National Distributed Wind Network

Network Launch March 14, 2024 STRATEGIZE ENGAGE NETWORK DEPLOY Distributed Wind

PNNL-SA-195872 Photo by Dennis Schroeder / NREL

Welcome

Dr. Becca Jones-Albertus

Acting Deputy Assistant Secretary for Renewable Energy, U.S. Department of Energy

Today's Agenda

- Welcome
- Overview of Distributed Wind
- Distributed Wind Bright Spots
- National Network Resources & Support

• Q&A

What is distributed wind?

Wind as a Distributed Energy Resource

- Distributed energy resources are technologies used to generate, store, and manage energy consumption for nearby energy customers
- Examples include:
 - Rooftop solar photovoltaics
 - Wind turbines
 - Battery storage
 - Batteries in electric vehicles that can export power back to the grid
- A wind turbine used as a distributed energy resource also called **distributed wind** — is connected at the distribution level of an electricity delivery system (or in off-grid applications) to serve on-site energy demand or to serve local loads on the same distribution system

There are four main applications for distributed wind deployments

These applications have different technical needs as well as different economic and value considerations

As pat of an isolated system that is not connected to the rest of the electrical grid. Toksook Bay, Alaska, USA

Installed on-site to power a farm, business, or home. Ball Corporation, Findlay, Ohio, USA

Paired with solar, battery storage, or other technologies in a hybrid system to provide expanded grid services. NREL, Golden, Colorado USA.

Photo Credit: Michael Penev/ NREL:2744

As part of a small wind farm to provide power for a nearby community. Kaupuni Village, Hawaii, USA

Wind Turbine Sizes

Distributed wind turbines can provide electricity for all types of customers

Photo from Bergey Windpower Co. Inc., NREL

Photo from Native Energy Inc., NREL 7593

Small (≤100 kW)

Large, land-based

Large commercial and

industrial deployments

Large distributed power

Utility-scale wind farms

(1-3 MW)

Homes

Farms

Remote applications (e.g., water pumping, telecom sites, ice making)

Photo from Tjaden Farms, NREL 13764

Mid-scale (100–1,000 kW) Village and hybrid power Community and distributed power Small commercial and industrial applications

Photo from HC Sorensen, NREL 17855

Utility-scale wind farms, shallow coastal waters with transition to deep water

Distributed Wind Customers

- Agricultural (farms, ranches, nurseries, vineyards)
- **Residential** (remote cabins, rural homesteads, suburban homes, multifamily dwellings)
- **Commercial** (office buildings, car dealerships, restaurants, distribution centers)
- **Industrial** (food processing plants, manufacturing facilities, mines)
- **Government** (federal agencies, municipal facilities, military sites, tribal governments)
- Institutional (schools and universities, houses of worship, local unions)
- **Distribution utilities** (investor-owned, publiclyowned, tribal-owned, and rural electric cooperatives)

Why should we be thinking about distributed wind?

There are many ways to use distributed wind technologies

There is no one-size-fits-all solution; we need renewables deployment in many applications to meet current and future needs

Distributed wind economic potential differs from those for wind farms

Areas with good wind resource, addressable siting requirements, development areas and access to the grid or local loads have strong potential for wind development

Potential distributed wind development installations (upper left) is driven by wind resource (upper right), electricity costs (lower left), and lot size of potential users (lower right). The United States currently has the potential to profitably deploy hundreds of gigawatts (GW) of distributed wind energy capacity

This capacity equates to more than half of the nation's current annual electricity consumption

Distributed wind deployments in front-of-the-meter (wholesale) and behind-the-meter (retail) have extensive national potential, even at current electricity rates.

12

Distributed wind technologies are also seeing steady cost reductions

> Recent federal legislation further reduces costs – in some cases up to 90% capital cost subsidies

Working with the Department of Energy, companies are providing a wide range of turbine options with unsubsidized costs between 40.0¢/kWh (for under 1kW) to 7.0¢/kWh for large turbines (300 kW).

Credit: Primus WindPower, / NREL 44229

Dennis

Credit: 49381

The distributed wind industry has also developed a rigorous certification process to help ensure turbine reliability

Infrastructure Investment and Jobs Act, \$1 trillion Bipartisan Infrastructure Law:

- Provides \$100M for Wind Energy R&D in addition to annual appropriations
 - Distributed wind focus on addressing permitting and interconnection process innovation and assistance
- Establishes new DOE Office of Clean Energy Demonstrations
 - Provides \$1B for demonstrating Energy Improvements in Rural and Remote Areas

Inflation Reduction Act, \$370 billion included to address climate change:

- Provides long-term clean energy policy and incentives
 - Includes additional \$2.025B for the USDA Rural Energy for America Program (REAP) with specific focus on underutilized technologies, including distributed wind
- Leveling and expanding tax incentives
 - Leveling Investment Tax Incentive (ITC) to include commercial applications of distributed wind
 - Direct pay option of credits for taxexempt applicable entities

Distributed Wind Benefits & Characteristics

- People use distributed wind to:
 - Offset potentially volatile retail or wholesale electricity costs
 - Support local loads and grid operations
 - Provide energy security and resilience
 - Provide electricity to remote locations not connected to the existing electricity network
 - Meet renewable energy goals and mandates
 - Provides a method to deploy large amounts of wind energy quickly, bypassing transmission constraints
- Key characteristics of distributed wind include:
 - Small footprint that enables land co-use
 - Different seasonal and daily resource availability compared to solar technologies
 - Fast and easy deployment
 - High domestic content with potential for local manufacturing
 - Different grid operational characteristics

USDA Perspective

Clare Sierawski, Office of the Under Secretary for Rural Development

Agricultural Perspective

John Hansen, Nebraska Farmers Union

Local Government

Perspective

Deb Perry,

International City/

County Management

Association

Industry Perspective

Padma Kasthurirangan, Buffalo Renewables

USDA Perspective

Clare Sierawski, Office of the Under Secretary for Rural Development

Clare Sierawski Senior Counselor for Rural Energy

USDA DOE RAISE INITIATIVE

RURAL AND AGRICULTURAL INCOME & SAVINGS FROM RENEWABLE ENERGY (RAISE) INITIATIVE

- □ Collaboration Effort Between USDA & DOE
- Goal to Assist 400 Farmers to Cut Costs & Increase Income
- □ Creating Jobs & Energy Independence for Rural Communities

Focused on Underutilized Technologies (Wind, Geothermal, Hydropower, Biomass-Based)

USDA DOE RAISE INITIATIVE

RURAL DEVELOPMENT REAP FUNDING

\$144.75 Million Technical Assistance REAP Grant Funding <u>Technical Assistance Awards | Rural Development (usda.gov)</u> - FY23 TAG Recipients

 Rural Energy for America Program Renewable Energy Systems & Energy Efficiency Improvement (REAP) Loans & Grants
<u>Rural Business-Cooperative Service State Energy Coordinators (usda.gov)</u> – State Energy Coordinators

Agricultural Perspective John Hansen, Nebraska Farmers Union

Local Government Perspective

Deb Perry, International City/ County Management Association

Industry Perspective

Padma Kasthurirangan, Buffalo Renewables

Industry Perspective

BUFFALO RENEWABLES INC.

- Mid-size distributed wind and solar PV project development, installation and maintenance company
- Turnkey systems provider
- Target Customers mid to large farms, rural small businesses, commercial and industrial sites

Triad Recycling & Energy – Now Casella Waste Management System

- Zero landfill recycling facility
- WT1 installed in December 2016
 - Funded by NYSERDA
 - 30% investment tax credit (ITC)
- Industrial zoning
- Reclaimed brownfield
- Existing interconnection infrastructure

Latitude: 42.97692 Longitude: -78.93051 Elevation: 181.2m Roughness: 0.30 m Wind resource data at <u>37.0m</u> height: Air Density: 1.223 kg/m³ Mean Wind Speed: 5.10 ± 0.35 m/s Mean Wind Power Density: 164 W/m² Weibull A: 5.74 m/s Weibull k: 1.864

Wind Rose Monthly Speeds

The First Year After Install

Commercial Distributed Wind in a Post-IRA World

- Federal investment tax credit 30%
- Domestic Content Bonus 10%
- Energy Community Bonus 10%
- Low Income/Disadvantaged Community Bonus - 10-20%

Additional benefits:

- Energy Cost Savings
- Demand Cost Savings
- Renewable Energy Credits

National Distributed Wind Network and Deployment Resources

National Distributed Wind Network

What is the Network?

As the clean energy transition accelerates, distributed wind is not on the radar of many stakeholders.

Where it is, stakeholders need more robust support to address their questions and concerns.

Summer 2024: Stakeholderspecific workshops (e.g., farmers, states of interest: California, Minnesota, Oklahoma, New York)

September 2024: Virtual Summit

Informational Materials & Tools

Distributed Wind Energy Resource Hub on WINDExchange

- Educational fact sheets and twopagers
- Curated slide decks
- Funding & technical assistance opportunities
- Distributed Wind Guidebook

Scan here to see the Resource Hub

https://tinyurl.com/fwtrbtas

Distributed Wind Tools

Distributed Wind Explorer

Coming Soon!

Distributed Wind Explorer

Coming Soon!

Valla Walla County	
8 ⊕ Zoom to	
County Average Behind the meter CapEx threshold (US Dollars)	9,653.92
County Average Front of the meter CapEx threshold (US Dollars)	550.04
Annual average wind speed (meters per second)	
Population 2020 (US Census)	62,584
Population per Square Mile (2020, US Census)	48.20
Sqaure miles of county	1,298.96
State name	Washington
Rural status (USDA)	rural
agricultural land (acres)	702,537.00
Open water (acres)	75,048,300.00
Number of known distributed wind projects in county	
Number of turbines in the county's known distributed wind projects	3

County Level Data

- Economic potential
- Annual average wind speed
- Demographics and community characteristics
- Known existing deployment
- Amount of agricultural land

Distributed Wind Explorer

Coming Soon!

How to Get Involved

Visit the Resource Hub

https://tinyurl.com/fwtrbtas

Request free assistance from national labs to explore local opportunities for distributed wind through the <u>Clean</u> <u>Energy to Communities</u> <u>Expert Match Program</u>

Apply to provide or receive technical assistance through USDA's <u>Rural Energy for</u> <u>America Technical</u> <u>Assistance Grant</u> <u>Program (TAG)</u>

Completed applications due March 21st

https://tinyurl.com/3x6yuu3v

Share your distributed wind story with us

https://tinyurl.com/2yd3vph5

Thank You!

STRATEGIZE, ENGAGE, NETWORK, DEPLOY Distributed Wind