) 
Interconnection. These interconnections and their states of installed capacity and load as of 2019 
are show in Figure 5.1.  

 
Figure 5.1. Overview of the U.S. interconnections and 2019 installed capacity and load (NERC, 

AEO 2019). 

As mentioned before, this analysis focuses on the Western grid because of the readily available 
data that represent a future grid scenario for the year 2028. Data for the other U.S. 
interconnections are more difficult to compile and use. Because of the short time frame allowed 
for completion of this study, the analysis was limited to the WECC, and some discussion of how 
the WECC results may apply to the rest of the nation’s power grid.  

The following section provides an overview of the grid-modeling tool—GridView software—
used to perform the detailed EV-at-scale analysis for a 2028 scenario. 

5.1 GridView Software 

PNNL used ASEA Brown Boveri’s (ABB’s) GridView software to analyze bulk grid impacts in 
WECC (GridView). The choice of GridView was predicated on the WECC Transmission 
Expansion Planning Policy Committee’s (TEPPC’s) earlier decision to use GridView as an 
analysis tool. Thus, PNNL could use all of the data sets developed by WECC for a 2028 grid 
scenario.  

GridView integrates engineering and economic analysis of the electric power grid to simulate 
security-constrained unit commitment and economic dispatch of electric generators in large-scale 
transmission networks. It is a tool that is widely used to study the utilization of generators and 
transmission lines, production cost of generation, locational marginal pricing (LMP), 
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transmission congestion, and much more. An overview of GridView components and functions 
incorporated into the tool is provided in Figure 5.2.  

 
Figure 5.2. Overview of ABB's GridView market simulation software.1 

Within WECC’s GridView model, expected loads, new power plants, and transmission 
expansions 10 years into the future are compiled by members of WECC using a consensus 
mechanism for defining a plausible grid scenario that includes the current grid plus all capacity 
retirements and capacity additions. WECC establishes and maintains an Anchor Data Set (ADS) 
for system planning that is the best representation of the Western grid’s evolution over a 10-year 
planning horizon that is based on member consensus. The ADS Data Development and 
Validation Manual describes in more detail this data collection process and the production cost 
modeling practices (WECC 2018).  

5.2 The Future Grid for 2028  

The GridView model used the 2028 ADS V2.0 production cost model (PCM) base case made 
available in July 2019. This case was the best available projection of new generation and 
transmission assets and generation retirements from the grid planning community within WECC 
at the time. Henceforth, we refer to the GridView model with the 2028 ADS V2.0 PCM base 
case data set as the WECC 2028 TEPPC model. PNNL largely used this case “as is” and did not 
make any changes to resources, transmission, or topology contained within the case, except for 
adding new EV load by BA to the existing load assumptions. EV loads were defined as hourly 
loads for a period of 1 day. The daily EV load pattern was then repeated day by day.  

 

1 ABB GridView is a production cost simulation tool that is available at https://new.abb.com/enterprise-
software/energy-portfolio-management/market-analysis/gridview.  
 



 

5.3 

It is worth noting that the TEPPC assumed a significant portion of new generation would be 
brought online in the next 10 years (until 2028). WECC projected additional capacity in 
California, Arizona, Colorado, Nevada, and Utah. This new capacity is predominantly forecasted 
to be solar photovoltaic (PV) and wind. Natural gas technologies, including combined cycle 
(CC) and combustion turbine (CT) facilities, are also expected to add capacity over the next 10 
years. Figure 5.3 and Figure 5.4 show installed capacity by type and state currently in the WECC 
2028 TEPPC case, along with capacity additions expected to come online by 2028. PNNL did 
not add any additional generation capacity to the WECC model. 

 
Figure 5.3. Installed capacity at the start of 2018 reflected in the WECC 2028 ADS V2.0 

GridView case. 

 
Figure 5.4. Capacity additions between 2018 and 2028 reflected in the WECC 2028 ADS V2.0 

GridView case. 

Transmission representation in the WECC 2028 TEPPC case provides the best available 
projections of future topology and transmission capacity. It incorporates the addition of 
transmission projects in the 10-year planning horizon made publicly available to the grid 
planning community. Because future grid topology path ratings may not yet be established, the 
WECC Path Rating Catalog (WECC 2018) is used as a starting point for assigning operating 
path ratings in the region and the ratings are modified as needed for forecasted transmission 
expansion. These ratings are already reflected in WECC’s 2028 TEPPC data set. Figure 5.5 
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illustrates the major transmission paths in the WECC region as of a 2006 DOE study (DOE 
2006). For the most part, these paths are still relevant and well reflected in the WECC 2028 PCM 
case. PNNL did not add any additional transmission capacity to the WECC PCM. 

 
Figure 5.5. WECC transmission paths as of 2006 (DOE 2006). 

In the WECC model, all loads are modeled as hourly loads for the entire year by BA. The load 
data are based on annual Load and Resource (L&R) data submittals that contain monthly energy 
and peak forecasts for 1 to 10 years into the future. These data are then broken down from 
monthly to hourly data by applying historical the Federal Energy Regulatory Commission Form 
714 (FERC 2007) hourly load shape. The WECC 2028 TEPPC model currently uses a 2008 
historical load shape to create the 2028 hourly load profile by applying the monthly peak load 
and total energy reported in the L&R data. The historical 2008 load shape represents an average 
load year with average weather conditions WECC-wide. PNNL changed each BA’s load to 
reflect the additional EV loading.  
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PNNL created additional 2028 load scenarios for various EV charging and penetration scenarios 
as discussed in Section 4.4. The same EV load profile was applied to every day of the year, with 
no distinction between weekday and weekend charging behaviors. An illustration comparing the 
WECC base load with the incremental EV load for one charging and penetration scenario is 
shown in Figure 5.6. Additional graphs of EV load additions for other charging scenarios can be 
found in Appendix D. 

 
Figure 5.6. Illustration of WECC base load and added EV load for “Home High power No 

Delay charging.” (The left frame represents summer load, the right frame winter 
load.) 

Note that in the original WECC 2028 TEPPC load scenario definition, only California’s WECC 
members added EV loads to their load projections. None of the other members considered any 
appreciable load contribution to their respective loads in their 2028 projections. To avoid any 
double counting, PNNL removed the implicit EV load requirements as determined by California 
WECC members. PNNL consulted with the CEC to understand the specific underlying 
assumptions about the implicit EV loads.  
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6.0 Discussion of Results  

This section discusses the results of grid simulations conducted for the various EV charging and 
penetration scenarios described in previous sections. The analysis was performed under normal 
system conditions, without additional system contingencies, or changes in system topology.  

Using WECC’s 2028 data set, PNNL performed 1-year-long grid simulations on the following grid 
scenarios: 

• Base Case (no additional EV) 
• 24 Million LDV Nationwide with Charging Scenario Home High power No Delay (HHND) 

(Figure 5.6) 
• 24 Million LDV Nationwide with Charging Scenario Home High power With Delay (HHWD) 
• 24 Million LDV Nationwide  with Charging Scenario Home Low power No Delay (HLND) 
• 24 Million LDV Nationwide with Charging Scenario Home Low power With Delay (HLWD) 
• 24 Million LDV Nationwide with Charging Scenario Work Low power No Delay (WLND) 
• 24 Million LDV Nationwide with Charging Scenario Work Low power With Delay (WLWD) 
• 30 Million LDV Nationwide with Charging Scenario HHND 
• 37 Million LDV Nationwide with Charging Scenario HHND 
• 44 Million LDV Nationwide with Charging Scenario HHND 
• 65 Million LDV Nationwide with Charging Scenario HHND. 

The following sections describe the findings regarding EV resource adequacy in WECC, impacts 
of managed charging on the EV resource adequacy, as well as considerations of grid operations 
under high EV load assumptions. 

6.1 EV Resource Adequacy in the WECC 

Study results indicate that the generation and transmission resources reflected in the WECC 2028 
case meet the needs of electric loads under the 24 million LDV nationwide penetration scenario 
under normal grid conditions. This means that with the best available information for a 2028 
scenario, the grid would have sufficient resources to meet the additional EV loads under the high-
penetration scenario for the most challenging electric LDV load assumption of evening charging 
(HHND). We investigated at what electric LDV penetration one would expect the onset of 
reliability issues. The results indicated that the first issues would occur between 30 and 37 million 
EVs, at which point load could not be reliably met. We call this limit the EV resource adequacy of 
the bulk power system in the WECC. The resource adequacy was associated with the assumption 
that the EVs are charged at home in the evening using the HHND charging profile. Figure 6.1 
indicates the EV resource adequacy by representing a commonly used metric of “unserved energy” 
as a criterion for the lack of system adequacy that indicates insufficient resources to meet load. As 
can be seen in the figure, the unserved energy remains at about zero percent for penetration up to 
about 30 million LDVs. At the 37 million level, the unserved energy becomes non-zero.  

Note that these outcomes are predicated on normal grid conditions, absent of any grid 
contingencies, such as generator or transmission outages, extreme weather scenarios, extreme high 
loads, or fire conditions that require deactivation of major transmission lines. For the purpose of 
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this study, normal grid conditions are defensible assumptions to explore potential system adequacy 
issues. Contingency analyses are usually done for interconnection requests of large industrial loads 
or new generation or transmission assets. They are very time- and resource-intensive.  

 
Figure 6.1. Percent of unserved energy relative to load in WECC, showing the onset on resource 

inadequacy. Note that the LDV penetration numbers on the x-axis are the national 
penetration numbers. The WECC penetration levels must be scaled back by a factor 
of 0.4 because the WECC is projected to operate about 40% of the national electric 
LDV fleet. 

6.1.1 Impact of Managed Charging on EV Resource Adequacy  

The EV resource adequacy of 30 million EVs in a 2028 WECC grid is contingent upon the 
unmanaged charging assumptions. The capability was set by the HHND profile that demands 
additional load in the evening hours, which was the most limiting case. We considered unmanaged 
charging as an aggregated charging behavior of the entire LDV fleet, in which there are neither 
price incentives to schedule the charging process nor any incentives to charge at a certain location, 
for instance at work or at a place of shopping.    

It is of interest to explore how much of the EV resource adequacy could be extended if one applied 
“smart charging” strategies. With support of ABB Consulting, we explored a smart charging 
strategy that would be the functional equivalent of price-based charging, i.e., a charging at minimal 
cost to EV owners. Under such a strategy, EV charging would be moved day by day and would be 
regionally different, as would be the regional locational marginal cost of electricity (Zhu et al. 
2020). Under such a premise, the EV resource adequacy could be extended by a factor of 2 or 
more, because the additional load would now be moved to low load conditions away from the 
system peak (as seen in Figure 5.6). With managed charging, the EV resource adequacy could be 
pushed from 30 million electric LDVs to 65 million, as can be seen in Figure 6.2. 
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Figure 6.2. Illustration of unmanaged charging (red) and managed charging (blue) when 

comparing unserved energy under increasing LDV penetration scenarios. Note that 
the LDV penetration numbers on the x-axis are the national penetration numbers. The 
WECC numbers must be scaled back by a factor of 0.4 because the WECC is 
projected to operate 40% of the national LDV EV fleet. 

6.1.2 Regional Perspective of EV Resource Adequacy: Where Do Supply Limits 
Occur First? 

The limiting factor that establishes the EV resource adequacy varies across the WECC footprint. A 
regional evaluation of unserved energy indicates that California is the largest load area in which 
the resource inadequacy issue would be manifested, followed by Arizona and Washington States. 
California and Washington States are the load centers that have the largest EV penetrations. 
Arizona would be affected most likely because of that state’s close coupling to the California 
electricity market and thus also would be affected as supply deficiencies emerge. Figure 6.3 shows 
the regional distribution of unserved energy during conditions of increasing LDV penetration. A 
detailed breakdown of unserved energy by BA can be found in Error! Reference source not 
found..  

 
Figure 6.3. Regional distribution of unserved energy during increasing LDV penetration. 
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6.1.3 What Causes the Limitation of EV Resource Adequacy: Lack of Generation 
or Transmission?  

Unserved energy was the criterion used for lack of system adequacy. System inadequacy means 
too much load for the generation and transmission capability during a certain hour at a certain 
location in the network. This would be caused by (1) insufficient generation capability in the 
WECC to meet the load, or (2) sufficient generation but not at the right location. In this case, the 
transmission system would be limited in its ability to deliver electricity to a particular load 
location. We investigated whether (1) or (2) would be the limiting factor.  

To answer this question, we used a crucial grid metric—reserve margin—to indicate the percent of 
how much more generation capacity in a BA or in the entire WECC exists above the system load 
peak. The NERC planning reserve margin is 15% (WECC 2007), which would allow the system to 
respond to contingencies such as unplanned outages of a generator or a transmission line. Figure 
6.4 shows the reserve margins for the entire WECC footprint for the different load profiles.  

All charging scenarios indicate that reserve margins are maintained higher than 15% at the high 
penetration of 24 million LDVs nationwide. Unmanaged charging (HHND and HLND) shows 
significant decreases in reserve margin compared to the base case (no EV load), caused by 
coincidence of unmanaged peak EV load with WECC’s evening peak. More generation capacity, 
previously unused, is now being used to serve incremental EV load. 

 
Figure 6.4. WECC-wide reserve margin impact under varying LDV charging scenarios on a peak 

load day at the peak hour. The red line indicates NERC’s 15% reference reserve 
margin. Note that the WECC reference reserve margin varies by region between 14% 
and 16%. 

Figure 6.5 shows the WECC-wide reserve margin for the HHND charging profile with increasing 
penetration. Recall from Figure 6.1, that a lack of system adequacy is emerging between 30 and 37 
million LDVs. However, from a total WECC-wide perspective, sufficient generation capacity is 
installed, but not at the right locations to serve all EVs. We see that smart charging pushes the 
system adequacy threshold to EV penetration of 65 million EVs (Figure 6.2), because there is 
sufficient generation capacity available, but a different charging strategy is required to use the load 
valley. This indicates that the limiting factor for unmanaged charging is not the generation 
capabilities but the transmission system. 
 



 

6.5 

 
Figure 6.5. WECC-wide reserve margin impact under increasing nationwide LDV penetration 

with unmanaged EV load using the HHND charging scenario. Note: The reserve 
margins reflected in Figure 6.4 and Figure 6.5 do not reflect margins maintained 
under unforeseen increases in demand caused by extreme weather conditions and 
unexpected outages of existing capacity. 

6.1.4 Locational Aspect of Transmission Congestions 

To evaluate the locational aspects of the transmission bottlenecks, we explored the seasonal LMPs 
and WECC path flows as metrics of congestion. We observed increased transmission congestion 
during evening peak hours (HHND charging scenario).  

Transmission Path 15 and Path 26 (see Figure 5.5) flows, providing electric power from northern 
to southern California, indicate congestion during the evening. This is shown in Figure 6.6. 
Corresponding spikes in LMP constraining flows on these paths during coincidental peak hours 
indicate that flows are reaching their path rating limits.  

More generally, we observed that transmission limitations along the western U.S. coastline exist at 
high EV penetrations for unmanaged charging during the evening hours (HHND).  
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Figure 6.6. WECC Path 15 and Path 25 showing congestion during peak hours under conditions 

of unmanaged LDV charging and increasing LDV penetration. 

6.1.5 Summary of Resource Adequacy Limitations 

PNNL’s study results indicate that with unmanaged charging the WECC paths listed below would 
experience transmission congestion during evening peak hours under increasing levels of EV 
penetration beyond 30 million LDVs nationwide. Paths that experience congestion starting at 24 
million LDVs nationwide during summer evening peak hours are marked with an asterisk (*). 
Detailed plots showing seasonal flows under increasing LDV penetration for the WECC paths 
listed below can be found in Error! Reference source not found.. 

• Path 3: Northwest to British Columbia 
• Path 8: Montana to Northwest 
• *Path 15: Midway – Los Banos 
• Path 16: Idaho – Sierra 
• Path 18: Montana to Idaho 
• Path 22: Southwest of Four Corners 
• Path 24: Pacific Gas and Electric – Sierra  
• Path 26: Northern – Southern California 
• *Path 30: TOT-1A 
• Path 32: Pavant Inter-mountain – Gonder 
• Path 35: TOT-2C 
• *Path 45: San Diego Gas and Electric – Comisión Federal de Electricidad (CFE) 
• Path 66: California Oregon Intertie 

In summary, PNNL’s findings indicate that the main bulk grid bottlenecks for accommodating 
increasing numbers of EVs assuming unmanaged evening charging in the WECC are related to 
transmission capacity limitations. This suggests that the generation resources are not at the 
locations where the additional EV load is projected to occur.  
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A compelling mitigation strategy is a managed or “smart” charging strategy that uses the load 
valleys more effectively to extract more generation from the bulk power system to charge 
increasing numbers of EVs. 

6.2 Operational Considerations for Supporting EVs at Scale  

Incremental EV loads and their regional placement are likely to alter generation dispatch in the 
WECC. Figure 6.7 shows generation dispatch WECC-wide during an average summer day prior to 
adding EV load. With the addition of EV load, the WECC-wide generation dispatch “delta” for the 
24 million LDV HHND and HHWD charging scenarios becomes that shown in Figure 6.8 and 
Figure 6.9. The delta represents the difference in hourly generation mix between the scenario with 
and without EVs.  

 
Figure 6.7. Average summer day WECC-wide generation dispatch without EV load. 
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Figure 6.8. Generation dispatch delta for an average summer day for 24 million LDVs nationwide 

under the HHND charging scenario. 

 
Figure 6.9. Generation dispatch delta for an average summer day for 24 million LDVs nationwide 

under the HHWD charging scenario. 

As can be seen in the preceding figures, the generation delta between the base case and that with 
24 million LDVs nationwide is primarily supplied by CC (brown) and CT (purple) resources. We 
also see a slight increase in energy storage and renewable utilization, which reduces some 
renewable curtailment.  

When comparing the generation dispatch deltas of the two different charging scenarios—HHND 
and HHWD—some differences can be identified. The major difference is that the HHND case 
requires more energy from CTs than the HHWD scenario. This is because the HHND case, which 
reflects unmanaged evening charging, coincides with WECC’s peak load when there is no CC 
generation capability left to provide the energy for EV charging. CTs are next in the dispatch order 
to serve the evening EV loads.  

Table 6.1 lists the breakdown of incremental generation dispatch by charging scenario for the 24 
million LDVs nationwide case. Natural gas technology with CC and CT resources makes up the 
majority of the marginal generation.  
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Table 6.1. Generation types of EVs by charging profile. 

 HHND HHWD WLND WLWD HLWD 
Nuclear 0% 0% 0% 0% 0% 
Coal 8% 6% 9% 10% 9% 

CC 67% 78% 72% 75% 77% 
CT 18% 11% 12% 10% 9% 
Renew 3% 2% 4% 4% 3% 
Hydro 0% 0% 0% 0% 0% 
Storage 1% 1% 0% 0% 0% 
DG 0% 0% 0% 0% 0% 
Other 3% 2% 2% 2% 2% 
 100% 100% 100% 100% 100% 
HHND = Home High power No Delay; HHWD = Home High power With Delay; HLND = Home Low power No Delay; 
WLND = Work Low power No Delay; WLWD=Work Low power With Delay. 

Figure 6.10 illustrates the aggregated generation dispatch delta from California BAs.  

 
Figure 6.10. California EV generation dispatch delta for an average summer day for 24 million 

LDVs nationwide under the HHND and HHWD charging scenarios. 

California contains more than half of the EV charging load in the WECC. The charging energy 
required to serve EVs in California would be primarily served by CC and CT resources. With an 
increase in energy storage capacity in California by 2028, we see the intra-day use with one 
stationary storage charging/ discharging cycle for morning EV charging (HHWD) and two intra-
day cycles for the evening dominant EV charging scenario (HHND). This example illustrates that 
higher penetrations of energy storage may play an effective role in serving EV charging load in the 
future. 

Figure 6.11 illustrates the aggregated generation dispatch delta from Washington State’s BAs. The 
charging energy required to serve EVs in Washington would be primarily served by hydroelectric, 
CC, and CT resources in that order. However, hydroelectric power is only redispatched, meaning 
that it is backed off during times in the day to then be used during later periods. There is no net 
additional hydropower generation because the hydro system is energy limited and all of the 
generation has already been allocated in the base case with EV load. The hydropower dispatch 
indicates that use of hydro technology similar to that of a stationary energy storage system that has 
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a daily charging/discharging cycle. It conserves water behind the dam during the off-peak hours to 
be used during the peak hours. Whether Washington State’s hydropower resources are flexible 
enough on their own to operate with this altered dispatch was not investigated. These resources are 
primarily run-of-river but do have some storage capability. Further investigation would be 
necessary to fully validate the modeled flexibilities.  

Resources that fall in the “Other” category are largely made up of biofuel resources, such as 
biofuel-operated steam resources and combustion engines, and they make up less than 2% of the 
overall generation portfolio. 

 
Figure 6.11. Washington State EV generation dispatch delta for an average summer day for 24 

million LDVs nationwide under the HHND and HHWD charging scenarios. 

The following sections discuss the production cost implications of EV loads under varying 
charging scenarios, duck-curve impacts in solar-rich regions, and how smart charging can be 
leveraged to improve system operations and the accommodation of renewables. 

6.2.1 Production Cost Implication of EV Loads 

WECC-wide the cost impact of serving EV load in 2028 would be an increase of 13% based on the 
average production cost. Table 6.2 breaks down production cost impacts by charging strategy and 
selected states. California would see the largest impact on production costs because it has the 
largest levels of forecasted EV penetration. 

Table 6.2. Production cost impacts under the 24 million LDV penetration scenario for varying 
charging scenarios. 

 

The cost impacts based on LMP are affected the most for unmanaged charging. In the HHND 
scenario, where EV peak charging load occurs during existing evening peak loads, EV charging 
causes increased transmission congestion. Other charging scenarios are under the threshold of 
causing significant congestion when 24 million LDVs nationwide are deployed (see Figure 6.12). 
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Figure 6.12. Average hourly LMP in the 24 million LDV penetration scenario for varying 

charging scenarios. 

6.2.2 Duck Curve for Solar-Rich Regions and Implications for EV Charging 

A significant “duck curve” exists within the solar-rich region such as in the California Independent 
System Operator (CAISO) for the 2028 scenario. The addition of LDV loads could play a vital role 
in either exacerbating or reducing evening ramping needs. California load and net load, which is 
load minus wind and solar generation, looks like a duck, and is called the duck curve, as shown in 
Figure 6.13. As solar PV installation costs decrease, more rooftop and utility-scale solar PV is 
expected in the future, which is likely to make the belly of the duck curve dip even lower. It will 
significantly challenge the ability to reduce the output of thermal plants during the middle of the 
day and will cause a much higher ramping requirement in the early evening, when fast-ramping 
and flexible resources are needed to meet the net load curve. 

PNNL’s study indicates that unmanaged EV charging under the HHND scenario exacerbates the 
duck curve in two respects: (1) the duck neck becomes steeper, that is, the ramp rate seen in the 
late afternoon and early evening hours increases by almost 1.4 GW/h (7134 MW/h - 5767 MW/h = 
1367 MW/h) with the addition of EV load; and (2) the duck neck become taller, which means that 
the EV charging peak coincides with the system peak at about 20:00 hours. 

A mitigation strategy is managed charging. Assuming the charging infrastructure is in place, 
managed charging would use the PV generation during the day and thus reduce both the duck head 
and the steepness of the neck. It would reduce the ramping and reduce the system peak. Figure 
6.13 illustrates the effect of unmanaged and managed charging of LDVs and their consequential 
impacts on the CAISO duck curve for an average winter day.  



 

6.12 

 
Figure 6.13. CAISO duck-curve impacts with the addition of unmanaged and managed charging 

of EVs. 

An operational benefit that can be gained with the implementation of managed EV charging is the 
reduction in renewable curtailment during the daylight hours. During the middle of the day, solar 
generation has pushed net load close to zero, sometimes in the negative range, which means that 
electricity will either be curtailed or exported out of California. To manage this hourly variability, 
significant ancillary services, including ramping capability, must be made available. 
Overgeneration is expected during the middle of the day during the light load seasons (spring and 
fall), as are likely curtailments of solar generation. To mitigate renewable curtailment, EV 
charging during the day would reduce or avoid curtailments. 

PNNL results indicate, as expected, that EV charging leads to a reduction in solar and wind 
curtailment across the WECC, as shown in Table 6.3 and Figure 6.14. Charging that coincides with 
solar generation has the most reduction in curtailment (i.e., daytime/early evening work charging). 
PNNL’s analysis shows that the addition of LDVs can reduce curtailment up to 70%. With the 
introduction of managed charging, reduction of curtailment increases beyond 70%.  

Table 6.3. Curtailment impacts in the 24 million LDV penetration scenario for varying charging 
scenarios. 

 
The majority of the avoided solar curtailments would occur during low load conditions during the 
spring and fall seasons (see Figure 6.14). 

Base case 
Unmanaged HHND 

Smart, 
managed  
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Figure 6.14. Solar curtailment reductions in CAISO in the 24 million LDV unmanaged charging 

scenario, HHND. Negative values indicate a reduction in curtailment.  

6.2.3 Smart (Managed) Charging in Solar-Rich Regions 

As mentioned in the previous section, managed, or smart, charging can provide multiple values in 
solar-rich regions, such as California. These values include (1) reduction of the duck neck’s 
steepness and height, (2) the greatest improvement in renewable curtailment reduction, and (3) 
increased EV resource adequacy. To further evaluate the benefits of managed charging, the authors 
modeled managed EV charging as a dispatchable and price-based load that was subject to 
generation dispatch within the WECC PCM model. They applied an aggressive assumption that 
80% of the LDV fleet was sufficiently flexible and that sufficient charging infrastructure was 
available so that the fleet could be charged anytime during the day. The model would choose the 
optimal charging time to reduce the system cost. Twenty percent of the LDV fleet was considered 
constrained to the HHND schedule with no flexibility to manage its charging profile. The 
production cost model would then seek to dispatch charging that minimized the total system cost.  

The results of the managed and unmanaged (HHND) charging are shown in Figure 6.15. The left 
frame shows that managed charging would occur during the day, ahead of the unmanaged 
schedule, and that the resulting price response, as expressed in LMP (see Figure 6.15, right frame), 
shows no negative prices as an indicator of overgeneration and significantly reduced positive price 
spikes during periods of high demand.  
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Figure 6.15. Smart charging and Scenario 1 charging and its impacts on price. 

Overall, the study indicated the following benefits of managed charging for solar-rich regions such 
as California: 

• The duck-curve neck steepness can be reduced by about 2 GW/h (compared to HHND) and 
about 1 GW/h (compared to the base case). 

• The peak load can be reduced by about 6 GW in the evening, thereby avoiding the use of 
higher cost CTs. 

• Solar curtailment can be reduced. (For the month of July, the authors estimated a reduction of 
80 GWh.) 

• The production cost for managed charging was improved by 3.5% for the month of July.  

These modeling results indicate that smart charging offers several benefits for operation of the 
bulk power system, in addition to improving resource adequacy in high-penetration scenarios. 
These results are aligned with several pilot projects across the country that have shown the 
effectiveness of such techniques in modifying EV charging behavior (Black et al. 2019; DOE 
2014; Bauman et al. 2016).  
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7.0 Washington State Analysis: Illustrative Example at Higher 
Granularity  

Washington State stakeholders expressed interest in understanding potential grid impacts as the 
EV fleet in Washington State grows and as additional support for transportation of electrification 
is offered by the state. Washington is the third largest market of EVs in the nation after 
California and New York.1  

This section discusses the WECC modeling results from a Washington State perspective. To 
provide context for the Washington electricity supply landscape, we list the BAs that serve 
customers in the state. Their approximated areas are shown in Figure 7.1. 
• Bonneville Power Administration 

(BPA) 
• Public Utility District No. 1 of Chelan County 

(CHPD) 
• Puget Sound Energy (PSE) • PUD No. 1 of Douglas County (DOPD) 
• Seattle City Light (SCL) • PUD No. 2 of Grant County (GCPD) 
• Avista Corporation (AVA) • Tacoma Public Utilities (TPWR) 

ä 
Figure 7.1. Approximated balancing authority boundaries in Washington State (WECC 2018). 

7.1 EV Penetration in Washington State 

A heat map of electric LDV penetration by counties is displayed in Figure 7.2. Under the 24 
million LDV penetration scenario, Washington State was estimated to have an additional electric 

 
1 Based on sales figures from April 2010 through April 2020. Available at 
https://www.atlasevhub.com/materials/state-ev-sales-and-model-availability/ 
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LDV penetration of 980,000 by 2028, including the existing 47,000 vehicles1 already registered. 
For MDVs, we estimated approximately 4,600 by 2028, and for the HDV charging events we 
simulated 9 charging hubs along the interstate highway system in Washington State (see Table 
7.1 and Table 7.2). The incremental EV load is concentrated in western Washington, where King 
County, served by both SCL and PSE, contains the highest levels of EV penetration. Detailed 
county-to-BA mapping can be found in Error! Reference source not found..  

 
Figure 7.2. Heat map of LDV vehicle penetration by county. 

Table 7.1. Washington State 2028 EV penetration assumptions. 

 
2028 Washington State EV 
Penetration Assumptions  

LDVs 980,000 vehicles 
MDVs 4,600 vehicles 
HDVs 9 charging hubs 

The proportional EV charging load added to each BA can be seen for the charging scenario and 
most of the charging occurs in the evening (HHND), as shown in Figure 7.3. 

 

 

Table 7.2. Detailed breakdown of Washington State 2028 EV penetration assumptions. 

 LDV MDV HDV 

Balancing 
Authority 

No. of 
Vehicles 

Max Charging 
Capacity 

(MW) 
Unmanaged 

No. of 
Vehicles 

Max Charging 
Capacity (MW) 

Unmanaged 
No. of 

Stations 

Max Charging 
Capacity 

(MW) 
Unmanaged 

 
1 Ibid 
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AVA 93,959 168 462 7 3 58 
BPAT 328,085 580 1,346 21 3 47 
CHPD 11,583 21 0 0 1 4 
DOPD 12,302 22 0 0 0 0 
GCPD 14,387 26 0 0 1 9 
PSEI 382,376 682 799 12 0 0 
SCL 103,813 185 1,569 24 1 75 

TPWR 33,224 59 456 7 0 0 

TOTAL 
979,729 1,743 4,632 71 9 193 
Vehicles MW Vehicles MW Stations MW 

The proportional EV charging load added to each BA can be seen for the unmanaged (HHND) 
charging scenario, as shown in Figure 7.3. The aggregated Washington State load stacked by 
vehicle type is shown in Figure 7.4. Most of the charging occurs in the evening with unmanaged 
charging. 

 
Figure 7.3. Incremental EV loads added to Washington State BAs under the 24 million LDV 

nationwide penetration scenario (about 1 million LDVs in Washington State). (For 
Washington, the BPA load represents EV load mapped to Washington State 
counties only.)  
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Figure 7.4. Aggregated Washington State Incremental EV loads stacked by vehicle type under 

the 24 million LDV nationwide penetration scenario (about 1 million LDVs in 
Washington State).  

7.2 Unserved Energy 

Figure 7.5 shows unserved energy by BA under increasing LDV penetration with unmanaged 
charging (HHND). As can be seen, most of the unserved energy would begin within BPA’s load 
territory, because it is the largest load territory in Washington State. As LDV penetration 
increases, more interesting results begin to appear. Increased unserved energy can be seen to 
spread into GCPD and AVA located in eastern Washington, followed by PSE, SCL, and TPWR 
loads located in western Washington, where the majority of the EV load is forecasted to occur. 
Detailed numbers for unserved energy by BA can be found in Error! Reference source not 
found.. 

 
Figure 7.5. Washington State unserved energy by BA and LDV penetration scenario under the 

HHND charging strategy. For reference, 30 million LDVs nationwide corresponds 
to about 1.2 million in Washington State, 37 million corresponds to about 1.5 
million, 44 million corresponds to about 1.8 million, and 65 million corresponds to 
about 2.7 million.   
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The eastern Washington unserved energy seen in these higher LDV penetration scenarios would 
be caused by resource inadequacy. Much of Washington State’s hydropower resources are 
located in eastern Washington along the Columbia River. As the EV load increases beyond 30 
million LDVs nationwide (1.23+ million in Washington State, which is about 50% of today’s 
LDV stock), the flexibility of the Washington State hydropower system and transmission into the 
region would be the limiting factors relative to supplying additional energy for EV charging in 
GCPD, AVA, and other eastern Washington BAs.  

The western Washington unserved energy seen with these higher LDV penetration scenarios 
would also be caused by resource inadequacy. The bulk of Washington State’s load demand is in 
western Washington, surrounding the Puget Sound area. As EV load increases beyond 30 million 
LDVs nationwide, transmission capacity into the region would become a bottleneck, because 
generation nearby to supply EV charging would not be sufficient.  

A deeper dive into generation and transmission constraints within Washington State is explored 
in the following sections.  

7.3 Changes in Generation Dispatch 

Section 6.2 contains a brief discussion of how incremental EV load would affect Washington 
State’s generation dispatch. Figure 7.6 highlights seasonal differences not previously discussed. 
These figures show a generation dispatch delta between the 24 million LDVs penetration 
scenario and the base case (without additional EVs).  

Unlike other regions within WECC, the Washington State load is winter peaking. When 
comparing the average winter and summer day plots in Figure 7.6, we see higher amounts of 
hydropower dispatched in winter, despite the EV load remaining consistent throughout the year. 
There are a couple of reasons for this. First, hydro energy availability is higher during winter 
than during summer months (NPCC 2019). Secondly, with the increased energy availability of 
such a low-cost resource during winter months, a higher dependence on Washington State’s 
hydro output to serve incremental EV load outside of Washington State is occurring. Therefore, 
we see a higher hydropower dispatch delta over an average winter day compared to an average 
summer day.  

Further considerations are needed to investigate whether Pacific Northwest hydropower is 
flexible enough to be redispatched according to the PCM simulation results attained. Compared 
to the aggregate hydropower capacity in the Pacific Northwest (PNUCC 2016, E3 2019), the 
amount of redispatch seen in Figure 7.6 is relatively small and, thus, is not likely to violate and 
operational limits.  
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Figure 7.6. Washington State aggregated BA EV charging generation mix. 

7.4 Impact on Production Costs and LMP 

Under the 24 million LDV nationwide penetration scenario, the highest percentage increase in 
LMP in Washington State under all charging scenarios is 18% (annual average). The least impact 
charging scenario occurs under HHWD, when EV load charging is delayed. The highest impact 
charging scenarios are unmanaged charging (HHND) and work charging scenarios (WLND and 
WLWD). There are no significant differences in LMP between eastern and western Washington 
under these conditions.  

As LDV penetration increases under unmanaged charging conditions, and generation and 
transmission resources become increasingly constrained, and LMP in Washington State begins to 
increase dramatically. Significant impacts begin to occur at 30 million LDVs nationwide. At this 
point, Washington State would need to consider resource adequacy improvements. The increase 
in LMP is primarily attributable to transmission congestion during evening peak hours, starting 
in the summer months under the 24 million LDV penetration scenario. There are no significant 
differences in LMP between eastern and western Washington under conditions of increasing 
LDV penetration. 

LMP impacts by charging and penetration scenario are shown in Table 7.3, Table 7.4, and Figure 
7.7. 



 

7.7 

Table 7.3. Washington State LMP impacts with 24 million LDV nationwide by charging 
scenario. 

 

Table 7.4. Washington State LMP impacts by LDV penetration scenario. 

 

 
Figure 7.7. Washington State LMP by hour with 24 million LDVs nationwide. 

The average production cost impacts are shown in Table 7.5, Table 7.6, and Figure 7.8. In the 24 
million LDV nationwide penetration scenario, the charging strategy does not significantly 
change production cost for individual Washington BAs under generation ownership. However, 
when LDV penetration increases beyond the 24 million high-penetration scenario, production 
cost does begin to increase. However, these increases are not as significant as the LMP growth 
seen in Table 7.4, which again points to transmission being the principal bulk grid bottleneck in 
Washington State.  
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Table 7.5. Washington State production cost impacts by charging scenario. 

 

Table 7.6. Washington State production cost impacts by LDV penetration scenario. 

 

 
Figure 7.8. Washington State production cost by BA by hour with 24 million LDVs 

nationwide. 

7.5 Impact on Transmission Congestion 

Using BPA’s defined transmission paths and flowgates, as shown in Figure 7.9, and the PCM 
analysis performed on the WECC, the authors studied how seasonal flow patterns changed under 
various LDV penetration scenarios. Unmanaged charging (Figure 4.1) exacerbates the existing 
evening peak load. Detailed plots showing the seasonal flow patterns for the flowgates identified 
in Figure 7.9 can be found in Error! Reference source not found..  

Under HHND charging assumptions and increasing LDV penetration the following observations 
can be made under normal system, weather, and water conditions in Washington State: 

• Outside of winter months, Seattle area transmission congestion is minimally affected by 
incremental EV load based on North of Echo Lake seasonal flow patterns. However, 
transmission congestion during winter months may be exacerbated by unmanaged EV 
charging during evening peak hours. 
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• Summer through winter flows at the South of Custer and South of Boundary flowgates 
indicate increased congestion from Canada into Washington State during evening peak hours 
under unmanaged EV charging conditions. 

• All season flows at the Cross Cascades North flowgate indicate higher than normal 
congestion (eastern Washington to western Washington) during evening peak hours under 
unmanaged EV charging conditions. 

• All season flows at the Columbia Injection flowgate capture a shift in Washington 
hydropower dispatch with the addition of EV load, in which morning hydropower is 
conserved and then increased in late afternoon to serve the higher evening peak. 

• EV load south of Washington contributes to slightly increased congestion on the South of 
Allston flowgate (Washington to Oregon) during evening peak hours under unmanaged EV 
charging conditions. 

• Flows at the Paul-Raver, Paul-Allston, and North of John Day flowgates indicate less 
north to south flow (Washington to Oregon) during morning peak hours. 

 
Figure 7.9. BPA flowgate map of major transmission paths in the Pacific Northwest.1 

 
1 BPA (Bonneville Power Administration). 2015. Northwest Transmission Lines and Flowgates. Available at 
https://transmission.bpa.gov/Business/Operations/Paths/Flowgate%20Map_2015-06-23.pdf 
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7.6 Summary of EV-at-Scale Impacts for Washington State and 
Considerations for Future Grid Analyses 

The Washington State analysis indicates relatively minimal impact at the bulk power level for 
Washington State BAs under the high-penetration scenario of 24 million LDVs nationwide or 
980,000 LDVs for Washington State, under normal system, weather, and water conditions. 
Bottlenecks would arise under increasing penetration beyond 1.2 million LDVs, causing some 
operational challenges and significant changes in generation dispatch and transmission 
congestion. As discussed in Section 6.1.1, by shifting away from unmanaged charging and 
encouraging EV smart charging, Washington State could reduce bulk grid reliability impacts and 
accommodate higher numbers of EVs beyond the 65 million national high-penetration scenario 
(2.7 million in Washington). Operationally, natural gas CC plants and CTs are likely to provide 
the additional generation for charging EVs. Power from the hydropower system may need to be 
redispatched to accommodate the additional peak demand set by EVs. The average production 
cost implications are relatively small—varying from 4 to 9%—and are primarily caused by 
additional natural gas generation.   

Based on the insights gained from this study, Washington State may want to consider additional 
analysis to address the following questions: 

• Being energy limited, are Washington State’s hydropower resources flexible enough to be 
redispatched (in accordance with Figure 7.6) to supply energy to unmanaged EV load? If not, 
do Washington State BAs need to invest in alternative resources or non-wire solutions (i.e., 
energy storage) to supply this energy? 

• With increased congestion during evening peak hours on transmission between Canada and 
Washington, Washington to Oregon, and eastern Washington to western Washington, what 
solutions could Washington State explore to better manage congestion caused by EV 
charging?  

• How could smart charging technology be best deployed and implemented in Washington 
State to mitigate bulk grid impacts caused by unmanaged EV load? 

• Across a broad range of weather, drought conditions, and system operating conditions, can 
BAs in Washington State maintain resource adequacy under higher levels of EV penetration?  

  



 

8.11 

8.0 Considerations for EV Impact Analyses in Distribution 
Systems  

8.1 Background and Motivation 

The main emphasis of this study was centered on system resource adequacy questions that relate 
to the ability of the grid to generate and transmit electric energy to the load centers for meeting 
the new EV charging requirements. This resource adequacy study excludes the delivery of the 
“last-mile” from the bulk power substation to the charging station through mid-voltage 
distribution circuits. Some of these circuits are very old, particularly in established large urban 
areas that were designed and built before the advent of air-conditioning many decades ago. With 
the rapid growth of EVs and particularly with new EV-based services such as ride-hailing and 
taxi services, there is a growing need for public charging stations that provide fast charging 
capabilities. Compounding the current EV growth of the LDV segment is the expected growth of 
MDV and HDV segments in the near future, as evidenced by the recent announcement by 
Amazon.com Inc. to purchase 100,000 EV delivery trucks from Rivian with delivery expected by 
2024.1 In addition, transit agencies are beginning to transition their diesel bus fleets to EVs to 
meet state clean fuels targets. These growth trends, particularly for the MDV and HDV segments 
that feature much larger batteries than LDVs, suggest that charging stations may need to deliver 
charge rates of 300 kW and higher. Some MDV manufacturers are testing technologies that 
deliver charging rates of more than 1 MW.  

Given the mostly urban locations of vehicle yards of transit agencies and delivery business 
places, new attention to the need for upgrades of distribution circuits and sub-transmission 
infrastructure is needed to accommodate the near-term expected charging infrastructure build-
out. With the growing need for long-distance driving of EVs and expected new EV-based 
mobility services in urban centers, the grid planning community recognizes the need to address 
the future upgrade needs of the distribution systems to accommodate the growing EV charging 
needs.  

The review of upgrade needs is predicated on reliability concerns that the new EV load may pose 
to the existing distribution circuits beyond the operating conditions for which they were 
originally designed. Mitigation of the stress during high load conditions is critical for reliable 
operations of the distribution system. Depending on the nature of the stressors, this mitigation 
could come in multiple forms: transformer/conductor upgrades, additional voltage support, smart 
charge management systems, etc. For example, sag in voltage resulting from numerous 
simultaneous charging events from fast DC charging at a public parking space needs to be 
resolved by boosting local voltage. Therefore, understanding and quantifying the current or 
future impact of EV charging on distribution feeder circuits is a critical first step toward 
resolving the issue. In this section, we discuss a grid analysis based on power flow simulations 
using GridLAB-D on a simple example. In addition, we lay out a broader distribution system 
analysis as follow-on work to this study to address the needs for the distribution planning 
community to be ready for growth in EV charging demands.  

 
1 https://www.theverge.com/2019/9/19/20873947/amazon-electric-delivery-van-rivian-jeff-bezos-order 
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8.2 Modeling of EV Charging on Distribution Feeder Circuits 

The modeling effort reported here was based on three distinct components: (1) the modeling 
penetration and charging behaviors of EV, (2) the selection and modeling of feeder circuits that 
best represent real-world systems, and (3) the definition of EV driving patterns to determine 
energy requirements for EV charging. The example discussed below was based on a synthetic 
feeder model that PNNL can generate from a large library of real-world feeder models. The 
feeder model synthesis was based on a few of parameters to lay out a grid topology and define 
the load scenarios given the customer composition to be served.  

8.2.1 Modeling of EV Penetration and Charging Behaviors 

The first step in this modeling effort was to downscale the EV penetration projections from the 
bulk power analysis to the distribution systems level, as shown in Figure 8.1. This needed to be 
done consistently, so that the sum of all hourly loads in distribution system circuits beneath a 
bulk power substation represented the same load profile as those used in the bulk power analysis. 
This was done in two steps. The EV load was first mapped from the BA zone to a transmission 
(bulk power) network node, and then further mapped down to the distribution system level. 

To calculate the number of EVs per feeder circuit, a simple approximation was used: the peak 
charging load was divided by the average demand from a single L2 charger. Once the numbers 
of EVs per feeder circuit was calculated they were randomly distributed to houses on the circuit.  

 
Figure 8.1. Methodology to align bulk grid and distribution feeder EV adoption. 

8.2.2 Selection and Modeling of Synthetic Feeder Circuits  

There is a lot of diversity in the nature of distribution system circuits across the country. 
Specifically, the diversity arises from variations in topologies, voltage levels, and load 
compositions, among other factors. Among the other factors are climate conditions that specify 
whether heating is done electrically or by a fossil fuel source. Natural gas or oil heating is 
commonly used in the colder regions of the United States. If heating is done electrically, the 
individual customer’s load profile is markedly different than that of a customer using natural gas 
heating. Similarly, in hot and humid climate, air-conditioning will add significantly to the 
summer load profile.  
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This makes it challenging to derive meaningful results for distribution system impact analysis, 
unless the analysis is performed on actual utility feeder circuits. Procuring and processing feeder 
models from utilities is time-intensive and could not be accommodated within the timeline of this 
project. As a result, for this project, the distribution system analysis was performed using 
GridLAB-D’s prototypical feeders (Schneider et al. 2008).  

The prototypical feeders are collections of synthetic feeder models that represent circuits from 
five climatic zones in the United States, as shown in Figure 8.2. These zones are temperate, 
hot/arid, cold, hot/cold, and hot/humid. Actual utility feeder models from these regions were 
collected, clustered, and reduced to a representative set of 24 circuits that were determined to be 
typical representations of feeders in these regions across the nation. These 24 circuits were 
broken into the climatic regions based on the following proportions: temperate region – 5 
circuits; cold region – 5 circuits; hot and arid region – 3 circuits; hot and cold region – 3 circuits; 
hot and humid region – 6 circuits; and one general circuit that is common to all regions. Within 
the subset of feeder models for each climatic region, the circuits represent urban, suburban, and 
rural areas, at primary voltages of 12.47 kV, 25 kV, and 35 kV, respectively. Though the circuits 
were derived from actual utility feeder models, they are completely sanitized and stripped of any 
details pointing to the real-world circuit.  

 
Figure 8.2. Prototypical feeders climatic regions. 

The distribution system analysis discussed in this document was performed for a single circuit as 
an example. The goal was to describe the process of performing a more comprehensive 
distribution system analysis to provide insights into future planning needs. 

The prototypical feeder selected for this example represents the Pacific Northwest climate region 
with a customer composition typical of a suburban circuit of mainly single-family homes (around 
800) and some commercial loads. The substation serving a suburban circuit, with a peak load 
comparable to the selected prototypical feeder (2.9 MW), was identified from the Pacific 
Northwest region of the WECC bulk power model. The limits of the substation remained 
unknown. The EV penetration associated with this substation was determined to be 
approximately 200 EVs, and the feeder model was appropriately populated using randomly 
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selected locations. The standard GridLab-D EV charging profile was used, which represents an 
L2 charging at home derived from the National Household Travel Survey, which was similar to 
but not exactly the same as the HHND load profile used in the bulk power analysis. In addition, 
we simulated a DC charging load of 1 MW, superimposed over the 200 L2 charging events.  

8.2.3 Impact Assessment of EV Charging on Distribution Feeder Circuits 

The impact assessment was performed by comparing the results of the feeder with EVs to the 
base case without EVs. We discuss the results based on three metrics: substation load, primary 
circuit voltage, and secondary circuit voltage. These three metrics are indicative of any potential 
reliability concerns based on (1) thermal overloading of any grid assets and (2) American 
National Standards Institute (ANSI) voltage violations (ANSI 2011).  

8.2.3.1 Thermal Overload Potential 

Figure 8.3 presents a comparison of substation load with (orange curve) and without EV (blue 
curve) charging loads, in addition to a red curve that represents just the EV charging load. The 
peak load in the base case was noted to be ~2.9 MW at 6:13 PM. In the EV case, the 15-minute 
fast charging event at 10 AM pushes the system load to a new peak value of ~3.25 MW, a 12% 
increase. Excluding the fast charging event, the system peak is marginally increased to 3.01 MW 
from at-home, evening L2 charging events. Clearly, the bigger threat to distribution system 
operation is from DC fast charging events. If the DC fast charging events coincided with system 
peak, they could potentially push the feeder components closer and beyond their operating limit 
or rated capacity. This could require an upgrade of feeder infrastructure on the primary circuit. 
On the other hand, L2 at-home charging events could require an upgrade of the secondary circuit 
infrastructure. Because these feeder circuits were synthesized, we do not have any information 
about the capacity limits of individual grid assets. Only real feeder data will reveal if any rated 
capacity was exceeded.  
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Figure 8.3. Comparison of substation load with and without EV charging. 

8.2.3.2 Voltage Violations 

Figure 8.4 shows a comparison of the primary circuit voltage with and without EV charging. The 
biggest impact on the primary circuit voltage is from the fast charging event at 10 AM. However, 
the drop in voltage of ~25 V is insignificant, and can be handled easily by existing voltage 
controls in the feeder. The impact of EV charging on the secondary circuit, as shown in Figure 
8.5, was also determined to be minimal. Though the results from the test system show a 
negligible impact on feeder voltage on both the primary and secondary circuits, the result cannot 
necessarily be generalized to all circuits. For example, EV charging could potentially have an 
impact on voltage if the charging location is located downstream. Such a scenario could force 
infrastructure upgrades by way of localized voltage support device installation to improve the 
voltage profile.  
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Figure 8.4. Comparison of primary circuit voltage with and without EV charging. 

 
Figure 8.5. Comparison of secondary circuit voltage with and without EV charging. The ANSI 

standard allows for a ±5% deviation from the nominal voltage of 120 V (ANSI 
2011). 

8.2.4 Summary of the Distribution System Example  

This brief example illustrates the fundamental elements of a distribution system analysis of EV 
impacts. We used a synthesized feeder model for illustration purposes that lacked size and rating 
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information for all infrastructure assets (transformers, conductors, voltage regulators, capacitor 
banks). As a consequence, the results should serve as an illustration of the mechanism of how 
additional EV load may impose stress on the distribution infrastructure and how the stress 
condition may limit the number of EVs to be serviced.  

8.2.5 Considerations for the Distribution System Analyses to Inform the Grid 
Planning Community  

To provide insights into the limiting factors that determine the EV hosting capability of a given 
feeder, a comprehensive distribution system analysis needs to be performed using real-world 
feeder data and participation by utility partners. There is no real substitute for real feeder data to 
reveal the bottleneck conditions that may induce capital investments in upgrading distribution 
system circuits. Unlike the bulk power EV-at-scale analysis, there is no central entity that owns 
data about distribution infrastructure other than each individual load-serving entity or utility 
organization. As a consequence, insights gained by performing a comprehensive distribution 
system analysis is only valid for the very utility organization for which it was done. 
Generalizations are not applicable and may lead to wrong conclusions. Therefore, we 
recommend that any follow-on work for EV impact studies be performed as individual case 
studies with more than one utility partner. By performing several case studies with real-world 
data, we may expect some overarching insights to emerge. Unless the analysis is done, it would 
be too early to predict what the insights might be. 

Here are some considerations for in-depth distribution system analyses to explore the EV hosting 
capabilities of distribution system infrastructure: 
1. Work with two to three utility partners from across the nation to perform an EV distribution 

impact analysis to determine the EV hosting capability for a portfolio of feeders.  
2. Perform analysis for several time frames (2025, 2030) and represent some upgrade 

investments that would occur in the absence of EVs, such as smart grid investments. Include 
behind-the-meter distribution energy technologies (PV and batteries) that may be installed by 
the customer, that would affect the analysis.  

3. Estimate EV hosting capabilities under LDV, MDV, and HDV penetration scenarios and 
vary the assumptions for DC charging technologies to represent a spectrum of charging rates 
and EV use patterns that determine the charging profiles. 

4. Estimate how the EV hosting capability may be expanded when using smart or managed 
charging strategies. Estimate the value of smart charging strategies by deferring capital 
investments in infrastructure upgrades.  

5. Compare the results obtained from the two to three utility partners and discuss the insights 
learned, which may be of value to the broader community. 
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9.0 Conclusions and Next Steps 

9.1 Conclusions 

This EV-at-scale Phase I analysis addressed the following two key questions of interest to DOE 
related to the impacts of EV at the bulk power level at the time when EVs are deployed at scale: 

1. Are there sufficient resources in the U.S. bulk power grid to provide the electricity for 
charging a growing EV fleet? This question addresses the system adequacy.  

2. What are the likely operational changes necessary to accommodate a growing EV fleet? This 
question addresses changes in 
• generation mix 
• production cost  
• challenges and benefits of accommodating the new EV loads. 

Because of the short time frame for the analysis, the national discussion was reduced to a 
Western grid analysis. Commonly accepted WECC grid data were readily available for use in a 
future (2028) grid scenario. All the results of this study are based on simulations of the WECC 
system using ABB’s GridView production cost modeling software. Load scenarios were 
developed with the support by NREL for LDVs. New charging profiles were developed by 
PNNL for MDVs and HDVs.  

It should be noted that this study did not include a capacity expansion analysis that searches for 
cost-optimal investments of new grid infrastructure given the new EV loads. Instead this study 
focused on the resource adequacy question of high EV adoption as the WECC grid planners 
defined the evolution of the bulk power system to the year 2028. 

The key outcomes of this EV-at-scale analysis are as follows: 

2028 resource adequacy is likely to be sufficient for high EV penetration assumption.   

• Under a high-penetration scenario with national electric fleets of ~24 million LDVs, 200,000 
MDVs, 150,000 HDVs for a 2028 time frame, we are not expecting resource adequacy issues 
in the WECC under normal operating conditions (normal system, normal weather, and 
normal water conditions). The corresponding electric fleet sizes for the WECC footprint are 9 
million LDVs, 70,000 MDVs, and 94 HDV charging stations. It is customary for resource 
adequacy analyses to be performed for normal operating condition. Contingency analyses 
that test the reliability under outage conditions are only performed for interconnection 
analyses and special study cases and, thus, were deemed out of scope for this analysis.  

EV resource adequacy can be doubled with managed charging strategies. 

• The EV resource adequacy for the entire WECC interconnection was estimated for a likely 
unmanaged charging scenario under which most LDVs were charging at home starting in the 
evening (HHND). The maximum number of LDVs when projected to the national fleet was 
about 30 million (national value) or 9 million for the WECC footprint. At that point, 
insufficient generation and transmission bottlenecks would emerge requiring both 
transmission and generation expansion. Alternatively, if managed charging was applied by 
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hypothesizing a price-minimization scheme, the EV resource adequacy could be expanded to 
65 million (national fleet number) or 19.6 million for the WECC. This suggests a significant 
opportunity to substitute additional generation and transmission requirements with smart 
charging strategies and much better utilization of the existing grid.  

• At that maximum number of LDVs, the authors found transmission congestion to be the 
limiting factor, which means that there are some available power plants in the WECC but the 
electric power could not be delivered to the load centers because of transmission limitations. 
The largest transmission congestions were in California (Paths 15, 26). 

Operational changes can be made to accommodate EVs. 

• The additional generation for charging EVs is likely to be provided by natural gas CC plants 
and CTs predominantly throughout the WECC (85%–89% of all new generation). Storage is 
used in California to meet the peaks set by EVs. Hydropower generation in Washington State 
is redispatched to resemble a commonly observed charging/discharge cycle of an energy 
storage technology. No new hydropower generation is expected because hydropower 
generation is energy limited—no more water is expected in the Columbia River system.  

• All EV charging load is likely to reduce renewable curtailments between 25% and 75% based 
on when EVs are charged. Managed charging could reduce the curtailment the most by an 
additional 16%. 

• The production cost implications due to the additional load varied from 3% in Arizona, 
where there is some available coal generation, to 23% in California, where CTs are required 
to meet the peak load set by EVs.  

• Managed charging has significant operational benefits in solar-rich areas such as California. 
It reduced the duck curve in two ways: (1) it reduced the coincident peak (duck height) and 
(2) it reduced the ramp requirements in the evening when the sun sets (steepness of the 
duck’s neck). 

In addition, the authors performed an EV-at-scale impact analysis for Washington State using the 
WECC results and analyzed them for the Washington balancing authorities. The results of this 
higher resolution analysis are as follows: 

• Unmanaged EV resource adequacy for Washington State is approximately 1 million LDVs 
and 4,600 MDVs under normal system, weather, and water conditions. With managed 
(smart) charging, the resource adequacy can be increased to 2.7 million LDVs. 

• Washington State hydropower resources may need to be redispatched to accommodate 
unmanaged EV load. 

• The average production cost implications of high LDV penetration are minor and vary 
between 4% and 9% based on the generation mix of the utility organization. 

• We recognize congestion in the transmission system that already exists during high loading 
in the winter. Congestion is likely to be exacerbated with new EV loading with unmanaged 
charging, because of transfers from Canada to Washington, Washington to Oregon, and 
eastern Washington to western Washington under normal system, weather, and water 
conditions. 
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The illustrative distribution system analysis offered insightful results for Phase II analysis. 

An illustrative distribution system analysis was presented that demonstrated the mechanism of 
how to perform a distribution system analysis and what the expected results and outcomes are. 
This illustrative example indicated the following:  

• Factors most likely to limit the additional growth of EVs are thermal overloading or reaching 
the rated capacity of grid assets in the distribution system under fast charging conditions.  

• Voltage violations may occur under fast charging condition with high ramping loads during 
fast charging events.  

9.2 Next Steps 

With the advent of extreme fast charging technology to enable MDV and HDV electrification, 
there is some concern about the distribution system reliability and need for upgrades. To address 
this challenge, the authors recommend that a comprehensive distribution system analysis be 
performed as an extension of the EV bulk power analysis.  

To provide insights into the limiting factors that determine the EV hosting capability of a given 
feeder, comprehensive distribution system analyses need to be performed using real-world feeder 
data and participation by utility partners. There is no real substitute for real feeder data to reveal 
the bottleneck conditions that may induce capital investments to upgrade distribution system 
circuits. Unlike the bulk power EV-at-scale analysis, no central entity owns data about the 
distribution infrastructure; each individual load-serving entity or utility organization owns these 
data for their infrastructure. As a consequence, insights gained by performing a comprehensive 
distribution system analysis are only valid for the very utility organization for which it was done. 
Generalizations are not applicable and may lead to wrong conclusions. Therefore, the authors 
recommend that any follow-on work for EV impact studies be performed as individual case 
studies with more than one utility partner. By performing several case studies with real-world 
data, they expect that some overarching insights to emerge. Unless such analyses are done, it 
would be too early to predict what those insights might be. 

Considerations for in-depth distribution system analyses to explore the EV hosting capabilities of 
distribution system infrastructure include the following: 

1. Work with two to three utility partners from across the nation to perform an EV distribution 
impact analysis that would determine the EV hosting capability for a portfolio of feeders.  

2. Perform analysis for several time frames (2025, 2030) and represent some upgrade 
investment scenarios that would occur in the absence of EVs, such as smart grid investments. 
Include behind-the-meter distribution energy technologies (PV and batteries) that may be 
installed by the customer that would impact the analysis.  

3. Estimate EV hosting capabilities under LDV, MDV, and HDV penetration scenarios and 
vary the assumptions for DC charging technologies to represent a spectrum of charging rates 
and EV use patterns that determine the charging profiles. 
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4. Estimate how the EV hosting capability may be expanded when using smart or managed 
charging strategies. Estimate the value of smart charging strategies by deferring capital 
investments of infrastructure upgrades.  

5. Compare the results obtained from two to three utility partners and discuss the insights 
learned, that may be of value to the broader community. 
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Appendix A – Selected Medium-Duty Vehicles and 
Characterization 

  

Model Class 
GVW 
(lb) 

Battery Size 
(kWh) 

Range 
(miles) 

Efficiency 
(miles/kWh) 

Efficiency 
(kWh/miles) 

Streetscooter Work XL with 
Ford 

  76 120 1.58 0.63 

Lighting Electric Fort F-59  22000 128 110 0.86 1.16 
eM2 106 Freightliner/Daimler 3  325 230 0.71 1.41 
eCascadia 8  550 250 0.45 2.20 
eCanter- Daimler (Europe)  15000 82 80 0.98 1.03 
Volvo FL Electric  32000 300 186 0.62 1.61 
Chanje V1800 urban average  16000 100 65 0.65 1.54 
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Appendix B– HDV Model and Algorithm Details 

B.1 Selecting the Approximated Map and Highway Network 

The map construction started with the Bureau of Transportation Statistics (BTS) reported the top 
25 gateway cities for U.S.-International import and export. An additional 31 cities were included 
subjectively to represent locations where major interstate highway interchanges exist. The 
approximated interstate highway network was constructed by connecting each of the 56 cities to 
at least two of the nearest cities, and additional roads were created to assure that the highway 
network realistically captured U.S. highways mostly traveled on by heavy-duty vehicles (HDVs), 
as reported in the BTS data.  

It is worth noting that when qualitatively compared to the charging station locations, the map 
used for the HDV fleet model is in a strong agreement with respect to the road networks along 
which stations are placed and the distances between stations proposed by the Electrify America 
plan (Electrify America 2018). As illustrated in Figure B.1, the same number of charging stations 
are placed between Salt Lake City and Seattle. Similarities are particularly true for the 
northeastern, southern, and midwestern regions. In fact, for these regions, the HDV model map 
shows additional station locations and even additional roads not covered by Electrify America. 
Other disagreements between the maps along the western states (especially California) indicate a 
higher density of station locations offered by the Electrify America plan. However, the HDV 
fleet model allows for an unlimited number of charging ports at each station to accommodate 
varying levels of high traffic, thus interpreting the charging profiles from each station to be a 
local averaged representation contributing to the corresponding balancing authority in which it 
resides.  

 
Figure B.1. A comparison between the map of charging locations used in the HDV model 

simulation (left) and the map of charging station proposed by Electrify America in 
2018 (right) (Electrify America 2018) 

B.2 Charging Stations 

Roadside charging stations were placed along the approximated road network. First, a charging 
station was placed in each city. Next, charging stations were placed along roads such that they 
were equally spaced on their respective roads, while assuring they were no more than 100 miles 
apart.  
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Charging stations were assumed to have an unlimited number of charging ports available. This 
was reasonable, because an individual charging station in this model could represent multiple 
stations in a local region, such that the accumulated number of charging ports was abundant 
enough so that stopping trucks did not have to encounter a wait for available ports. Of the 
available ports, every station was assumed to allow for three different speeds: slow (50 kW), 
medium (350 kW), and fast (2 MW). The slow charging ports were assumed to accommodate 
long resting periods for drivers, and the fast ones were for those solely stopping for charging 
purposes.  

B.3 Determining HDV Driving Routes 

Optimal routes between cities used during the simulation were predetermined, including the 
charging stations encountered en route. Thus, once a pair of starting and destination cities was 
determined, the corresponding route was already available. For a given starting city, the route to 
the next destination was chosen according to the driving distance. Route distance information 
was provided by the BTS report in the form of freight tonnage and the distance it traveled (BTS 
2017). This information was used to create a probability distribution from which route distances 
were sampled. Upon selecting a route distance, destination city choices were reduced to the 
subset of cities that were the selected distance away from the given starting city. Of these 
possibilities, the route destination cities were sampled based on two criteria: the amount of 
import and export through that city (if it was on the list of 25 gateway cities), and the population 
of the respective metro area. This way, gateway cities had an advantage of being selected as a 
destination compared to other major cities that did not serve as trade gateways. Also, small cities 
with less than 500,000 population were omitted from serving as truck route destinations, because 
their purpose was served for the realistic representation of the highway network. 

B.4 Truck Driver Scenarios 

Two truck driver scenarios were considered in this model: (1) a single driver that had to stop for 
U.S. Department of Transportation (DOT)-regulated short and long breaks, and most HDV 
battery charging took place during these rest stops; and (2) double drivers, which allowed one 
driver to take required rests while the other continued the route, so stops were made only when 
HDV battery charging was needed. The latter case may overlook some DOT rest regulations that 
dictate some resting periods to allow for drivers to leave the truck. However, the double driver 
scenario was included to also represent cases where trucks stay on the road as consistently as 
possible, and it could be argued that a different driver crew could relieve driver pairs that require 
prolonged resting periods off the road. 

Single drivers followed these requirements for how to select resting periods according to the 
Federal Motor Carrier Safety Administration (FMCSA) guidelines (FMCSA 2013): 

• 11-Hour Driving Limit: May drive a maximum of 11 hours after 10 consecutive hours off 
duty. 

• 14-Hour Limit: May not drive beyond the 14th consecutive hour after coming on duty, 
following 10 consecutive hours off duty. Off-duty time does not extend the 14-hour period. 
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• Rest Breaks: May drive only if 8 hours or less have passed since end of the driver’s last off-
duty or sleeper berth period of at least 30 minutes. 

• 60/70-Hour Limit: May not drive after 60/70 hours of being on duty in 7/8 consecutive days. 
A driver may restart a 7/8 consecutive day period after taking 34 or more consecutive hours 
off duty. 

The last rule was not enforced in our simulations, because the total simulation time was limited 
to 1 week (7 days). 

B.5 Simulating Trucks on the Road 

Trucks were simulated one at a time. First, the type of driver scenario was chosen for the 
simulated truck. A starting city was randomly sampled using only the 25 gateway cities, with 
probabilities based only on the amount of import into each city. The simulation started at 6:00 
AM local time, relative to the sampled starting city. A route to a destination city was determined 
according to the description above. Upon encountering each charging station, a decision was 
made to stop based on resting and charging needs prior to continuing on the route to the next 
station. Recall that resting requirements were dictated by the driver type for this truck. Charging 
usage and the type of port used were tracked for each charging station throughout the simulation. 
Every time a truck stopped for any kind of charging, it was assumed that the battery was brought 
up to full charge. 

Trucks were assumed to travel at a constant speed of 50 mph. All trucks had a battery capacity of 
1500 kWh, and performance was set to 0.33 miles/kWh. Once a truck reached the route 
destination, the truck battery was re-charged, and a new destination city and route were chosen. 
Trucks continued on consecutive routes until the simulation time was reached. The simulation 
was repeated for 35,000 trucks. 

B.6 Accumulating Simulation Results 

Charging usage at each station was tracked in 15-minute intervals, including the charging port 
speeds used. The typical day usage was calculated by averaging the results at each time step over 
the 7-day simulation period. Because latitude and longitude coordinates were available for each 
charging station, various types of local and regional subdivisions could be made. In the results 
shown here, charging profiles were accumulated across different time zones. The final results 
calculated the total wattage used during each hour, as well as the number of trucks stopped to 
charge for different charging speeds. 

B.7 Summary of Model Assumptions 

To develop the domain for the simulated model, a simplified map of continental U.S. cities was 
selected to serve as the nodes of an artificial road network. The simplified map consisted of 56 
U.S. cities. Of these, 25 cities are the top U.S.-International trade freight gateways representing 
major locations for import and export (BTS 2017). These major port cities serve as the preferred 
starting and destination points when simulating truck routes. The remaining cities are selected 
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subjectively for their locations serving as a significant interchanges along major interstate 
highways with high average daily long-haul truck traffic (BTS 2017). Care was taken to choose 
cities that were located no less than 100 miles apart. Doing so captured an approximated but 
realistic representation of the U.S. interstate highway network.  

Roadside charging stations were placed along the approximated roadmap, and a ubiquitous 
number of charging ports were made available for use by any number of trucks. This allowed for 
each charging station location to represent a local total as needed, similar to how multiple gas 
stations can be located at a single intersection. Each station had slow, medium, and fast charging 
ports available. The model assumed that a driver would use the slowest port that could bring the 
truck battery to full charge within the time allowed for by the minimum required resting period. 

The model considered two types of driver scenarios: a single driver scenario requires a driver to 
stop at charging station locations for required resting periods; and a double driver scenario 
allows for one driver to rest while the other drives, thus allowing for stops to be solely for 
charging purposes. 

Driving routes were selected by randomly choosing a starting city, based on import/export 
tonnage through that city and the population in the respective metro area. Next, a route distance 
range was sampled, drawing from distance distributions reported in BTS data. This generated 
route distances mostly under 500 miles, but still allowed for longer, even cross-country routes to 
be possible. Once a distance was determined, destination cities falling within the distance range 
from the starting city were selected using similar biasing criteria as the starting city selection. 
Stops for resting and charging needs were simulated along this route. Upon reaching the 
destination, the truck was re-charged, and a new route was selected. This process was repeated 
until 1 week of simulation time was completed.  

The trucks used in this simulation were each assumed to have a 1500 kWh battery capacity. 
Trucks were assumed to travel at a constant speed of 50 mph. The truck performances were 
uniformly set to 0.33 miles/kWh, which dictated the battery depletion and charging needs.  

Some model variables could be modified to change or scale the simulation results. First, the 
spacing of charging stations could be increased to allow for a courser grained approximation. 
Doing so would force the final load requirements to be averaged more generally across balancing 
authorities (BAs). Using the smaller spacing in the implementation presented here added to the 
complexity of the model with fewer stations being used, but it allowed for a better localization of 
distributing energy load from BAs to the nearest charging stations. Next, the number of trucks on 
the road served as a variable that could effectively scale the final results. Results seemed to 
converge after 25,000 trucks, which was further verified by counting the number of times a city 
was chosen as a destination; adding more trucks to the simulation had little effect on changing 
this distribution. Thus, a scalar multiple of the charging profiles would be all that is needed to 
represent the presence of a larger number of trucks on the road. Finally, varying truck battery 
capacity and performance could generate more variety in charging station usage, while 
simultaneously representing different freight loads that would be carried on HDVs along their 
routes. 
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Appendix C– County to Balancing Authority Mapping for All 
of the Western Electricity Coordinating Council 

The table below contains the county to balancing authority mapping used in this analysis. 

State County Balancing Authority 
Percentage of LDV in 

State Total 
ARIZONA COCONINO AZPS 2.08% 
ARIZONA MARICOPA AZPS 59.95% 
ARIZONA NAVAJO AZPS 1.76% 
ARIZONA YAVAPAI AZPS 4.00% 
ARIZONA YUMA AZPS 3.43% 
ARIZONA GREENLEE PNM 0.17% 
ARIZONA GILA SRP 0.89% 
ARIZONA PINAL SRP 5.29% 
ARIZONA COCHISE TEPC 2.25% 
ARIZONA PIMA TEPC 13.16% 
ARIZONA SANTA CRUZ TEPC 1.33% 
ARIZONA APACHE WALC 1.08% 
ARIZONA GRAHAM WALC 0.56% 
ARIZONA LA PAZ WALC 0.40% 
ARIZONA MOHAVE WALC 3.65% 
CALIFORNIA EL DORADO BANC 0.55% 
CALIFORNIA SACRAMENTO BANC 4.08% 
CALIFORNIA ALAMEDA CISO 3.99% 
CALIFORNIA ALPINE CISO 0.00% 
CALIFORNIA AMADOR CISO 0.12% 
CALIFORNIA BUTTE CISO 0.56% 
CALIFORNIA CALAVERAS CISO 0.17% 
CALIFORNIA COLUSA CISO 0.07% 
CALIFORNIA CONTRA COSTA CISO 3.00% 
CALIFORNIA DEL NORTE CISO 0.06% 
CALIFORNIA FRESNO CISO 2.34% 
CALIFORNIA GLENN CISO 0.09% 
CALIFORNIA HUMBOLDT CISO 0.38% 
CALIFORNIA INYO CISO 0.06% 
CALIFORNIA KERN CISO 2.13% 
CALIFORNIA KINGS CISO 0.33% 
CALIFORNIA LAKE CISO 0.21% 
CALIFORNIA LASSEN CISO 0.07% 
CALIFORNIA MADERA CISO 0.38% 
CALIFORNIA MARIN CISO 0.70% 
CALIFORNIA MENDOCINO CISO 0.29% 
CALIFORNIA MODOC CISO 0.03% 
CALIFORNIA MONO CISO 0.04% 
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State County Balancing Authority 
Percentage of LDV in 

State Total 
CALIFORNIA MONTEREY CISO 1.11% 
CALIFORNIA NAPA CISO 0.39% 
CALIFORNIA NEVADA CISO 0.31% 
CALIFORNIA ORANGE CISO 8.33% 
CALIFORNIA PLACER CISO 1.08% 
CALIFORNIA PLUMAS CISO 0.07% 
CALIFORNIA SAN BENITO CISO 0.17% 

CALIFORNIA 
SAN 
BERNARDINO CISO 5.50% 

CALIFORNIA SAN DIEGO CISO 8.95% 

CALIFORNIA 
SAN 
FRANCISCO CISO 1.48% 

CALIFORNIA SAN JOAQUIN CISO 1.92% 

CALIFORNIA 
SAN LUIS 
OBISPO CISO 0.76% 

CALIFORNIA SAN MATEO CISO 2.14% 

CALIFORNIA 
SANTA 
BARBARA CISO 1.09% 

CALIFORNIA SANTA CLARA CISO 4.96% 
CALIFORNIA SANTA CRUZ CISO 0.70% 
CALIFORNIA SHASTA CISO 0.49% 
CALIFORNIA SIERRA CISO 0.01% 
CALIFORNIA SISKIYOU CISO 0.13% 
CALIFORNIA SOLANO CISO 1.26% 
CALIFORNIA SONOMA CISO 1.38% 
CALIFORNIA STANISLAUS CISO 1.39% 
CALIFORNIA SUTTER CISO 0.27% 
CALIFORNIA TEHAMA CISO 0.18% 
CALIFORNIA TRINITY CISO 0.04% 
CALIFORNIA TULARE CISO 1.13% 
CALIFORNIA TUOLUMNE CISO 0.17% 
CALIFORNIA VENTURA CISO 2.23% 
CALIFORNIA YOLO CISO 0.55% 
CALIFORNIA YUBA CISO 0.20% 
CALIFORNIA IMPERIAL IID 0.64% 
CALIFORNIA RIVERSIDE IID 6.03% 
CALIFORNIA LOS ANGELES LDWP 24.57% 
CALIFORNIA MARIPOSA TIDC 0.06% 
CALIFORNIA MERCED TIDC 0.66% 
COLORADO ADAMS PSCO 9.00% 
COLORADO ALAMOSA PSCO 0.31% 
COLORADO ARAPAHOE PSCO 11.04% 
COLORADO BACA PSCO 0.10% 
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State County Balancing Authority 
Percentage of LDV in 

State Total 
COLORADO BENT PSCO 0.09% 
COLORADO BOULDER PSCO 5.24% 
COLORADO BROOMFIELD PSCO 1.17% 
COLORADO CLEAR CREEK PSCO 0.24% 
COLORADO COSTILLA PSCO 0.09% 
COLORADO CROWLEY PSCO 0.07% 
COLORADO DENVER PSCO 11.26% 
COLORADO DOUGLAS PSCO 5.82% 
COLORADO EL PASO PSCO 11.79% 
COLORADO ELBERT PSCO 0.65% 
COLORADO GILPIN PSCO 0.16% 
COLORADO HUERFANO PSCO 0.15% 
COLORADO JEFFERSON PSCO 10.05% 
COLORADO LAS ANIMAS PSCO 0.32% 
COLORADO LINCOLN PSCO 0.13% 
COLORADO MORGAN PSCO 0.65% 
COLORADO OTERO PSCO 0.37% 
COLORADO PROWERS PSCO 0.25% 
COLORADO PUEBLO PSCO 2.89% 
COLORADO ARCHULETA WACM 0.30% 
COLORADO CHAFFEE WACM 0.44% 
COLORADO CHEYENNE WACM 0.05% 
COLORADO CONEJOS WACM 0.19% 
COLORADO CUSTER WACM 0.12% 
COLORADO DELTA WACM 0.68% 
COLORADO DOLORES WACM 0.05% 
COLORADO EAGLE WACM 1.12% 
COLORADO FREMONT WACM 0.85% 
COLORADO GARFIELD WACM 1.25% 
COLORADO GRAND WACM 0.36% 
COLORADO GUNNISON WACM 0.34% 
COLORADO HINSDALE WACM 0.02% 
COLORADO JACKSON WACM 0.04% 
COLORADO KIOWA WACM 0.04% 
COLORADO KIT CARSON WACM 0.20% 
COLORADO LA PLATA WACM 1.10% 
COLORADO LAKE WACM 0.17% 
COLORADO LARIMER WACM 5.96% 
COLORADO LOGAN WACM 0.41% 
COLORADO MESA WACM 2.81% 
COLORADO MINERAL WACM 0.02% 
COLORADO MOFFAT WACM 0.28% 
COLORADO MONTEZUMA WACM 0.54% 
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State County Balancing Authority 
Percentage of LDV in 

State Total 
COLORADO MONTROSE WACM 0.87% 
COLORADO OURAY WACM 0.11% 
COLORADO PARK WACM 0.45% 
COLORADO PHILLIPS WACM 0.11% 
COLORADO PITKIN WACM 0.41% 
COLORADO RIO BLANCO WACM 0.15% 
COLORADO RIO GRANDE WACM 0.27% 
COLORADO ROUTT WACM 0.53% 
COLORADO SAGUACHE WACM 0.14% 
COLORADO SAN JUAN WACM 0.02% 
COLORADO SAN MIGUEL WACM 0.17% 
COLORADO SEDGWICK WACM 0.06% 
COLORADO SUMMIT WACM 0.63% 
COLORADO TELLER WACM 0.54% 
COLORADO WASHINGTON WACM 0.13% 
COLORADO WELD WACM 5.95% 
COLORADO YUMA WACM 0.24% 
IDAHO BENEWAH AVA 0.68% 
IDAHO BONNER AVA 3.02% 
IDAHO KOOTENAI AVA 9.98% 
IDAHO LATAH AVA 1.95% 
IDAHO BOUNDARY BPAT 0.81% 
IDAHO CLEARWATER BPAT 0.52% 
IDAHO LEWIS BPAT 0.22% 
IDAHO NEZ PERCE BPAT 2.56% 
IDAHO SHOSHONE BPAT 0.84% 
IDAHO ADA IPCO 23.89% 
IDAHO ADAMS IPCO 0.31% 
IDAHO BLAINE IPCO 1.64% 
IDAHO BOISE IPCO 0.58% 
IDAHO BUTTE IPCO 0.19% 
IDAHO CAMAS IPCO 0.08% 
IDAHO CANYON IPCO 11.52% 
IDAHO CASSIA IPCO 1.52% 
IDAHO CUSTER IPCO 0.33% 
IDAHO ELMORE IPCO 1.61% 
IDAHO GEM IPCO 1.22% 
IDAHO GOODING IPCO 1.04% 
IDAHO IDAHO IPCO 1.17% 
IDAHO JEROME IPCO 1.56% 
IDAHO LEMHI IPCO 0.58% 
IDAHO LINCOLN IPCO 0.36% 
IDAHO MINIDOKA IPCO 1.47% 
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State County Balancing Authority 
Percentage of LDV in 

State Total 
IDAHO OWYHEE IPCO 0.87% 
IDAHO PAYETTE IPCO 1.48% 
IDAHO TWIN FALLS IPCO 4.97% 
IDAHO WASHINGTON IPCO 0.67% 
IDAHO VALLEY IPCO 0.82% 
IDAHO BANNOCK PACE 4.59% 
IDAHO BEAR LAKE PACE 0.45% 
IDAHO BINGHAM PACE 2.86% 
IDAHO BONNEVILLE PACE 6.31% 
IDAHO CARIBOU PACE 0.50% 
IDAHO CLARK PACE 0.05% 
IDAHO FRANKLIN PACE 0.88% 
IDAHO FREMONT PACE 0.84% 
IDAHO JEFFERSON PACE 1.76% 
IDAHO MADISON PACE 1.69% 
IDAHO ONEIDA PACE 0.33% 
IDAHO POWER PACE 0.54% 
IDAHO TETON PACE 0.74% 
MONTANA FLATHEAD BPAT 10.60% 
MONTANA LAKE BPAT 3.13% 
MONTANA LINCOLN BPAT 1.97% 
MONTANA MINERAL BPAT 0.46% 
MONTANA SANDERS BPAT 1.27% 
MONTANA BEAVERHEAD NWMT 0.90% 
MONTANA BIG HORN NWMT 1.56% 
MONTANA BROADWATER NWMT 0.64% 
MONTANA CARBON NWMT 1.20% 
MONTANA CASCADE NWMT 6.73% 
MONTANA CHOUTEAU NWMT 0.59% 
MONTANA DEER LODGE NWMT 1.06% 
MONTANA GALLATIN NWMT 9.18% 
MONTANA GLACIER NWMT 1.40% 

MONTANA 
GOLDEN 
VALLEY NWMT 0.10% 

MONTANA GRANITE NWMT 0.55% 
MONTANA JEFFERSON NWMT 1.22% 
MONTANA JUDITH BASIN NWMT 0.22% 

MONTANA 
LEWIS AND 
CLARK NWMT 6.68% 

MONTANA MADISON NWMT 0.97% 
MONTANA MEAGHER NWMT 0.20% 
MONTANA MISSOULA NWMT 10.00% 
MONTANA MUSSELSHELL NWMT 0.52% 
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State County Balancing Authority 
Percentage of LDV in 

State Total 
MONTANA PARK NWMT 1.73% 
MONTANA PONDERA NWMT 0.62% 
MONTANA POWELL NWMT 0.58% 
MONTANA RAVALLI NWMT 4.16% 
MONTANA SILVER BOW NWMT 2.82% 
MONTANA STILLWATER NWMT 1.01% 
MONTANA SWEET GRASS NWMT 0.37% 
MONTANA TETON NWMT 0.69% 
MONTANA TREASURE NWMT 0.34% 
MONTANA WHEATLAND NWMT 0.20% 
MONTANA YELLOWSTONE NWMT 13.49% 
MONTANA BLAINE WAUW 0.75% 
MONTANA CARTER WAUW 0.18% 
MONTANA CUSTER WAUW 1.11% 
MONTANA DANIELS WAUW 0.21% 
MONTANA DAWSON WAUW 0.87% 
MONTANA FALLON WAUW 0.34% 
MONTANA FERGUS WAUW 1.17% 
MONTANA GARFIELD WAUW 0.15% 
MONTANA HILL WAUW 1.48% 
MONTANA LIBERTY WAUW 0.18% 
MONTANA MC CONE WAUW 0.24% 
MONTANA PETROLEUM WAUW 0.05% 
MONTANA PHILLIPS WAUW 0.55% 
MONTANA POWDER RIVER WAUW 0.19% 
MONTANA PRAIRIE WAUW 0.14% 
MONTANA RICHLAND WAUW 1.53% 
MONTANA ROOSEVELT WAUW 1.01% 
MONTANA ROSEBUD WAUW 0.83% 
MONTANA SHERIDAN WAUW 0.46% 
MONTANA VALLEY WAUW 0.81% 
MONTANA WIBAUX WAUW 0.12% 
MONTANA TOOLE WWA 0.47% 
NEBRASKA CHASE WACM 0.29% 
NEBRASKA HAYES WACM 0.05% 
NEBRASKA DUNDY WACM 0.13% 
NEBRASKA HITCHCOK WACM 0.21% 
NEVADA CARSON CITY NEVP 2.46% 
NEVADA CHURCHILL NEVP 1.13% 
NEVADA CLARK NEVP 67.73% 
NEVADA DOUGLAS NEVP 2.41% 
NEVADA ELKO NEVP 2.21% 
NEVADA ESMERALDA NEVP 0.06% 
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State County Balancing Authority 
Percentage of LDV in 

State Total 
NEVADA EUREKA NEVP 0.10% 
NEVADA HUMBOLDT NEVP 0.80% 
NEVADA LANDER NEVP 0.27% 
NEVADA LINCOLN NEVP 0.22% 
NEVADA LYON NEVP 2.55% 
NEVADA MINERAL NEVP 0.21% 
NEVADA NYE NEVP 2.10% 
NEVADA PERSHING NEVP 0.22% 
NEVADA STOREY NEVP 0.22% 
NEVADA WASHOE NEVP 16.89% 
NEVADA WHITE PINE NEVP 0.41% 
NEW MEXICO DONA ANA EPE 10.25% 
NEW MEXICO EDDY EPE 3.20% 
NEW MEXICO OTERO EPE 3.04% 
NEW MEXICO BERNALILLO PNM 28.81% 
NEW MEXICO CATRON PNM 0.24% 
NEW MEXICO CHAVES PNM 2.94% 
NEW MEXICO CIBOLA PNM 1.02% 
NEW MEXICO COLFAX PNM 0.70% 
NEW MEXICO CURRY PNM 2.25% 
NEW MEXICO DE BACA PNM 0.11% 
NEW MEXICO GRANT PNM 1.56% 
NEW MEXICO GUADALUPE PNM 0.24% 
NEW MEXICO HARDING PNM 0.05% 
NEW MEXICO HIDALGO PNM 0.24% 
NEW MEXICO LEA PNM 3.66% 
NEW MEXICO LINCOLN PNM 1.17% 
NEW MEXICO LOS ALAMOS PNM 1.03% 
NEW MEXICO LUNA PNM 1.29% 
NEW MEXICO MC KINLEY PNM 2.72% 
NEW MEXICO MORA PNM 0.30% 
NEW MEXICO QUAY PNM 0.49% 
NEW MEXICO RIO ARRIBA PNM 2.03% 
NEW MEXICO ROOSEVELT PNM 0.88% 
NEW MEXICO SAN JUAN PNM 5.81% 
NEW MEXICO SAN MIGUEL PNM 1.44% 
NEW MEXICO SANDOVAL PNM 7.06% 
NEW MEXICO SANTA FE PNM 8.88% 
NEW MEXICO SIERRA PNM 0.67% 
NEW MEXICO SOCORRO PNM 0.88% 
NEW MEXICO TAOS PNM 1.94% 
NEW MEXICO TORRANCE PNM 0.88% 
NEW MEXICO UNION PNM 0.22% 
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State County Balancing Authority 
Percentage of LDV in 

State Total 
NEW MEXICO VALENCIA PNM 4.01% 
OREGON BAKER BPAT 0.46% 
OREGON BENTON BPAT 1.97% 
OREGON CLATSOP BPAT 1.04% 
OREGON COLUMBIA BPAT 1.46% 
OREGON CROOK BPAT 0.71% 
OREGON DESCHUTES BPAT 5.26% 
OREGON GILLIAM BPAT 0.06% 
OREGON GRANT BPAT 0.22% 
OREGON HARNEY BPAT 0.22% 
OREGON JEFFERSON BPAT 0.63% 
OREGON KLAMATH BPAT 1.80% 
OREGON LAKE BPAT 0.24% 
OREGON LANE BPAT 8.82% 
OREGON LINCOLN BPAT 1.30% 
OREGON LINN BPAT 3.25% 
OREGON MORROW BPAT 0.34% 
OREGON SHERMAN BPAT 0.07% 
OREGON TILLAMOOK BPAT 0.78% 
OREGON UMATILLA BPAT 1.96% 
OREGON UNION BPAT 0.69% 
OREGON WALLOWA BPAT 0.23% 
OREGON WASCO BPAT 0.72% 
OREGON WHEELER BPAT 0.05% 
OREGON MALHEUR IPCO 0.75% 
OREGON COOS PACW 1.70% 
OREGON CURRY PACW 0.69% 
OREGON DOUGLAS PACW 2.97% 
OREGON JACKSON PACW 5.49% 
OREGON JOSEPHINE PACW 2.40% 
OREGON CLACKAMAS PGE 10.13% 
OREGON HOOD RIVER PGE 0.71% 
OREGON MARION PGE 8.29% 
OREGON MULTNOMAH PGE 16.81% 
OREGON POLK PGE 1.97% 
OREGON WASHINGTON PGE 13.22% 
OREGON YAMHILL PGE 2.60% 
SOUTH 
DAKOTA LAWRENCE WACM 2.97% 
SOUTH 
DAKOTA PENNINGTON WACM 12.46% 
SOUTH 
DAKOTA CUSTER WACM 1.15% 
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State County Balancing Authority 
Percentage of LDV in 

State Total 
SOUTH 
DAKOTA FALL RIVER WACM 1.02% 
TEXAS EL PASO EPE 2.86% 
TEXAS HUDSPETH EPE 0.01% 
TEXAS CULBERSON EPE 0.01% 
UTAH BEAVER PACE 0.28% 
UTAH BOX ELDER PACE 2.17% 
UTAH CACHE PACE 3.61% 
UTAH CARBON PACE 0.80% 
UTAH DAGGETT PACE 0.05% 
UTAH DAVIS PACE 10.66% 
UTAH DUCHESNE PACE 0.83% 
UTAH EMERY PACE 0.42% 
UTAH GARFIELD PACE 0.19% 
UTAH GRAND PACE 0.43% 
UTAH IRON PACE 1.76% 
UTAH JUAB PACE 0.48% 
UTAH KANE PACE 0.31% 
UTAH MILLARD PACE 0.56% 
UTAH MORGAN PACE 0.48% 
UTAH PIUTE PACE 0.06% 
UTAH RICH PACE 0.10% 
UTAH SALT LAKE PACE 36.41% 
UTAH SAN JUAN PACE 0.40% 
UTAH SANPETE PACE 1.04% 
UTAH SEVIER PACE 0.89% 
UTAH SUMMIT PACE 1.91% 
UTAH TOOELE PACE 2.50% 
UTAH UINTAH PACE 1.30% 
UTAH UTAH PACE 16.61% 
UTAH WASATCH PACE 1.25% 
UTAH WASHINGTON PACE 5.90% 
UTAH WAYNE PACE 0.13% 
UTAH WEBER PACE 8.48% 
WASHINGTON FERRY AVA 0.12% 
WASHINGTON LINCOLN AVA 0.21% 
WASHINGTON PEND OREILLE AVA 0.23% 
WASHINGTON SPOKANE AVA 6.64% 
WASHINGTON STEVENS AVA 0.79% 
WASHINGTON WHITMAN AVA 0.52% 
WASHINGTON ADAMS BPAT 0.31% 
WASHINGTON ASOTIN BPAT 0.29% 
WASHINGTON BENTON BPAT 2.76% 
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State County Balancing Authority 
Percentage of LDV in 

State Total 
WASHINGTON CLALLAM BPAT 1.14% 
WASHINGTON CLARK BPAT 6.27% 
WASHINGTON COLUMBIA BPAT 0.06% 
WASHINGTON COWLITZ BPAT 1.57% 
WASHINGTON FRANKLIN BPAT 1.31% 
WASHINGTON GARFIELD BPAT 0.04% 
WASHINGTON GRAYS HARBOR BPAT 1.09% 
WASHINGTON ISLAND PSEI 1.30% 
WASHINGTON JEFFERSON BPAT 0.53% 
WASHINGTON KITSAP PSEI 3.72% 
WASHINGTON KITTITAS PSEI 0.66% 
WASHINGTON KLICKITAT BPAT 0.37% 
WASHINGTON LEWIS BPAT 1.30% 
WASHINGTON MASON BPAT 1.03% 
WASHINGTON PACIFIC BPAT 0.35% 
WASHINGTON SAN JUAN PSEI 0.31% 
WASHINGTON SKAMANIA BPAT 0.18% 
WASHINGTON SNOHOMISH BPAT 10.74% 
WASHINGTON THURSTON PSEI 4.25% 
WASHINGTON WAHKIAKUM BPAT 0.07% 
WASHINGTON WALLA WALLA BPAT 0.79% 
WASHINGTON YAKIMA BPAT 3.67% 
WASHINGTON CHELAN CHPD 1.20% 
WASHINGTON DOUGLAS DOPD 0.58% 
WASHINGTON OKANOGAN DOPD 0.69% 
WASHINGTON GRANT GCPD 1.49% 
WASHINGTON SKAGIT PSEI 2.03% 
WASHINGTON WHATCOM PSEI 3.14% 
WASHINGTON KING SCL 10.72% 
WASHINGTON KING PSEI 16.09% 
WASHINGTON PIERCE PSEI 8.01% 
WASHINGTON PIERCE TPWR 3.43% 
WYOMING FREMONT PACE 6.35% 
WYOMING LINCOLN PACE 3.35% 
WYOMING PARK PACE 5.45% 
WYOMING SUBLETTE PACE 2.02% 
WYOMING SWEETWATER PACE 7.56% 
WYOMING TETON PACE 4.40% 
WYOMING UINTA PACE 3.69% 
WYOMING ALBANY WACM 4.93% 
WYOMING BIG HORN WACM 2.34% 
WYOMING CAMPBELL WACM 8.26% 
WYOMING CARBON WACM 2.78% 
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State County Balancing Authority 
Percentage of LDV in 

State Total 
WYOMING CONVERSE WACM 2.62% 
WYOMING CROOK WACM 1.48% 
WYOMING GOSHEN WACM 2.22% 
WYOMING HOT SPRINGS WACM 0.88% 
WYOMING JOHNSON WACM 1.62% 
WYOMING LARAMIE WACM 16.38% 
WYOMING NATRONA WACM 13.34% 
WYOMING NIOBRARA WACM 0.50% 
WYOMING PLATTE WACM 1.86% 
WYOMING SHERIDAN WACM 5.19% 
WYOMING WASHAKIE WACM 1.44% 
WYOMING WESTON WACM 1.36% 
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Appendix D – 2028 WECC Load Profiles 
24 Million EV: Home High power No Delay (HHND) 

 

24 Million EV: Home High power With Delay (HHWD) 

 

24 Million EV: Home Low power No Delay (HLND) 

 

 

 

24 Million EV: Home Low power With Delay (HLWD) 
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24 Million EV: Work Low power No Delay (WLND) 

 

24 million EV: Work Low power With Delay (WLWD) 
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Appendix E – Regional Distribution of Unserved Energy over 
Various LDV Penetration Scenarios 

Regional distribution of unserved energy over various light-duty vehicle (LDV) penetration 
scenarios is shown in the table below. These results are based on production cost model 
simulations using the Home High power No Delay (HHND) charging scenario.  

Balancing authorities with locations in Washington State are highlighted in yellow. The top rows 
are summary rows for the selected states of Arizona, California, and Washington, as well as 
remaining states in the WECC (Others).  

Unserved Energy (MWh) 
Area Base 24M 30M 37M 44M 65M 
WECC 0        3,602       21,501       97,514     309,658    2,771,530  
AZ 0           467         2,525       14,620       42,422       271,148  
CA 0        3,023       15,582       58,766     169,683    1,444,379  
WA 0             -              789         5,385       23,161       361,142  
OTHER 0           113         2,606       18,743       74,391       694,862  
AESO 0             -                -                -                -                   -    
CISC 0           617         2,234         8,028       20,756       132,954  
CISD 0           252         1,232         5,273       13,669         96,523  
DOPD 0             -                -                -                -                   -    
EPE 0             -                -              239         1,323         11,867  
GCPD 0             -                  9            504         1,602         34,574  
IID 0           486         1,439         6,286       18,025       142,214  
IPFE 0             -                41            311         1,272           8,395  
IPMV 0             -                15              92            442           2,613  
IPTV 0             -              205            614         2,432         16,995  
LDWP 0             -                -              427         6,893       336,478  
AVA 0             -                15            198         1,268         24,804  
NEVP 0             -              215            882         2,744         17,235  
NWMT 0             72            612         2,905         7,868         64,258  
PACW 0             -                -                -                -                   -    
PAID 0             -                -                -                -                   -    
PAUT 0             -              361         1,638         6,015         36,444  
PAWY 0             -                11            191            679         11,737  
PGE 0             -                50         1,083         4,031         52,454  
PNM 0             -              383         3,148       13,722         83,935  
PSCO 0             -                -              566         3,637         61,219  
PSEI 0             -                -              153         1,206         35,706  
AZPS 0           140            586         2,477         5,624         21,595  
SCL 0             -                -                73            292           8,651  
SPPC 0             -              395         2,770         9,631         76,667  
SRP 0             -              662         6,976       21,263       159,114  
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Unserved Energy (MWh) 
Area Base 24M 30M 37M 44M 65M 
TEPC 0           327         1,277         4,955       14,856         84,377  
TIDC 0           107            531         1,836         5,290         32,101  
TPWR 0             -                -                58            469         12,797  
WALC 0             -                -              212            679           6,063  
WACM 0             -                58         1,970         8,521       105,535  
WAUW 0               4              10              30              68           1,617  
BPAT 0             -              780         4,596       19,585       269,224  
BANC 0             20            332         1,196         3,144         42,858  
VEA 0             -                -                -                -                   -    
TH_PV 0             -                -                -                -                   -    
TH_Mead 0             -                -                -                -                   -    
TH_Malin 0             -                -                -                -                   -    
BCHA 0             -                -              834         7,498       107,407  
CFE 0             37            235         1,273         3,241         11,680  
CHPD 0             -                -                -                  8              190  
CIPB 0           338         3,233       11,358       36,361       275,655  
CIPV 0        1,203         6,581       24,362       65,545       385,595  
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Appendix F – Plots Showing Seasonal Flows Under 
Increasing LDV Penetration for the WECC Paths 

Path 3 Northwest to British Columbia 

 

Path 8 Montana to Northwest 
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Path 15 Midway – Los Banos 

 

Path 16 Idaho – Sierra 
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Path 18 Montana to Idaho 

 

Path 22 Southwest of Four Corners 
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Path 24 PG&E – Sierra 

 

Path 26 Northern – Southern California 
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Path 30 TOT 1A 

 

Path 32 Pavant Inter-Mountain – Gonder 
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Path 35 TOT 2C 

 

Path 45 SDG&E – CFE 
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Path 66 California Oregon Intertie 
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Appendix G – Washington State Flowgate Impacts 
This appendix contains seasonal flows for Bonneville Power Administration (BPA) impacting 
Washington State under increasing light-duty vehicle penetration scenarios nationwide. Hourly 
flowgate conditions for BPA are provided below.   

South of Custer Flowgate (South to North) 

 

North of Echo Lake Flowgate 
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Cross Cascades North Flowgate (East to West) 

 

North of John Day Flowgate (North to South) 
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Paul – Raver Flowgate (North to South) 

 

Paul – Allston Flowgate (North to South) 
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South of Allston Flowgate (North to South) 

 

West of Hatwai Flowgate 
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Columbia Injection Flowgate 

 

North of Hanford Flowgate 
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Cross Cascades South Flowgate 

 

West of John Day Flowgate 
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South of Boundary Flowgate (North to South) 

 

West of Monumental Flowgate 

 

 
 

 
 


