

Cybersecurity for Buildings and IoT

September 25, 2019

Penny McKenzie Cybersecurity Engineer

Internet Connections Worldwide

- There are over 26.66 billion internet-connected devices worldwide in 2019.
- By 2025, there be well over 75.4 billion. WOW!

- Security cited as the number one concern in adopting IoT technology
 - Most IoT source code is open source
- Industry could view cybersecurity reputation and remediation downside risks as far exceeding benefits in productivity and energy efficiency
- Roundtable highlighted need for tailored resources and solutions for building industry based on established and proven cybersecurity frameworks

Top barrier for investment in the Internet of Things

Source: Bain 2018 IoT customer survey (n=521)

Spring 2018 Vegas Casino

Business Insider

Fall 2018 VOLTTRONTM

Building and IoT Challenges

- Technological:
 - Data Storage
 - Obsolescence
 - Complexity
- Industry:
 - Owner Resistance
 - Commercial Suppliers
 - Residential/IoT Suppliers
 - The Cycle of Blame
- Workforce:
 - Proper Cyber Secure Deployment
 - Risk Awareness
 - Training
 - Validation

Schematic of Commercial **Building Controls** Communications Architecture

- HVAC
- Lighting
- Cameras
- Metering
- Fire Protection
- Access control

Residential IoT Controls Communications Architecture

- Low cost
- Easily installed
- Rapidly expanding
- Home Management System

NIST Cybersecurity Framework

Recovery: System functionality returned Key lessons-learned RECOVER incorporated IDEN CYBERSECURITY RESPOND PROTECT FRAMEWORK Response plan: VERSION 1.1 Detected events are reported, contained and mitigated DETECT

> Detection of: Anomalous data flows and malicious software for baseline operation

Need to identify:

- Physical and software assets
- **Risks and vulnerabilities**
- **Organizational R&Rs**

Protections in place for: Access control, training, data security, system configuration and maintenance

Key Gaps and Research Needs

Facilitate stakeholder engagement, education, and knowledge sharing

Adaptive, resilient controls for self-healing system

Advanced analytics and ML for vulnerability and attack detection

Tools that allow stakeholders to understand their cyber posture & vulnerability

Resources to close gaps based on risk profile

Methods to assess and test emerging technologies (e.g. Connected lighting)

Conclusions

- Considerable expertise has been developed in existing cybersecurity frameworks and tools and resources for adjacent applications (SCADA and industrial control systems for the grid and manufacturing).
- There is an opportunity to continue to adapt these to the needs of the building community and support adoption.
- PNNL has a number of efforts underway (FCF, MEEDS, PACIFIC) that are contributing to this.
- Recommend systematically identifying remaining research gaps for the built environment.

Thank you

