
Comparing Bills of Materials
Lucas Tate

Pacific Northwest National Laboratory
lucas.tate@pnnl.gov

Rebecca Jones
Pacific Northwest National Laboratory

Doug Dennis
Pacific Northwest National Laboratory

Tatyana Benko
Pacific Northwest National Laboratory

Jody Askren
Pacific Northwest National Laboratory

Abstract—Bills of materials (BOMs) are quickly becoming an
effective tool for managing supply chain risk. As more BOMs
enter circulation, the ability to compare them will be crucial
to understanding how products differ and in managing BOMs
from different tools or sources. This paper will describe some of
the challenges of comparing BOMs followed by a discussion of
several comparison methods.

Index Terms—bill of materials, BOM, HBOM, SBOM, com-
parison, graph comparison

I. INTRODUCTION

Modern supply chains are increasingly complex. A supply
chain for a single product can include multitudes of suppliers,
manufacturers, distributors, and more. Common components
that drive efficiency and reduce costs also serve to increase
the potential damage of any one compromised component.
This complexity poses significant challenges for managing risk
because a vulnerability in any one component may have out-
sized consequences and the knowledge of what’s inside any
given product may be distributed across different companies
or across the globe.

Understanding supply chains risks is more important to-
day than it has ever been. Significant vulnerabilities and
breaches continue to highlight the growing risks that supply
chains face whether they were introduced maliciously or
unintentionally. Well known events such as Log4 Shell [18]
or Spectre/Meltdown [9] demonstrated how weaknesses in
components could leave millions of products susceptible to
attack. Solar winds [29] and the recent XZ Utils backdoor [10]
demonstrated how malicious actors could subvert elements of
a supply chain in an attempt to exponentially increase their
reach. The increasing persistence and sophistication of supply
chain threats requires new tools to combat them.

Recently, BOMs have been gaining traction as a tool to
increase our supply chain understanding and help respond
to this threat. A BOM contains details of the components
that are used in building a product. While certainly not a
silver bullet, understanding what is inside systems is a first
step toward protecting them and responding once protections
have failed. Work around software BOMs (SBOMs) far out-
paces other proposed BOMs such as hardware (HBOMs)
or artificial intelligence (AIBOMs) with regulations such as
Executive Order 14028 [12] and the European Union (EU)
Cyber Resilience Act (CRA) [6] helping to further global

adoption. Encouragingly, interest in BOMs has spawned an
abundance of new research dedicated to better understanding
how to generate, exchange, store, and operationalize BOMs
to improve risk management. As BOMs become ubiquitous,
we anticipate a growing need for the ability to compare them
which will be the focus of this paper.

Due to the nature of BOMs, comparing them is effectively
looking at how the composition of two products differs.
There are a variety of cases where that might be useful.
It may be important to understand how the composition of
a product changed with a version update or patch. Another
use case might be evaluating a received BOM against an
authoritative reference BOM. Comparisons can also be utilized
to understand temporal changes that arise in dynamic systems
or variation across a family of products. Beyond these use
cases, we also find comparison methods useful for identifying
inconsistencies in the creation of BOMs themselves. These
inconsistencies are discussed later, with the irony being
that many of these inconsistencies that make comparison
difficult are most easily discovered via comparison.

In this work, we’ll start by discussing previous work on
comparing BOMs in Section II, followed by some of the bar-
riers to comparing BOMs in Section III. Section IV discusses
select methods for comparison followed by several examples
that illustrate the comparison of two SBOMs in Section V and
two HBOMs in Section VI. Lastly, Section VII will summarize
our conclusions.

II. PREVIOUS WORK

As the application of BOMs continues to evolve, particularly
in the context of cybersecurity and supply chain management,
significant research has been dedicated to understanding and
improving how BOMs are generated, compared, and utilized.

Early research on BOMs predominantly focused on en-
hancing data management techniques to cope with the com-
plexity of large-scale manufacturing environments, such as
implementing a control system to manage BOMs throughout a
company [25] and automating the creation of BOMs using an
object-oriented model [2]. The object-oriented programming
model, similar to the graph method used today, allows for
semantic relationships that can create multi-level BOMs with
sub-components of components [3]. However, since relational
databases like SQL are ubiquitous, using them to create



BOMs became more common [20]. Algorithms were invented
to automate the creation of BOMs by determining which
products were in a product order and then pulling the required
component information from the database of parts [1]. While
this method is efficient, flexible and simple, it does not allow
for parts explosion or complex computations, especially when
analyzing or comparing BOMs [21].

To tackle the growing complexity of intricate products,
advancements in BOM structures have been proposed. The
multi-level BOM model is particularly effective in managing
software, hardware, or system variations, supporting efficient
design and planning [31]. Its strengths lies in the ability to
handle complex, hierarchical data that can be represented as
a graph.

Further development in this area focuses on using graph
databases, which store node and relationships, instead of
relational databases to integrate product development with pro-
duction planning [13]. BOM management, found at companies
such as Neo4j and OpenBOM take this approach of using a
graph database.

The main advantage of turning BOMs into graphs is pairing
the knowledge of what’s inside something with information
about how those components relate to each other. Using
graphs, multiple BOMs can easily be combined to gain new
information on a larger system, especially when combined
with graph visualization tools. Even when used on a single
BOM, graph analysis techniques can provide new insights into
a system [4]. Another contribution to the graph-theoretic ap-
proach is where BOMs are converted into generic BOM graphs
using data mining techniques [24]. This method leverages
graph theory to identify common substructures within BOMs,
facilitating the detection of component reuse across different
products. While the ability to uncover hidden patterns and
relationships within BOMs is useful, its application could be
hindered by computational complexity and graph scalability.

There have been a few attempts to leverage graph theory
for BOM comparison.

Graph based similarity analysis has been used to highlight
the importance of reducing unnecessary production variations
[26] and derived graph similarity metrics have been used to
describe the similarity of two BOMs to place them into their
product families [23, 17, 27]. Tree reconciliation, matching
components in one graph to the components of another, has
been used in biology to compare phylogenetic trees and
extended to BOMs [16]. Similar methods can be applied to
BOMs to create new products quickly [15]. This is all of
the literature we could find on applying graph comparisons
to BOMs.

However, graph comparisons have a rich history that could
be explored for comparison of BOMs [7]. Work has been done
on comparing and visualizing trees, a specific type of graph
with no cycles [11]. This is might be especially applicable
to HBOMs since they tend to be more hierarchical while
SBOMs have a tendency to create loops making it less suitable.
Comparison methods range from similarity metrics, like the
ones referenced for BOM graph comparison to unknown node

comparisons, which attempt to create a mapping between the
nodes of the two graphs [19]. In the latter, some algorithms
use attributes while others focus solely on the graph structure.
Taking advantage of the attributes is more computationally
complex, but is important when comparing BOMs due to the
metadata often captured in BOM components. Since there
is not a lot of research on efficient and effective ways of
comparing BOMs, graph comparison literature may offer
promising methods for future application research.

III. BARRIERS TO COMPARING BOMS

BOMs today are extremely heterogeneous which makes
subsequent comparison very difficult. Before undertaking com-
parison, it’s important to understand some of the sources of
variability [28, 32]. While addressing these differences will
be outside of the scope of this paper, considering them will
likely be a prerequisite to meaningful comparison. This list is
not exhaustive but captures some of the variability inherent in
HBOMs and SBOMs.

A. BOM Standards and Versions

Currently in the field there are not single authoritative
standards describing the structure or contents of an HBOM
or an SBOM. For software, the NTIA Minimum elements
[5] has been an influential guidance document outlining a set
of generally accepted minimum elements. The two leading
standards, SPDX [30] and CycloneDX [22], provide detailed
schemas that describe a data structure for the capture of SBOM
information but the mapping between them can be lossy.
Despite the fact that BOMs have existed in manufacturing for
decades, development of HBOM conventions has not reached
full maturity. In addition to the CycloneDX and SPDX stan-
dards, the Information and Communications Technology (ICT)
Supply Chain Risk Management (SCRM) Task Force and
Department of Homeland Security Cybersecurity & Infrastruc-
ture Security Agency (DHS CISA) released a comprehensive
HBOM framework that differs from those standards, although
it attempts to provide mappings to them as applicable [8]. Even
within the same format, major and minor versions describe
BOM changes that can impede direct comparison.

B. SBOM Types

Despite some foundational work defining SBOM types, little
has been done to formally differentiate them within real world
SBOMs. The result is that two SBOMs for the same software
can be markedly different. As an example, a source SBOM
created directly from the source code will include named
dependencies that are imported or loaded. This will look very
different from a build SBOM which will describe a specific
release and may include information on the build process and
produced files.

C. Naming Conventions

Naming challenges permeate every aspect of BOM gen-
eration and despite being a known problem, it is extremely
difficult to solve. Software names remain an open challenge.

https://neo4j.com/blog/top-10-use-cases-bill-of-materials/
https://www.openbom.com/blog/graphs-networks-and-boms-part-1


Efforts such as the common platform enumeration (CPE)
and package uniform resource locator (PURL) have helped
machine-to-machine readability, but they deviate from how
people would colloquially refer to software. Other information
such as a vendor is complicated by lack of authoritative
conventions. As an example ‘MSFT’, ’Microsoft Corporation’,
and ’Microsoft’ are all defensible values but the inconsistent
recording makes systematically disambiguating them difficult.
As a last example, hardware component identifiers have a
tendency to describe a family of components. This means
that sub-strings of the name can still accurately describe com-
ponents, but additional characters identify it with increasing
specificity. The ‘AD7579’ from Analog Devices describes a
LC2MOS 10-Bit Sampling A/D Converter, but ‘AD7579JN’
distinguishes it as having a specific temperature range, integral
nonlinearity, and package. Neither name is incorrect, but they
utilize different levels of specificity which makes comparison
more challenging.

D. Hashing Approaches

Well known hashing approaches such as MD5, SHA1,
SHA256, SHA512 are extremely useful for providing easily
matchable fingerprints of files. Their reproducible and static
nature make them much more attractive in certain cases than
names. One problem is that they are susceptible to dynamic
information such as timestamps that often appear in files.
Since hashes don’t convey why the files are different, it
won’t be obvious whether the difference is meaningful in a
specific comparison. Furthermore, existing standards offer a
lot of flexibility in choosing hashing methods which means a
different method might have been used from one SBOM to
the next reducing comparability.

E. Structure

Structure in this context describes the relationships between
components within a BOM. This structure gives us additional
information such as where a dependency is introduced into our
software or which board a specific component is mounted on.
The problem is that methods for describing these structures
are not rigid leading to expected variability in how they are
described from one BOM to the next.

F. Scoping

In this context, scoping describes the boundaries of a
BOM; what goes inside a particular BOM and what falls
outside. This is a surprisingly hard problem. As an illustrative
hardware example, we could describe a Raspberry Pi with an
HBOM. If that Raspberry Pi is mounted inside a consumer
product, should the HBOM for the consumer product include
an external reference to the Raspberry Pi HBOM? Should
it duplicate the information from the Raspberry Pi? From a
software perspective if a software application requires the use
of a shared library in the operating system, should that be
included in the SBOM? The lack of a clear and accepted
answer to these scoping questions result in variability that
needs to be considered.

G. Quantities

Quantities are an interesting property that appear in
HBOMs. Rather than listing a component n times, we can
indicate how many of them are present with an integer
value. However, if one HBOM opts to list the components
individually and another HBOM leverages the quantity field,
then you have to rectify these different representations when
conducting a comparison.

H. Order

BOMs are unordered. This makes sense because there
isn’t a correct order to describe components. This property
however immediately adds a lot of variability to the files which
poses some challenges for simple comparative methods such
as tabular comparison especially in conjunction with name
variation that will stymie attempts to sort the data.

IV. COMPARING BOMS

Unfortunately there is no single method that can be used
to compare BOMs. Instead, strategies need to be specifically
chosen based on the data available in the BOMs in conjunction
with consideration of the questions that need to be addressed.
In a simple example, if we want to understand the difference
in licenses between two BOMs that utilize a well-formed
ontology such as the SPDX License List [30], a set comparison
using exact match of the values can be employed successfully.

In other cases, understanding quantities can be important.
If we consider two HBOMs and want to understand how
the components differ, we may opt for a list comparison of
component names which will tell us if there are different
components, as well as whether there were a different number
of them used. We know from earlier discussion that component
names can have a lot of inherent variability, so depending on
the consistency of the data, a fuzzy matching technique may be
needed. Fuzzy matching allows for some threshold of leniency
in matching values that are ‘close enough’ at the expense of
possibly making errant matches.

Direct element comparisons are not the only useful compar-
isons to be made. Creative use of redundant or complimentary
information can be exploited to great effect. This is especially
useful when comparing SBOMs where component names,
hashes, cpes, or purls can be used together to gain additional
insights. As an example, matching hashes provide some level
of guarantee that the contents of a software component match.
When compared to component names this can identify inter-
esting situations where 1) component names are the same,
but the contents differ, 2) component names are different,
but the contents are the same, or 3) offer consensus between
component names and hashes. These comparisons can often
uncover unexpected results that are invaluable for assessing
quality and consistency of BOMs.

So far, the comparisons that have been discussed implic-
itly assume a comparison of two similar BOMs, but other
comparisons can be useful as well. SBOM practitioners will
likely be intimately familiar with the variability of generation
tools. Despite the monumental efforts around standardization,



SBOMs tend to vary greatly from one tool to the next. This can
happen for many reasons, but some examples include incon-
sistent assumptions, different methods or levels of technical
ability, different opinions on the boundaries of an SBOM,
and opinions on whether transitive dependencies should be
included. Further exacerbating the issue is the fact that the
details driving the variability are often proprietary or black-
box. By comparing the lists and sets of elements within the
BOMs it is possible to gain insights into design choices and
accuracy of various tools.

BOMs of different size can also be compared. This can
suggest that the components of one BOM are a subset or
contained within another BOM. It is also possible to explore
subsets of a BOM; in a system with built-in redundancy it may
be useful to look at how duplicated modules or sub-assemblies
compare. Much of the previous work done on comparing
BOMs has been used to cluster or identify product families that
contain similar components in a similar structure. Comparing
products within a family can lead to quicker generation of new
products, as well as streamlining supply chain processes.

A. List and Set Comparisons

A straightforward approach to comparing two BOMs is by
simply comparing lists. Due to the popularity of JSON and
XML file types for use in BOMs, this will often require parsing
and/or flattening of the data to obtain the unordered lists. An
example this could be comparing all the component names
in one BOM to the component names in another BOM. List
comparisons aid in understanding differences and quantities of
components which can be particularly useful if multiples of
a single component are present. It should be noted that there
are cases where comparing multiple elements simultaneously
is necessary. For example, two manufacturers could use the
same name for a particular component in which case it may
be more useful to compare the manufacturer and name at the
same time so as to differentiate one component from the other.

Beyond simple lists it can also be useful to only consider
the unique values or sets. This representation sacrifices infor-
mation about the frequency of values, but can greatly reduce
the burden of comparison. Set comparison might be useful
when looking at something like licenses where knowing that
a license appears in n dependencies is probably less important
than just having the list of unique licenses.

B. Graph Comparisons

Graph matching techniques can provide useful insight into
the comparison of two BOMs. The list comparison approach
does not take advantage of the relationships which are present
between elements in a BOM. For example, if there are dupli-
cates of a chip on a piece of hardware, set comparisons will
not capture that information, while a graph comparison will.
Importantly, it will also show where the chips are physically
in the hardware. This can be done through text like the
list comparison or crucially, visualization techniques that are
intuitively easy to understand.

In order to take advantage of this visualization ability, the
BOMs are converted to a graph by making the components into
nodes and the relationships between two elements as edges.
Information about each element can be recorded in the graph
by associating node attributes, and relationship types can be
given by edge attributes. Then a node mapping where one set
of nodes is mapped to the other is created by using the edges
and the node attributes.

V. SBOM EXAMPLE

To illustrate the SBOM comparison methods, we used Trivy
to generate SBOMs from two versions (3.6.4 and 3.7.0) of
Thingsboard, an open-source IoT platform for data collection,
processing, visualization, and device management. Things-
board is largely written in Java and uses Maven to manage
the project. Several modifications were made to the SBOMs.
First, duplicate software components that shared the same
purl and metadata were collapsed to a single component. If
relationships existed to the duplicates that were removed, they
were tied to the remaining copy. While the exact nature of
the duplication in these SBOMs wasn’t clear, it should be
noted that removing them could hinder certain analyses such
as finding multiple copies of a dependency. Next we opted
to remove all the npm front-end dependencies. This was only
done to make the SBOMs a little smaller for illustration.

The comparison of the resulting SBOMs (results in Table I)
showed that out of the 230 components, there were 214 unique
names detected in version 3.6.4 and 218 unique names from
the 234 components in version 3.7.0. Interestingly, the number
of unique purls was also four apart: 170 to 174. We note that
the difference between the number of components and purls
was due to 60 components that did not contain purls in the
SBOM. The number of unique purls is identical to the total
purls which is expected after the deduplication, meaning that
each purl appears only once. There were 10 component names
that were duplicated; each one had a different unique purl,
with a total of 16 duplicates. Looking at the comparisons of
the unique names, there were 201 names that appeared in both
SBOMs. Finally, doing a Jaro-Winkler string comparison with
a threshold of greater than 0.85 on the node names between
the two sets resulted in a total of 887 matches.

TABLE I
COMPARISON RESULTS FOR SBOM WHERE 3.6.4 (ONLY) INDICATES THE

DIFFERENCE BETWEEN 3.6.4 AND 3.7.0

3.6.4 3.7.0 3.6.4 (Only) 3.7.0 (Only)
Name 230 234 13 17

Unique Names 214 218 13 17
Purls 170 174 158 162

Unique Purls 170 174 158 162

Comparing two SBOMs does not have to be constrained
to differences in components. We also considered whether
the licenses reported were different between the generated
SBOMs. Because the primary interest is whether there are any
different licenses to consider, using set comparison (comparing
the unique values) of recorded license would seem the obvious

https://github.com/thingsboard/thingsboard


choice. Version 3.7.0 contains only a single unique license:
Apache-2.0. However, version 3.6.4 contains two unique li-
censes: Apache-2.0 and MIT. While this may look like version
3.6.4 is more complete, it is also important to know that only
six dependencies in the version 3.6.4 SBOM had a license
recovered by the tool. Version 3.7.0 had four dependencies
with recovered licenses. This largely indicates that neither
SBOM has a complete picture of the licensing exposure in
Thingsboard.

The potential lack of information prompted us to manually
review the licenses for the listed dependencies. We discovered
that both versions of the software contained several other
licenses such as the Eclipse Public License (EPL) and the
Lesser GNU Public License (LGPL). These licenses have
additional disclosure and representation requirements that may
not be satisfied with the same rules as Apache-2.0 or MIT.
Additionally, it is not inconceivable that an organization may
apply additional scrutiny to licenses from the GNU Public
License (GPL) family and would want to know that LGPL
code is being used. While set comparison identified a notable
difference in recorded licenses, a list comparison would have
highlighted how few of the components captured license
information.

We also examined the organizations of the dependen-
cies. They were detected by using the first two segments
of the package name in the purls. For example, given the
purl “pkg:maven/com.example.foo@1.2.3”, the organization
is “com.example”. There were fifty unique organizations in
version 3.6.4 and 52 in version 3.7.0. Excluding Java standard
library packages, we found that when moving to version 3.7.0
Thingsboard gained four additional external organizations and
lost one. This information could be useful for situational
awareness or subsequent corporate analysis where some pro-
ducers may imply an increased/decreased level of assurance.

For the graph comparison, we converted the SBOMs into
graphs using components as nodes and dependencies as edges.
We then merged them on the name field using a depth-
first search matching algorithm [14] with exact matching. A
quick calculation shows us that 217 nodes were matched, 13
appeared only in version 3.6.4 and 17 appeared in version
3.7.0, matching the comparison in Table I. The visualization
of the compared graphs did not add to the analysis and
was therefore not included. To understand if the identified
differences between the two SBOMs was due to small variance
in the names, we employed fuzzy matching. It should be noted
that with a priori knowledge of the name structure, some fuzzy
matching approaches may be more successful, but here we
naively employed Jaro-Winkler on the node names with an
arbitrary threshold of .85 and found that there are 7 similar
packages (see Table II). While we note that the graph wasn’t
particularly useful for visualization, the added constraint of
the structure reduced the number of possible matches by 880
because rather than just finding similar names, the structure
requires the names to also be in the same place as defined by
the relationships in the SBOM.

In comparing these SBOMs, a combination of methods

TABLE II
SIMILAR NAMES OF PACKAGES IN EACH THINGSBOARD VERSION WITH

THE DIFFERENCES HIGHLIGHTED.

3.6.4 3.7.0
bcpkix-jdk15on bcpkix-jdk18on
bcprov-jdk15on bcprov-jdk18on

commons-collections commons-collections4
hypersistence-utils-hibernate-55 hypersistence-utils-hibernate-63

javax.annotation-api jakarta.annotation-api
swagger-annotations swagger-annotations-jakarta

springfox-boot-starter spring-boot-starter-webflux

proved useful. List and set comparisons provided useful char-
acterization of the SBOMs and identified some license irregu-
larities. The graph method allowed us to ignore dependencies
with similar names and focus on the differences we are more
interested in, which were updated dependencies.

VI. HBOM EXAMPLE

In this example, two HBOMs were created from two distinct
instances of the same hardware product. The identities of the
devices and components have been obfuscated, but the real
characteristics of the comparison were preserved. Visualiza-
tions of the two graphs are shown in Figures 1 and 2.

A list comparison of the component names for the HBOMs
immediately conveys differences shown in Table III. Despite
being the same product, we see 35 components that only
appear in HBOM 1 and 46 components that only appear in
HBOM 2. Because the comparison of unique names reflects
different counts, we can infer that some of the differences
include components that appeared multiple times. In reviewing
the differences, the most noteworthy finding was that one of
the components was a circuit board which was especially
surprising. Fuzzy matching in this case was not particularly
useful because it flagged 743 possible matches which is
difficult to sift through.

A comparison of the vendor revealed that there were 17
unique vendors in HBOM 1 and 14 unique vendors in HBOM
2. with only 13 vendors shared between the two. We offer no
explanation as to why the vendors differ, but interestingly de-
spite the BOMs representing the same product, the component
supply chain looks different and may result in varying levels
of risk exposure.

TABLE III
COMPARISON RESULTS FOR HBOM EXAMPLE WHERE HBOM 1 (ONLY)

INDICATES THE DIFFERENCE BETWEEN HBOM 1 AND HBOM 2

HBOM 1 HBOM 2 HBOM 1
(Only)

HBOM 2
(Only)

Name 156 169 35 46
Unique Names 99 108 17 26

Repeating the same graph comparison approach as in Sec-
tion V, we generated the merged graph shown in Figure 3.
Blue nodes indicate that the node names matched exactly,
while the thick yellow edges indicate the node names matched
approximately (Jaro-Winkler with a threshold of .85).



Fig. 1. Visualization of HBOM 1.

Fig. 2. Visualization of HBOM 2

This visualization is immediately useful. The most notable
difference is the presence of a yellow circle in the top of Figure
3. This turned out to be the additional circuit board that was
unexpectedly present in one of the devices, and we can quickly
understand which of the different components correlate to
the addition of that board. The remaining differences are
drastically reduced by enforcing the graph structure (e.g. the
component must be on the same board). The differences
identified fell into one of three categories:

1) The component name was transcribed incorrectly. For
example, the names were recorded as IN3S00A and
IN3500, where a 5 is switched for an S.

2) The difference was real and describes a component that
had been switched out in production with a different but
equivalent component.

3) The name in one HBOM was recorded with more
specificity than the name of the equivalent component
in the other HBOM. One component was named V 17N
and one was recorded as V 17N − ZB11.

Fuzzy match on the component names using the graph was
particularly useful for this comparison. Instead of 743 possible
matches, there are only 21 matches, identifying transcription
errors and incremental component variations with high pre-
cision. As with the SBOM comparison, leveraging multiple
comparison methods proved to be useful, but notably the
graph provided significantly increased utility in the hardware
example.

Fig. 3. Visualization of Merged Graph. Blue represents nodes found in both
HBOM 1 and HBOM 2. Pink nodes are only found in HBOM 1 and yellow
nodes are only in HBOM 2. Yellow edges indicate nodes where the names
fuzzy matched.

VII. CONCLUSION

This paper provides an introductory discussion of the meth-
ods and challenges associated with comparing BOMs. Despite
the recent abundance of energy and research in BOMs by
government, industry, and academia, tools and methods to
effectively compare BOMs lag behind. There is no single
method of comparison that can effectively compare BOMs
today. List, set, and graphical comparisons are complimentary
and contribute to a foundational capability. As reference
BOMs become more readily available, comparison methods
will be vital to leveraging them. Ultimately BOM adoption,
spurred by policy and regulation will continue to grow. The



ability to compare BOMs will be essential for understanding
and reasoning about BOMs for supply chain risk management.

ACKNOWLEDGMENT

The authors wish to thank the Department of Energy (DOE)
Cybersecurity, Energy Security, and Emergency Response
(CESER) and the Cyber Testing and Resilience of Indus-
trial Control Systems (CyTRICS) Program including Idaho
National Laboratory (INL), Lawrence Livermore National
Laboratory (LLNL), National Renewable Energy Laboratory
(NREL), Oakridge National Laboratory (ORNL), and Sandia
National Laboratory (SNL). Information Release: PNNL-SA-
202952.

REFERENCES

[1] A. O. Aydin and A. Güngör *. “Effective relational
database approach to represent bills-of-materials”.
In: International Journal of Production Research
43.6 (2005), pp. 1143–1170. DOI: 10 . 1080 /
00207540512331336528.

[2] Sheng-Hung Chang, Wen-Liang Lee, and Rong-Kwei
Li. “Manufacturing bill-of-material planning”. In: Pro-
duction Planning & Control 8.5 (Jan. 1997), pp. 437–
450. ISSN: 0953-7287, 1366-5871. DOI: 10 . 1080 /
095372897235019.

[3] Yunkung Chung and Gary W. Fischer. “A conceptual
structure and issues for an object-oriented bill of ma-
terials (BOM) data model”. In: Computers Industrial
Engineering 26.2 (1994), pp. 321–339. ISSN: 0360-
8352. DOI: https : / / doi . org / 10 . 1016 / 0360 - 8352(94 )
90065-5.

[4] Matteo Cinelli et al. “A network perspective for the
analysis of bill of material”. In: Procedia CIRP 88
(2020), pp. 19–24. ISSN: 22128271. DOI: 10 .1016/ j .
procir.2020.05.004.

[5] The United State Departement of Commerce. The
Minimum Elements For a Software Bill of Materials
(SBOM). July 12, 2021. URL: https : / /www.ntia .doc .
gov/files/ntia/publications/sbom minimum elements
report.pdf.

[6] European Commission. Proposal for a REGULATION
OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL on horizontal cybersecurity requirements for
products with digital elements and amending Regulation
(EU) 2019/1020. Sept. 15, 2022. URL: https://eur-lex.
europa .eu / resource .html?uri=cellar :864f472b- 34e9-
11ed- 9c68- 01aa75ed71a1.0001.02/DOC 1&format=
PDF.

[7] D. CONTE et al. “THIRTY YEARS OF GRAPH
MATCHING IN PATTERN RECOGNITION”. In: In-
ternational Journal of Pattern Recognition and Artificial
Intelligence 18.03 (2004), pp. 265–298. DOI: 10.1142/
S0218001404003228.

[8] Cybersecurity and Infrastructure Security Agency. A
Hardware Bill of Materials (HBOM) Framework for
Supply Chain Risk Management. Sept. 2023. URL:
https : / / www . cisa . gov / sites / default / files / 2023 -
09 / A % 20Hardware % 20Bill % 20of % 20Materials %
20Framework%20for%20Supply%20Chain%20Risk%
20Management%20%28508%29.pdf.

[9] Cybersecurity and Infrastructure Security Agency. Melt-
down and Spectre Side-Channel Vulnerability Guid-
ance. May 1, 2028. URL: https://www.cisa.gov/news-
events/alerts/2018/01/04/meltdown-and-spectre-side-
channel-vulnerability-guidance.

[10] Akamai Security Intelligence Group. XZ Utils Backdoor
— Everything You Need to Know, and What You Can
Do. Apr. 1, 2024. URL: https : / / www. akamai . com /

https://doi.org/10.1080/00207540512331336528
https://doi.org/10.1080/00207540512331336528
https://doi.org/10.1080/095372897235019
https://doi.org/10.1080/095372897235019
https://doi.org/https://doi.org/10.1016/0360-8352(94)90065-5
https://doi.org/https://doi.org/10.1016/0360-8352(94)90065-5
https://doi.org/10.1016/j.procir.2020.05.004
https://doi.org/10.1016/j.procir.2020.05.004
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://eur-lex.europa.eu/resource.html?uri=cellar:864f472b-34e9-11ed-9c68-01aa75ed71a1.0001.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:864f472b-34e9-11ed-9c68-01aa75ed71a1.0001.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:864f472b-34e9-11ed-9c68-01aa75ed71a1.0001.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:864f472b-34e9-11ed-9c68-01aa75ed71a1.0001.02/DOC_1&format=PDF
https://doi.org/10.1142/S0218001404003228
https://doi.org/10.1142/S0218001404003228
https://www.cisa.gov/sites/default/files/2023-09/A%20Hardware%20Bill%20of%20Materials%20Framework%20for%20Supply%20Chain%20Risk%20Management%20%28508%29.pdf
https://www.cisa.gov/sites/default/files/2023-09/A%20Hardware%20Bill%20of%20Materials%20Framework%20for%20Supply%20Chain%20Risk%20Management%20%28508%29.pdf
https://www.cisa.gov/sites/default/files/2023-09/A%20Hardware%20Bill%20of%20Materials%20Framework%20for%20Supply%20Chain%20Risk%20Management%20%28508%29.pdf
https://www.cisa.gov/sites/default/files/2023-09/A%20Hardware%20Bill%20of%20Materials%20Framework%20for%20Supply%20Chain%20Risk%20Management%20%28508%29.pdf
https://www.cisa.gov/news-events/alerts/2018/01/04/meltdown-and-spectre-side-channel-vulnerability-guidance
https://www.cisa.gov/news-events/alerts/2018/01/04/meltdown-and-spectre-side-channel-vulnerability-guidance
https://www.cisa.gov/news-events/alerts/2018/01/04/meltdown-and-spectre-side-channel-vulnerability-guidance
https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know


blog/security-research/critical-linux-backdoor-xz-utils-
discovered-what-to-know.

[11] John Alexis Guerra-Gómez et al. “TreeVersity: Inter-
active Visualizations for Comparing Hierarchical Data
Sets”. In: Transportation Research Record: Journal of
the Transportation Research Board 2392.1 (Jan. 2013),
pp. 48–58. ISSN: 0361-1981, 2169-4052. DOI: 10.3141/
2392- 06. URL: http : / / journals . sagepub.com/doi /10 .
3141/2392-06.

[12] The White House. Executive Order on Improving the
Nation’s Cybersecurity. The White House. May 12,
2021. URL: https : / / www. whitehouse . gov / briefing -
room/presidential-actions/2021/05/12/executive-order-
on-improving-the-nations-cybersecurity/.

[13] Xiaodu Hu et al. “Graph Model Based Bill of Material
Structure for Coupling Product Development and Pro-
duction Planning”. In: Intelligent and Transformative
Production in Pandemic Times. Cham: Springer Inter-
national Publishing, 2023, pp. 593–605. DOI: 10.1007/
978-3-031-18641-7 55.

[14] Rebecca Jones and Lucas Tate. “Visualizing Compar-
isons of Bill of Materials”. In: 2023 IEEE Symposium
on Visualization for Cyber Security (VizSec). 2023,
pp. 12–16. DOI: 10.1109/VizSec60606.2023.00008.

[15] M. Kashkoush and H. ElMaraghy. “Product Design
Retrieval by Matching Bills of Materials”. In: Journal
of Mechanical Design 136.1 (Jan. 1, 2014), p. 011002.
ISSN: 1050-0472, 1528-9001. DOI: 10.1115/1.4025489.

[16] Mohamed Kashkoush and Hoda ElMaraghy. “Matching
Bills of Materials Using Tree Reconciliation”. In: Pro-
cedia CIRP 7 (2013), pp. 169–174. ISSN: 22128271.
DOI: 10.1016/j.procir.2013.05.029.

[17] Mohamed Kashkoush and Hoda ElMaraghy. “Product
family formation by matching Bill-of-Materials trees”.
In: CIRP Journal of Manufacturing Science and Tech-
nology 12 (Jan. 2016), pp. 1–13. ISSN: 17555817. DOI:
10.1016/j.cirpj.2015.09.004.

[18] Edward Kost. Log4Shell: The Log4j Vulnerability Emer-
gency Clearly Explained. June 20, 2023. URL: https :
//www.upguard.com/blog/apache-log4j-vulnerability.

[19] S. Melnik, H. Garcia-Molina, and E. Rahm. “Similarity
flooding: a versatile graph matching algorithm and its
application to schema matching”. In: Proceedings 18th
International Conference on Data Engineering. 2002,
pp. 117–128. DOI: 10.1109/ICDE.2002.994702.

[20] G. Nandakumar. “The design of a Bills of Material
Processor using a relational data base”. In: Computers
in Industry 6.1 (1985), pp. 15–21. ISSN: 0166-3615.
DOI: https://doi.org/10.1016/0166-3615(85)90066-1.

[21] Ganesan Nandakumar. “Bills of material processing
with a SQL database”. In: Computers Industrial En-
gineering 18.4 (1990), pp. 471–483. ISSN: 0360-8352.
DOI: https://doi.org/10.1016/0360-8352(90)90005-7.

[22] OWASP Foundation. OWASP CycloneDX Software Bill
of Materials (SBOM) Standard. URL: https://cyclonedx.
org/.

[23] C.J. Romanowski and R. Nagi. “On Comparing Bills
of Materials: A Similarity/ Distance Measure for Un-
ordered Trees”. In: IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans 35.2
(Mar. 2005), pp. 249–260. ISSN: 1083-4427. DOI: 10.
1109/TSMCA.2005.843395.

[24] Carol J. Romanowski and Rakesh Nagi. “A data mining
and graph theoretic approach to building generic bills of
materials”. In: 2002. URL: https://api.semanticscholar.
org/CorpusID:17069084.

[25] P.S. Rusk. “The role of the bill of material in manu-
facturing systems”. In: Engineering Costs and Produc-
tion Economics 19.1 (May 1990), pp. 205–211. ISSN:
0167188X. DOI: 10.1016/0167-188X(90)90044-I.

[26] Michael Schmidt et al. “Graph-based similarity analysis
of BOM data to identify unnecessary inner product
variance.” In: 21st International Conference on Engi-
neering Design (ICED17). Vol. 1. Vancouver, Canada,
Aug. 2017.

[27] Han M. Shih. “Product structure (BOM)-based product
similarity measures using orthogonal procrustes ap-
proach”. In: Computers & Industrial Engineering 61.3
(Oct. 2011), pp. 608–628. ISSN: 03608352. DOI: 10 .
1016/j.cie.2011.04.016.

[28] Trevor Stalnaker et al. “BOMs Away! Inside the Minds
of Stakeholders: A Comprehensive Study of Bills
of Materials for Software Systems”. In: ICSE ’24:
IEEE/ACM 46th International Conference on Software
Engineering. Feb. 6, 2024, pp. 1–13. DOI: 10 . 1145 /
3597503.3623347.

[29] Dina Temple-Raston. A ’Worst Nightmare’
Cyberattack: The Untold Story Of The SolarWinds
Hack. https://www.npr.org/2021/04/16/985439655/a-
worst-nightmare-cyberattack-the-untold-story-of-the-
solarwinds-hack. Last accessed 2023-06-30. Apr. 16,
2021. URL: https : / / www . npr . org / 2021 / 04 / 16 /
985439655/a-worst-nightmare-cyberattack-the-untold-
story-of-the-solarwinds-hack.

[30] The Linux Foundation Projects. International Open
Standard (ISO/IEC 5962:2021) - Software Package
Data Exchange (SPDX). URL: https://spdx.dev/.

[31] Yao Wang, Wei Guo Wang, and Song Mao. “A New
Type of BOM Model and its Application”. In: Ap-
plied Mechanics and Materials 347-350 (Aug. 2013),
pp. 1234–1238. ISSN: 1662-7482. DOI: 10.4028/www.
scientific.net/AMM.347-350.1234.

[32] Boming Xia et al. “An Empirical Study on Software Bill
of Materials: Where We Stand and the Road Ahead”.
In: 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, May 2023,
pp. 2630–2642. DOI: 10.1109/ICSE48619.2023.00219.

https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know
https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know
https://doi.org/10.3141/2392-06
https://doi.org/10.3141/2392-06
http://journals.sagepub.com/doi/10.3141/2392-06
http://journals.sagepub.com/doi/10.3141/2392-06
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://doi.org/10.1007/978-3-031-18641-7_55
https://doi.org/10.1007/978-3-031-18641-7_55
https://doi.org/10.1109/VizSec60606.2023.00008
https://doi.org/10.1115/1.4025489
https://doi.org/10.1016/j.procir.2013.05.029
https://doi.org/10.1016/j.cirpj.2015.09.004
https://www.upguard.com/blog/apache-log4j-vulnerability
https://www.upguard.com/blog/apache-log4j-vulnerability
https://doi.org/10.1109/ICDE.2002.994702
https://doi.org/https://doi.org/10.1016/0166-3615(85)90066-1
https://doi.org/https://doi.org/10.1016/0360-8352(90)90005-7
https://cyclonedx.org/
https://cyclonedx.org/
https://doi.org/10.1109/TSMCA.2005.843395
https://doi.org/10.1109/TSMCA.2005.843395
https://api.semanticscholar.org/CorpusID:17069084
https://api.semanticscholar.org/CorpusID:17069084
https://doi.org/10.1016/0167-188X(90)90044-I
https://doi.org/10.1016/j.cie.2011.04.016
https://doi.org/10.1016/j.cie.2011.04.016
https://doi.org/10.1145/3597503.3623347
https://doi.org/10.1145/3597503.3623347
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://spdx.dev/
https://doi.org/10.4028/www.scientific.net/AMM.347-350.1234
https://doi.org/10.4028/www.scientific.net/AMM.347-350.1234
https://doi.org/10.1109/ICSE48619.2023.00219

	Introduction
	Previous Work
	Barriers to Comparing BOMs
	BOM Standards and Versions
	SBOM Types
	Naming Conventions
	Hashing Approaches
	Structure
	Scoping
	Quantities
	Order

	Comparing BOMs
	List and Set Comparisons
	Graph Comparisons

	SBOM Example
	HBOM Example
	Conclusion

