Using Dictionaries to Manage Data Within a Modeling Framework System
Pacific Northwest

NATIONAL LABORATORY

Lol o PNWD-3507

Legal Notice

Summary

Table of Contents

Acknowledgments

Abbreviations and Acronyms G. M. Gelston

Glossary M.A. Pelton

Introduction R. E. Lundgren*

Backeround K.J. Castleton

Understanding Dictionaries G. Whelan

Creating Dictionaries B. L. Hoopes

References J. L. Kirk

Further Reading AT POSp_lcal

Appendix M. A. Eslinger
J. G. Droppo, Jr.
D. L. Strenge
November 2004

Pacific Northwest National Laboratory
Richland, Washington

*Consultant

Home | Security_and Privacy. | Contact s

Using Dictionaries to Manage Data Within a Modeling Framework System
Pacific Northwest

NATIONAL LABORATORY

Legal Notice LEGAL NOTICE

Summary
};all)(le OflCé)ntentf This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:
cknowledgments
Abbreviations and Acronyms MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any
Glossary information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or
Introduction
Background Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.
Understanding Dictionaries
Creating Dictionaries Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
References by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.
Further Reading
Appendix

Home | Security and Privacy | Contact Us

_ Using Dictionaries to Manage Data Within a Modeling Framework System
Pacific Northwest

NATIONAL LABORATORY

Title Page

Legal Notice Summary

Summary : : . : : : : : .

Table of Contents Under contracts with a number of federal agencies, the Pacific Northwest National Laboratory developed a modeling FRAMEwork System (FRAMES) to support the linkage, integration, and communication
Acknowledements between multiple models and databases. FRAMES is a flexible and versatile suite of software tools intended to be relatively inclusive of various types of models, databases, and tools. This inclusivity requires that
Abbreviations and Acronyms data be managed effectively.

I(illtor—sosfll;i:{tion FRAMES provides a data management a.pproach that uses dictionaries (DICs), which are collections of informgtion describing the data. This unique approach frees developers to focus on how models and databases
Backeround consume and produce data, while providing an easily understandable process for those who use the system to simulate real-world problems.

Understanding Dictionaries
Creating Dictionaries

This approach was developed through evolution when the traditional approach of hardwiring disparate models together proved wieldy and of low quality. Rather than requiring adherence to a rigid set of
specifications, FRAMES provides the tools to understand models and databases and map those components into a domain (the boundaries of the problem being modeled) that addresses the needs of the users.

References
Further.Reading DICs are created through a system evaluation process that includes identifying and defining the need for the component, describing the common content and context for each component in the domain, grouping
Appendix parameters into real-world collections that describe the conditions of the boundaries of the problem being modeled, and using the FRAMES software toolkit to facilitate integrating data sources and models into the

system.

Home | Security and Privacy | Contact Us

Using Dictionaries to Manage Data Within a Modeling Framework System
Pacific Northwest

NATIONAL LABORATORY

—Egﬁll)ﬁ%fice Table of Contents
glmmary -
Table of Contents T 1ﬂﬁ‘=P-ag?
Acknowledgments Legal Notice
Abbreviations and Acronyms Summary_
Glossary Acknowledgments._
Introduction Ahhreviations and_ Acronyms.._
Background Glossary. _

Introduction._

Understanding Dictionaries
Creating Dictionaries

Background..
Understanding_Dictionaries._

References ar] |
Further Reading Compgnents of a D1ct19nary File
Appendix Functions of Dictionaries

System Dictionaries
Module-Specific Dictionaries.
Boundary Condition Dictionaries
Creating Dictignaries..
References.
Further Reading..
Appendix, Enyvironmental Domain_ Digtionaries._

Home | Security_and Privacy. | Contact s

Pacific Northwest

NATIONAL LABORATORY

Title Page

Legal Notice

Summary

Table of Contents
Acknowledgments
Abbreviations and Acronyms
Glossary

Introduction

Background
Understanding Dictionaries
Creating Dictionaries
References

Further Reading

Appendix

Using Dictionaries to Manage Data Within a Modeling Framework System

Acknowledgments

This report describes data management for a modeling FRAMEwork System (FRAMES), which provides a central development tool to support multiple user communities. FRAMES is the product of sponsorship by
the U.S. Environmental Protection Agency (EPA) Offices of Research and Development (where it was used for analysis under the Hazardous Waste Identification Rule and 3MRA maodel_development), and Radiation
and_Indoor_Air, U.S. Army Corps of Engineers (ACOE) Engineer Research_and_Development_ Center, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE), and American_ Chemistry,
Council.

The design of FRAMES is based on a Memorandum _of Understanding (MOU) among eight federal agencies, establishing a framework for facilitating cooperation and coordination in research and development of
multimedia environmental models, software, and related databases, including development, enhancements, applications, and assessments of site-specific, generic, and process-oriented multimedia environmental
models as they pertain to human health and environmental assessment. In addition to EPA, NRC, ACOE, and DOE, the MOU includes the U.S. Geological Survey, Agricultural Research Service, National Oceanic
and Atmospheric Administration, and Natural Resources Conservation Service.

All dictionaries provided within FRAMES and discussed in this document can be found in the appendix.

The Pacific Northwest National Laboratory is operated for DOE by Battelle under Contract DE-AC06-76RL.O1830

Home | Security_and_Privacy | Contact Us

https://yosemite.epa.gov/sab/sabpeople.nsf/WebCommittees/BOARD
https://www.epa.gov//
energy.gov

Using Dictionaries to Manage Data Within a Modeling Framework System
Pacific Northwest

NATIONAL LABORATORY

litle Page Abbreviations and Acronyms
Legal Notice

Summary

Table of Contents ACOE U.S. Army Corps of Engineers
Acknowledgments API Application programming interface
Abbreviations and Acronyms DIC Dictionary

Glossary

Introduction DOE U.S. Dep.artment of Energy.
Backsground EPA U.S. Environmental Protection Agency
Understanding Dictionaries FRAMES Framework system

Creating Dictionaries NRC U.S. Nuclear Regulatory Commission
References) MOU Memorandum of Understanding
Further Reading 1

Appendix PC Personal computer

Home | Security and Privacy | Contact Us

Pacific Northwest

NATIONAL LABORATORY

Title Page

Legal Notice

Summary

Table of Contents
Acknowledgments
Abbreviations and Acronyms

Glossary

Introduction

Background
Understanding Dictionaries
Creating Dictionaries
References

Further Reading

Appendix

Using Dictionaries to Manage Data Within a Modeling Framework System

Glossary

Application Programming Interface (API)-software that coordinates and manages the input and output between components in a modeling system.

Boundary condition dictionaries-collections of information about data that is transferredbetween or used in common by various components of a system.
Conceptual model-the picture of the real-world problem being modeled.For environmental fate and transport activities, this is also called a conceptual site model.
Consuming model-a software code that simulates real-world activities and that uses (consumes) results of another model as input to function.

Database dictionary-a collection of information associated with the mapping of data between a database and the system.

Datasets-a collection of related data, for example, input for a model.

Dictionaries-files of information about the data being managed in a software system.

Dimensional size-number of dimensions (indices) associated with a parameter.

Domain-the boundaries of the problem being modeled.

Downstream model-a software code that that would run later in an analysis problem.For example, in an environmental fate and transport analysis, a human health impact model would run later than a source term
model because the impact model relies on source term data to operate.

Iteration dictionary-a collection of information that defines the current iteration of the simulation.

Iterator dictionaries-a collection of information that defines statistical data associated with the stochastic data; that is, data that can be varied.

Key-attribute of a parameter that indicates whether it has been indicated by the user as being critical to the analysis.For example, a species of concern might be a key to an ecological analysis.
Model-a software code that simulates the activities of a real-world situation.For example, a watershed model might simulate the hydrological cycle within a particular river basin.

Model dictionary-a collection of information about data passed from a producing model to a consuming model.

Module-components that work together to allow a model or database to work within the system.These components may include pre- and post-processors, the model itself, and a user interface.

Module properties dictionary-a collection of information about data on the component and its supporting infrastructure. Such data might include the point of contact for additional information, input and boundary
condition dictionaries consumed and produced, and how the module fits into a modeling scheme.

Module-specific dictionaries-collections of information about data needed to operate a module within FRAMES.

Object-oriented modeling-analyzing problems based on a collection of real-world attributes.

Post-processor-software code that runs after a model executes to facilitate its ability to produce data for a system.

Pre-processor-software code that runs before a model executes to facilitate its ability to receive data from a system.

Producing model-a software code that simulates real-world activities and that generates (produces) results which will be used by another model.
Sampled values dictionary-a collection of information that defines the inputs being sampled as stochastic and available for sampling.
Scalar-number of values associated with a variable for a particular set of indices.

Seed dictionary-a collection of information that defines the starting seed number associated with the random number generator.

Simulation dictionary-a collection of information that allows the reproduction of a particular conceptual model.This information includes model names and identification, dataset names and locations, model and
database status, linkages, model locking information, and simulation comments.

Start-up dictionary-a collection of information necessary to set up the FRAMES user interface.
Stochastic dictionary-a collection of information that defines the distribution and attributes associated with parameters that can be varied.
Summary values dictionary-a collection of information that defines the outputs summarized as part of the statistical results.

Upstream model-a software code that would run earlier in an analysis problem.For example, in an environmental fate and transport analysis, a source term model would run earlier than a human health impact model
because the impact model requires source term information to operate.

Home | Security and Privacy | Contact Us

Pacific Northwest

NATIONAL LABORATORY

Title Page

Legal Notice
Summary

Table of Contents
Acknowledgments

Abbreviations and Acronyms
Glossary

Introduction

Background

Understanding Dictionaries
Creating Dictionaries
References

Further Reading

Appendix

Using Dictionaries to Manage Data Within a Modeling Framework System

Introduction

Under contracts with a number of federal agencies, the Pacific Northwest National Laboratory developed a modeling FRAMEwork System (FRAMES) to support the linkage, integration, and communication
between multiple models and databases (Whelan et al._1997,_PNNL-11748).Consisting of a suite of integration tools and a user-friendly modeling platform, FRAMES ensures that data are correctly transferred
among databases and models, especially those components developed with different compilers, programming languages, and database packages.FRAMES was designed to allow models and databases to be accessed
from both PCs and mainframes, maintaining the flexibility of access as the components are updated over time.

FRAMES is a flexible and versatile system intended to be relatively "open". That is, it is relatively inclusive of models, attributes, databases, and other software.This inclusivity requires that data be managed
effectively. FRAMES provides a data management approach that uses DICtionaries (DICs), which are collections of information describing the data to be managed.Examples of such information include parameter
name, description, units, and ranges.This approach of using DICs frees developers to focus on how models and databases consume and produce data, while providing an easily understandable process for those who
use the system to simulate real-world problems.

The following sections provide background on the development of this unique approach, describe the purpose and functions of dictionaries used by the system, and provide information and examples for model or
database developers interested in creating dictionaries for use in FRAMES . The appendix provides a full set of DICs that comes with FRAMES.

Home | Security and Privacy | Contact Us

https://www.pnnl.gov/sites/default/files/media/file/PNNL11748-frames_doc.pdf

Pacific Northwest

NATIONAL LABORATORY

Title Page

Legal Notice

Summary

Table of Contents
Acknowledgments
Abbreviations and Acronyms
Glossary

Introduction

Background
Understanding Dictionaries
Creating Dictionaries
References

Further Reading

Appendix

Using Dictionaries to Manage Data Within a Modeling Framework System

Background

In the past, the traditional approach for managing data within modeling systems was to directly connect specific models (i.e., hardwire the models to each other). Each connection specifically reflected the data needs
of the consuming model, resulting in an efficient transfer of data and dynamic feedback between models. Figure 1 illustrates this traditional approach for linking models and managing data.

Module Type 1 Module Type 2

Model 1 -

Model 2

Model 3

O = Data

Figure 1. Traditional Approach to Managing Data in Modeling Systems

Unfortunately, as the complexity of the modeled problem increases, so does the complexity of the data management. Thus, this approach quickly becomes unmanageable. It also prevents the user from adding new
models, parameters, data requirements, databases, or other components without having to modify the entire system and revamp older models.

As modeling systems evolved, some developers took advantage of advances in "object-oriented" modeling to allow models entering the system to agree on a data transfer protocol (Figure 2). This nontraditional
approach identified system data specifications to which models would have to adhere when passing information between model types and databases. Pre- and post-processors allowed older models to remain
unaffected and facilitated the ability to connect these models directly into the system. The ability enhanced quality control by making the entire legacy of testing and validation for each model and database still
appropriate (i.e., the original code was not modified). The ability also simplified management of and modification to multiple models (Whelan et al. 2001. PNNL-13453).

Inpmt DICs Database DICs

L

Model 1 Model DICs
As Cutput
Input DICs Datahase DICs
A 4 l
Model DICs Model DICs

As Inpul Mﬂdel 2 A Oulp ul

Figure 2. Nontraditional Approach to Managing Data in Modeling Systems

Unfortunately, ensuring that all model developers followed a rigid set of data specifications, while attractive in theory, proved difficult in practice. Following a file specification required each developer to incorporate
both format and data content, which had the effect of having every developer recode the specification. This approach, while effective, increased code maintenance and made the interpretation of the file specification
critical. Many problems can arise when different individuals make slightly different interpretations of the specification.

In addition, many modeling frameworks required that the specification be built on the needs of upstream models (that is, models that run earlier in the analysis process). These upstream models might produce three
output files, while only two would be needed by models running later (downstream models). For example, a chemical database might provide information on 17 different constituents, but the health effects model
that will run later in the analysis only needs information on the three constituents that could be linked to cancer. This specification approach, then, results in an excess of data moving through the system, slowing
processing and analysis time.

FRAMES Version 2.0 provides the flexibility to allow model developers to use standard requirements (i.e., DICs) to minimize the data produced and consumed between models. If a model developer wants his/her
model to produce additional data that are not consumed by a specific downstream model, that can be accomplished. Another, yet different, model might require these data in future assessments. By giving model
developers this flexibility to produce a wide range of output datasets, models can link to and communicate with a larger set of other models. Models may also be able to be applied in a wider set of scenarios.

FRAMES 2.0 also utilizes an Application Programming Interface (API) to manage data within the system. This API coordinates and manages the input and output between components.
Basically, in FRAMES, "what" is being stored is different from "how" it is stored. Thus, the API can provide the following functions:

e Range checking of parameters (ensures that parameters remain within acceptable bounds)

e Data retrieval

e Data storage

e Units checking (ensures that the parameters are affiliated with the correct units)

e Opening and closing of data sources

e Read/write abilities (e.g., alerting users to errors, issuing command lines to instruct models how and when to run, identifying which models produce and consume data from other models, selecting models to be
used in the analysis, and documenting user comments)

e Units conversion (allows models to use whatever units they require)
e Graphical user interface (e.g., being able to place and connect models by dragging icons and dropping them onto a work space, providing a pallet of models among which to choose, etc.).

The key to successful data management within a modeling system, then, is to ensure that the producing component provides information that meets the needs of the consuming component, in a form that is
recognizable by both components as well as to provide a mechanism for ensuring the compatibility of that form. Figure 3 illustrates this approach to managing data within a modeling system, with the arrows
representing the transfer of data through one or many DICs.

source Transport Foodchain Exposure /Risk

Foodchain
~ »
ay N
Madule
e Ecologieas
(Expotua;knk
Aquatic
Watershed Foodchain
Madule Module .

Madule
) =
Module

Farm Fooddhar
Wadoze Zone Saturated Zore Modde
Modue Modude

Che.'ni:a’: GlDbﬂ
Conslanis
Data

Site
Simndalio Mel, Dala
n Fles

Resuls
Files

Figure 3. Using Dictionaries (indicated by arrows) to Manage Data in Modeling Systems
In FRAMES, this shared responsibility for managing data is based on datasets, whose describing information is characterized in DIC files. These files can be created by hand or through the use of the API.

Figure 4 provides a more detailed example of the use of DICs by FRAMES. The model shown in the figure can accept information from three different source types: user-defined input provided through a user
interface, data supplied from a database, and data provided by a model that runs earlier in the analysis process. When the output dataset (i.e., Model DICs as Output in Figure 4) from an upstreammodel provides
enough information to satisfy the input required by a downstream model (e.g., Model 1 in Figure 4), then the data from theupstream model can be successfully and seamlessly transferred to thedownstream model.

Figure 4. How Dictionaries Manage Datasets

The following sections provide additional information on DIC files, both to understand and to create them.

Home | Security and Privacy. | Contact Us

Using Dictionaries to Manage Data Within a Modeling Framework System
Pacific Northwest

NATIONAL LABORATORY

litle Page Understanding Dictionaries

Legal Notice

Table of Contents DICs start with a dataset. Every component within a modeling system requires data to operate, whether it's the amount of annual rainfall in the Congo or the value of a stock portfolio. Most models provide output in
Acknowledements the form of numbers, but a number by itself can be meaningless if not placed within some context. For example, the number 10 with no context tells the user nothing. It could be the number of iterations for that
Abbreviations and Acronyms model in a stochastic scenario or the number of years an organism is expected to live. Simply adding a unit doesn't provide much more specificity. Is it 10 seconds to impact or 10 seconds to run a model"

I(il t(i' S()S‘?;iiﬁon DIC files provide another layer of information about datasets. DICs consist of the description and context of values that occur together in the real world. DIC files also describe attributes of the actual data in the
Backeround dataset. Such attributes might include whether the particular variable is dependent upon another variable or if the dependent variable has one or more values. This information is critical so that the system can

. . . . convert units, transfer information, and provide meaningful results to the user.
Understanding Dictionaries

Creating Dictionaries

For example, in an environmental assessment, the description of chemical concentration (the amount of a chemical), the location of the chemical (space), and the particular time provide the most meaning when used

References) in concert. In other words, knowing that trichloroethylene has entered the environment is far more meaningful if the analyst knows how much, where, and when. Furthermore, while a model may only concern itself
Further Reading . : . : . : : :)))
Appendix with concentration, the time and space associated with that concentration cannot be considered separate values. This connection can be seen as analogous to a complex number (a + bi). The real part (a) is

meaningless without the imaginary part (b). They together have meaning and use. A DIC ensures that this type of connected information stays together as it is transferred through the system.

The following subsections describe the components of a DIC file and the general types of DIC files available in FRAMES.

Components of a Dictionary File

A DIC file is a comma-delimited text file (see Figure 5 for example). This highly organized, structured design was chosen because it can be easily translated into a variety of other formats such as databases, html,
xml, etc. The design is also compact and efficient for modeling purposes.

DICs are expressed as html tables in this document for ease of viewing. While DICs can be hand-coded, it is easiest for most users of FRAMES to build DIC files using the software tools provided with the system.
Table 1 provides an example DIC, in this case, a Chemical Water Concentration DIC, which describes the parameters associated with chemicals in water. Note that this is the same DIC file shown in Figure 5.

Example of a Dictionary File as a Comma-Delimited Text File
(Chemical Water Concentration Dictionary)

Variable Count, Description, Name, Privilege, Version, Updated, Template

3, Dissolved chemical concentrations, ChemWaterConc, 1, 1,0

Dictionary Name, Dictionary Description, Dimension, DataType, PrimaryKey, Scalar, Minimum, Maximum, Measure, Unit, Stochastic, Preposition, Index 1, Index 2, Index 3, , , ,,

Runlnfo, The set of strings that describe this dataset, 1, STRING, FALSE, FALSE, 0,0, ,,FALSE,,.,,,,,,

TimePts, Concentration time point, 3, FLOAT, FALSE, FALSE, 0, 100000000, Time, yr, FALSE, , WaterConcLocation.Feature, ChemList.CASID, , , , , ,

WaterConc, The dissolve-phase concentration associated with water, 3, FLOAT, FALSE, TRUE, 0, 1.00E+30, Mass/Volume, mg/L, TRUE, , WaterConcLocation.Feature, ChemList. CASID, ChemWaterConc.TimePts, , , , ,

Table 1. Example of a Dictionary File as html (Chemical Water Concentration Dictionary)

| Name | Description | Unit | Measure | Type | Range I?IEIF| K |Prep | Indices
| RunInfo | The set of strings that describe this dataset | | | STRING | 0-80 WWW| N | |
WaterConcLocation.Feature
TimePt tration ti int Ti FLOAT |0-100000000 [N (O |N |N
imePts Concentration time poin yr ime ChemList CASID
] WaterConclLocation.Feature
WaterConc | The dissolve-phase concentration associated with water | mg/L | Mass/Volume | FLOAT [0-1E+30 Y|1]Y [N ChemList.CASID
TimePts
Legend
Column .
Name Meaning
E | Scalar
| D | Dimensional size
| U | Can uncertainty apply (is it stochastic)
| K | Is the variable a key to others

Note how various associated parameters are shown in the indices column in the above example. An indexed parameter that occurs in another DIC is shown as a hyperlink, with the first part of the link (for example,
WaterConcLocation) indicating the name of the DIC, and the second part of the link (after the period, in this case, Feature) indicating the parameter name. An indexed parameter that occurs within the same DIC is
not hyperlinked (for example, the indexed parameter TimePts in the last row of the DIC is a parameter listed in the third row of the DIC).

Note also that the example DIC includes a legend describing certain columns. The information in these columns tells FRAMES how to handle the various types of data described in the DICs. The scalar column (S)
tells FRAMES whether one value (Y) or more than one value (N) is associated with a variable for a particular set of indices. The dimensional size column (D) tells FRAMES the number of index values it takes to
recall the parameter's value from the data. The uncertainty column (U) tells FRAMES whether the parameter can be varied with a stochastic distribution (Yes or No). The key column (K) tells FRAMES whether the
parameter has been designated by the user through one of the system data management tools (Yes or No) as a key parameter. A key parameter is one that is critical to the analysis, generally the issue around which the
assessment strategy is built. For example, in an ecological assessment, a criticalorganism might be the most important parameter in the analysis and all analysis variables would be based onorganism (in other words,
have an index on organism).

As Table 1 above also shows, some DICs cross-reference others (as illustrated by the "See Also:" notation under the table's legend). Cross-referencing indicates DICs with parameters that are heavily associated on
each other, for example, a list of chemicals (ChemList) and chemical concentrations in water (ChemWaterConc, the dictionary shown in Table 1).

As seen in the example figure and table, the DIC files describe a variety of data types. Table 2 provides definitions of various data fields associated with DIC files.

Table 2. Definition of Data Fields Associated with a Dictionary

| Field Name IData Type / [Value] I Definition
| Parameter | PString | The name of this parameter
| Description | String | A short description of the parameter

| Dimension | [11213141516] | The number of dimensions on which this parameteris dependent

["String" |
Data Type ::E:)ea%ﬁr'; The data type of this parameter
"Logical"]

| Primary Key | Logical | Flag indicating whether this variable"s values are user selectable from within the Data Client Editor (one of FRAMES software tools)
| Scalar | Logical | Flag indicating whether this variable"s indices indicate multiple values or a single value
| Minimum | Integer | If "Data Type" equals "String," the minimum inclusive length of the string
| | Integer | If "Data Type" equals "Integer," the lowest inclusive integer value
| | Float | If "Data Type" equals "Float" the lowest inclusive float value
| | String | If "Data Type" equals "Logical," the string to represent false
| Maximum | Integer | If "Data Type" equals "String," the maximum inclusive length of the string
| | Integer | If "Data Type" equals "Integer," the highest inclusive integer value
| | Float | If "Data Type" equals "Float," the highest inclusive float value
| | String | If "Data Type" equals "Logical," the string to represent true

Measure String Description of unit"s measure (e.g., temperature, unit = °F)
| Units | String[32] | The unit of measure for this parameter
| Stochastic | [TIF] | Flag specifying if this parameter can be varied in a stochastic analysis

| Preposition | [at | for | from | ...] | Used to precede this parameter"s values when generating a description

| Index 1 | String | A parameter name that describes the corresponding index
| Index 2 | String | A parameter name that describes the corresponding index
| Index 3 | String | A parameter name that describes the corresponding index
| Index 4 | String | A parameter name that describes the corresponding index
| Index 5 | String | A parameter name that describes the corresponding index
| Index 6 | String | A parameter name that describes the corresponding index
| Index 7 | String | A parameter name that describes the corresponding index
| Index 8 | String | A parameter name that describes the corresponding index
| Index 9 | String | A parameter name that describes the corresponding index

Functions of Dictionaries

FRAMES' DICs serve three main functions: to describe the system or its components (system DICs), to provide data specific to a particular module (module-specific DICs), and to provide information to multiple
modules or transfer information between components (boundary condition DICs). Note that when FRAMES itself is used as part of a larger system, system DICs would be analogous to module-specific DICs. For
this reason, DICs provided in the appendix to this document are noted as being either module or boundary condition. This notation is located above the html table as a privilege (the function the DIC plays in
FRAMES). The following subsections provide additional detail on the various functions of DICs.

System Dictionaries

System DICs describe the system or its components. Such DICs are maintained by the system.
One critical system DIC is the start-up DIC. This DIC describes the information necessary to set up the FRAMES user interface, including

System path and run name

Formatting information such as font, color, size, etc.

Screen and line colors for both background and foreground

Interface flags indicating items such as visible logo name, visible identification, etc.
Window size and location on the computer screen

Domain information (the type of problem being modeled).

The dataset for the start-up DIC is initially populated with default settings, as installed with FRAMES. However, the user can modify many settings through the customize option in the user interface. Table 3 shows
an example start-up DIC.

Table 3. Example System Dictionary: a Start-Up Dictionary

| Name | Description |Unit |Measure | Type | Range I?IFIFI K |Prep | Indices
| AppPath | Path to frames application | | | STRING | 0-512 I?ITWI N | |
ClassIcons Class icon path\filename | | STRING 0-512 Y |T N |N gl(;r::;zlr\lnz;r:es
ClassNames	Class names			STRING	0-32 WWWI N					
DataBackColor	Background color of database connection			INTEGER		T	T	W	N	
DataForeColor	Foreground color of database connection			INTEGER		T	T	W	N	
DataVisible	Database connection visible flag			LOGICAL	WITWI N					
Dictionaries	Path\filename of included dictionaries			STRING	0-512 WWWI N					
DictionaryDir	Destination directory for dictionary download			STRING	0-80 WFWI N					
Domainlcons	Domain icon path\filename			STRING	0-512 I?lTWI N					
[DomainNames [Domain names [[STRING [0-32 [NJo[N[N][
[FontBold [Font bold [[LOGICAL	[Y[U[N]N]]									
FontColor	Font color			INTEGER		7	T	F	N	
[Fontltalic [Font italic [[LOGICAL	[Y[U[N]N]]									
[FontName [Font name [[STRING [0-512 [Y[1[N][N]										
[FontSize [Font size [[FLOAT [824 [Y[1[N[N][
[] DomainNames										
Grouplcons Group icon path\filename STRING	0-512 Y ([l	N	N ClassNames							
GroupNames										
[] DomainNames										
GroupModules Group module names STRING	0-32 N (0O	N [N ClassNames								
GroupNames										
GroupNames Group names STRING 0-32 N[O	N	N Ic)lc;rsnsei\llr;iir:les								
LinkageServerURL	location of linkage server			STRING	I?ITWI N					
LogoFile	Path\filename of logo image			STRING	0-512 I?ITWI N					
LogoVisible	Logo image visible flag			LOGICAL	I?ITWI N					
ModBackColor	Background color of model connection			INTEGER	I?ITWI N					
ModForeColor	Foreground color of model connection			INTEGER	I?ITWI N					
[ModIdVisible [Module 1d visible flag [[LOGICAL	[Y[U[N]N]]									
ModuleDir	Destination directory for module description downloads			STRING	0-80 I?ITWI N					
Modules	Path\filename of included modules			STRING	0-512 WWWI N					
ModVisible	Model connection visible flag			LOGICAL	I?ITWI N					
[NoticeVisible [Notice visible flag [[LOGICAL	[Y[U[N]N]]									
RecentFiles	Recent simulation files			STRING	0-512 WWWI N					
[] DomainNames										
SubGrplcons Sub-group icon path\filename STRING [0-512 Y	1	[N	N giiifg\?ﬁ:s							
SubGrpNames										
[] DomainNames										
SubGrpModules	Sub-group module names STRING	0-512 [N	0 [N [N glrisjg\?;n;zs							
SubGrpNames										
[] DomainNames										
SubGrpNames Sub-group names STRING	0-32 N[O	N	N ClassNames							
GroupNames										
SysBackColor	Background color of system connection			INTEGER	ITITWI N					
SysForeColor	Foreground color of system connection			INTEGER	I?ITWI N					
SystemUpdate	Internal flag tracking if a module has been updated			LOGICAL	0-1 I?ITWI N					
[SystemVersion	[[FLOAT ~ [0-200000 [Y [1 [N[NT]									
SysVisible	System connection visible flag			LOGICAL	I?ITWI N					
WindowHeight	Height of the window			INTEGER	I?ITWI N					
WindowPosX	X Screen position of window			INTEGER	I?ITWI N					
WindowPosY	Y Screen position of window			INTEGER	I?ITWI N					
[WindowWidth [Width of the window [[INTEGER	[Y[U[N]N]]									
WorkBackColor	Background color of workspace			INTEGER	I?ITWI N					
WorkForeColor	Foreground color of workspace			INTEGER	I?ITWI N					
Legend										
CI:I):::;H Meaning										
S	Scalar									
D	Dimensional size									
U	Can uncertainty apply (is it stochastic)									
K	Is the variable a key to others									

Another type of system DIC is the simulation DIC, which contains the necessary information to reproduce a particular conceptual model (the picture of the real-world problem being modeled). This information
includes model names and identification, dataset names and locations, model and database status, linkages, model locking information, and simulation comments (see Table 4 for an example).

Table 4. Example of a System Dictionary: a Simulation Dictionary

Name Description Unit |Measure | Type Range FB U |K [Prep Indices
ConDicName Consumer dictionary name STRING N |0 |N |N 1(\:?:;4[3) J4ID
ConModID Module's consumer module ID list | | | STRING | WITl N Wl |

| ModID
ConSetName Consumer data set name STRING Y ([1 [N |N ConModID
ConDicName

[INTEGER | [NJo NN
[LOGICAL | [Y [T[NN]
[LOGICAL | [Y [T NN

| LayoutProperties | Layout properties for sizing panels

| LockConnections | Lock connections
| LockModules | Lock modules

| |
| |
| |
LockPassword	Lock password			STRING	ITITl N Wl
ModClass	Module class name			STRING	ITITl N Wl
ModDomain	Module domain name			STRING	ITITl N Wl
[ModGlobal [Module is global or local [[LOGICAL	[Y[U[N[N]]				
ModGroup	Module group name			STRING	I?ITl N Wl
Modlcon	Module icon			STRING	I?ITl N Wl
[ModID [Module ID [[STRING	INJo N[N]				
ModLabel	Module user label			STRING	I?ITl N Wl
ModName	Module name			STRING	I?ITl N Wl
ModNote	Module user note			STRING	I?ITl N Wl
ModPosX	X screen coordinate for module			INTEGER	I?ITl N Wl
ModPosY	Y screen coordinate for module			INTEGER	I?ITl N Wl
ModScheme	Module scheme			STRING	I?ITl N Wl
ModScope	Module scope			INTEGER	0-1 I?ITl N Wl
ModState	Module state			INTEGER	0-3 I?ITl N Wl
ModSubGroup	Module subgroup name			STRING	I?ITl N Wl
ProDicName Producer dictionary name STRING N	O	N [N 11212;\1/1113 J4ID			
ProModID	Module's producer module ID list			STRING	WW
[ModID				
ProSetName Producer data set name STRING Y (1 ([N [N ProModID				
ProDicName					
SDENote Simulation comment		STRING		7	T
Legend					
CI:I)::::;H Meaning					
E	Scalar				
D	Dimensional size				
U	Can uncertainty apply (is it stochastic)				
K	Is the variable a key to others				

Another type of system DIC is the conversion DIC, which allows units to be converted between modules in FRAMES. Table 5 provides an example of a conversion DIC.

Table 5. Example of a System Dictionary: a Conversion Dictionary

| Name I Description IUnit IMeasure I Type | Range FEI U EIPrep I Indices
BaseAbbr	Measure base unit abbreviation			STRING	0-80 I?ITl N Wl for
BaseName	Measure base unit name			STRING	0-80 I?ITl N Wl for
Measure	Measure			STRING	0-80 WIFI N Wl of
[UnitAbbr [Unit abbreviation [[STRING [0-80 [N[o [N [N [for					
UnitIntercept	Unit Intercept FLOAT	-1.7E+307-1.7E+307	Y	1	N [N
UnitName Unit name STRING	0-80 Y	1 [N [N	[for Il\frfiill:r)zr		
UnitSlope	Unit slope FLOAT	-1.7E+307-1.7E+307	Y	1 [N	N
Legend					
C;;:::Zn Meaning					
S	Scalar				
D	Dimensional size				
U	Can uncertainty apply (is it stochastic)				
K	Is the variable a key to others				

Another type of system DIC is the module properties DIC, which describes data on the component and its supporting infrastructure. Such data might include the point of contact for additional information, module-
specific and boundary condition DICs consumed and produced, and how the module fits into a modeling scheme. This DIC is maintained by the system, but the corresponding dataset is populated by the developer
when initially incorporating a component into FRAMES (see Table 6 for an example).

Table 6. Example of a System Dictionary: a Module Properties Dictionary

I Name I Description IUnit IMeasure | Type I Range FBI U EIPrep IIndices
Class	Module class type			STRING		7	T	N IF	
ConSchemeDic	Consumed dictionary names			STRING	WW	N W			
DatabaselD	Identification number for an online database			STRING		7	T	N W	
Description	Module description lines			STRING	0-4096 WW	N W			
DescriptionCount				INTEGER		7	T	N W	
Dictionary	Id(name) and path of input dictionary			STRING	0-512	7	T	N W	
DiskSpace	Minimum required disk space			INTEGER	0-512	7	T	N W	
Icon	Name and path of display icon			STRING	0-512	7	T	N W	
Login	Login for model server			STRING	0-32 I?ITl N Wl				
[ModelCmdLine [Model command line switches [[STRING [0-64 [Y[1[N[N][]									
ModelExe	Name and path of Model executable			STRING	0-512	7	T	N W	
[ModelURL [Remote model server URL [[STRING [0-512 [Y[1[N][N[]									
[Name [Module name [[STRING [0-512 [Y[1[N][N[]									
OperatingSystem	Native operating system			STRING	0-64	7	T	N IF	
Password	Password for model server			STRING	0-32 I?	T	N W		
POCAddress		Point of contact first address			STRING	0-64	7	T	N W
POCAddress2	Point of contact second address			STRING	0-64	7	T	N W	
[POCCity [Point of contact city [[STRING [0-32 [Y[1[N][N][]									
POCCompany	Point of contact company name			STRING	0-64	7	T	N W	
POCContact	Point of contact name			STRING	0-64	7	T	N W	
POCCountry	Point of contact country			STRING	0-32	7	T	N W	
POCEmail	Point of contact email address			STRING	0-64	7	T	N W	
POCFax	Point of contact fax telephone number			STRING	0-16	7	T	N W	
POCPerson	Point of contact person			STRING	0-64	7	T	N W	
POCPhone	Point of contact telephone number			STRING	0-16	7	T	N W	
[POCState [Point of contact state [[STRING [0-16 [Y[1[N][N[]									
[POCUTH [Point of contact web address [[STRING [0-512 [Y[1[N[N[]									
[POCZip [Point of contact zip code [[STRING [o0-16 [Y[1[N[N[]									
Processor	Minimum processor required			STRING	0-64	7	T	N W	
ProSchemeDic	Produced dictionary names			STRING	WW	N W			
[RAM [Minimum required memory [[INTEGER [0-512 [Y[1[N][N[]									
Reference	Module reference lines			STRING	1-4096 WW	N W			
ReferenceCount				INTEGER		7	T	N IF	
Scheme	The name of a connection scheme			STRING	WW	N W			
SystemUpdate	Internal flag tracking if a module has been updated			LOGICAL	I?	T	N W		
SystemVersion	Internal version of a module used by the system			INTEGER	0-200000	7	T	N W	
[Tool [Launch from Tool menu if true [[LOGICAL [0-1 [YTU[N]N]]									
[UICmdLine [UI command line switches [[STRING [0-64 [Y[1[N][N[]									
[UIExe [Name and path of UI executable [[STRING [0-512 [Y[1U[N][N[]									
Version	Module version description			STRING	0-32	7	T	N W	
Legend

Cg:::;tn Meaning

| S | Scalar

| D | Dimensional size

| U | Can uncertainty apply (is it stochastic)

| K | Is the variable a key to others

Module-Specific Dictionaries

Module-specific DICs consist of information describing data required by a specific module to operate. For some modules, these are data to be analyzed. For other module-specific DICs, the data described allow the
analysis to occur in a specific fashion. For example, a sensitivity/uncertainty module (which analyzes which parameters more heavily influence the results of an analysis) requires the use of iterator DICs. Iterator
DICs define statistical information associated with the stochastic data; that is, data that can be varied to determine a parameter"s sensitivity or uncertainty. FRAMES uses five types of iterator DICs:

e Seed DIC, which consists of information defining the starting seed number so that random numbers can be generated to allow the analysis to vary a parameter (Table 7).
e [teration DIC, which consists of information defining the current iteration of the simulation (Table 8).

e Sampled Values DIC, which consists of information defining the inputs that are being sampled as stochastic and available for sampling (Table 9).
e Summary Values DIC, which consists of information defining the outputs that are summarized as part of the statistical results (Table 10).

e Stochastic DIC, which consists of information defining the distribution and attributes associated with the stochastic parameters (Table 11).

Boundary Condition Dictionaries

Boundary condition dictionaries provide information to multiple modules (see Table 12 for an example) or transfer information between components. Two important types of boundary condition DICs are as follows:

e Model DIC, which describes information that is passed from a producing model to a consuming model. These DICs represent the output results from a model (see Table 13 for an example) and must be
complete (i.e., no missing data).

e Database DIC, which contains information associated with the mapping of data between a database and the system. Note that a database DIC would look similar to a model DIC except that the dataset for a
database DIC does not have to be complete (i.e., some data can be missing but a method must be supplied to allow the user to provide these data during analysis of the problem being modeled).

Home | Security_and_Privacy | Contact Us

Pacific Northwest

NATIONAL LABORATORY

Title Page

Legal Notice

Summary

Table of Contents
Acknowledgments
Abbreviations and Acronyms

Glossary

Introduction

Background
Understanding Dictionaries
Creating Dictionaries
References

Further Reading

Appendix

Using Dictionaries to Manage Data Within a Modeling Framework System

Creating Dictionaries

Creating a DIC for FRAMES follows a system evaluation process that begins with identifying and defining the need. What is the purpose of the model or database? What need does it address? For example, a
chemical database might have been designed to provide basic chemical data (purpose) for use in modeling the transport and fate of chemicals in organisms (need). Identifying and defining the need provides a
boundary for the domain in which the model or database should be used and provides some understanding of the other components of the domain.

Process for Creating a Dictionary for FRAMES

1. Identify and define the need for the component.

2. Describe the common content and context for each component in the domain (the boundaries of the problem being modeled).
3. Group parameters into real-world collections to be used as boundary conditions.

4. Use the FRAMES software toolkit to facilitate registration and integration of data sources and models.

The next step in creating a dictionary is to describe each of the components in the domain in terms of common content and context. As part of reflecting each component in a real-world system, the interfaces
between these components begin to emerge. Component owners can draw visual diagrams of these relationships to better understand and communicate the processes. Such diagrams can then be used to identify
missing as well as duplicate information.

This interface "defining" process identifies the boundary conditions, which involves understanding the core parameters and their relationship to other parameters. The team of researchers who developed FRAMES
used a mediation approach to address differences between components such as variations in terminology, temporal and spatial considerations, scale, and units. This level of understanding is necessary to ensure the
effective transfer of data and information between components. Understanding these relationships allows the user to define the mapping (indexing relationships) between these parameters. For example, time is often
a core parameter that many other parameters require as an index (deaths per year, costs per month, hourly temperature, etc.).

Once parameters and relationships are clear, they can be grouped into real-world collections (chemical properties, geographic location, etc.). These collections will become the DICs and will provide clear
descriptions of the type of information expected to be stored in boundary condition datasets.

Some information will be used by many models within a domain. For example, in an environmental domain, information on such parameters as chemicals, radionuclides, space/time, and organisms will likely be
needed several times. Because of this universal need, these dictionaries are provided with the system. See the appendix for a complete list of environmental domain dictionaries.

With a full understanding of the components, their boundary conditions, and the dependencies between parameters, model and database developers can utilize the FRAMES toolkit to facilitate accurate registration
and integration of data sources and models. Some of these software tools include the following:

e Data Client Editor, which allows users to build the input corresponding to the boundary conditions associated with the module's DICs. Using this editor, the user can actually define the values of the input
parameters.

e Dictionary Editor, which allows users to add or delete information in any DIC except the module properties DICs. The editor allows the user to add or delete parameters (e.g., rows of informatio