

Exploring "No-Man's Land" An Examination of Water Between -44°F and -190°F

August 18, 2020

Loni Kringle Post-Doctoral Research Associate Pronouns: she/her

PNNL is operated by Battelle for the U.S. Department of Energy

We value your feedback!

https://www.surveymonkey.com/r/PNNL081820

edback!

1 of 17 U.S. DOE Labs

PNNL is Focused on **DOE's MISSIONS** and **Addressing Critical** NATIONAL **NEEDS**

PNNL is an ECONOMIC ENGINE

Annual Spending

7,180 Jobs Generated in Washington

Companies with PNNL Roots

Volunteer Hours

Decades \$28.5M

FY19

Philanthropic Investments

>120 56 Community **Organizations**

Rice Lake, WI

Photo Credit: Dale Kringle

Rice Lake, WI

Waverly, IA

- Wartburg College
- B.A. Chemistry and Physics

Photo Credit: www.wartburg.edu

Rice Lake, WI

Waverly, IA

- Wartburg College
- B.A. Chemistry and Physics

Eugene, OR

- University of Oregon
- Ph.D. Physical Chemistry

Photo Credit: www.eugenecascadescoast.org

Rice Lake, WI

Waverly, IA

- Wartburg College
- B.A. Chemistry and Physics

Eugene, OR

- University of Oregon
- Ph.D. Physical Chemistry

Richland, WA

- Pacific Northwest National Lab
- Post. Doc. Chemical Physics
- Started January 2019
- STEM Ambassador

Photo Credit: Pacific Northwest National Lab

Water is very important, and it is everywhere

At PNNL we study the fundamental properties of water under extreme conditions

- Supercooled
- Low pressure
- At interfaces

The quest to understand water

"Enormous effort has been invested in experimental determinations of the properties of water... Despite the effort, our factual knowledge is meager and our understanding rudimentary."

Narten, Venkatesh, and Rice, J. Chem. Phys. 64, 1106 (1976).

We are familiar with water's anomalies, but we don't always recognize them as strange

Solid ice floats in liquid water

• Density maximum at 4°C (39.2°F)

Water expands when freezing to ice

• Increase in volume with decrease in entropy

Water's anomalies become more pronounced at low temperatures

Gallo et al. Chem. Rev. 116:7463 (2016).

Thermal Expansion

Isobaric Heat Capacity

Why should we care about water in extreme environments?

- Catalysis
- Energy capture and storage

- Pharmaceuticals
- Protein folding and DNA replication

Cloud formation

Interstellar dust and comet composition

The states of matter

Expands to fill container

Crystalline Solids

Temperature regimes for liquid water

Stable

Liquid water between the boiling and freezing points

Supercooled

Liquid water cooled below the freezing point, without it becoming solid

Glassy

 Mechanical properties of a solid but the molecular structure of a liquid – no long-range order

Temperature regimes for liquid water

Stable

Liquid water between the boiling and freezing points

Supercooled

Liquid water cooled below the freezing point, without it becoming solid

Glassy

Mechanical properties of a solid but the molecular structure of a liquid – no long-range order

Glass Like

Crystalline Like

Water's "No Man's Land"

Rapid crystallization limits experimental investigation

- Not an absolute limit but a technological one
- Experimental observation time needs to be faster than the crystallization time
 - Very fast steps
 - Delay crystallization

jical one s to be faster

Different theories of water in "No Man's Land"

Liquid-Liquid **Phase-Transition** Hypothesis

Singularity-Free Hypothesis

Ρ

Stability Limit Hypothesis

Is there a hill or is there a cliff?

Mishima and Stanley, Nature 396:329 (1998).

Two "Species" of Water; High-Density Liquid and Low-Density Liquid

HDL

Low-Density Liquid Water (LDL)

- Tetrahedral arrangement
- 4 nearest neighbors in the 1st shell

High-Density Liquid Water (HDL)

- Closely packed non-nearest neighbor
- "Collapsed" second shell

Shi, Russo, & Tanaka PNAS 115:9444 (2018). Russo, & Tanaka Nat. Commun. 5:3556 (2014).

LDL

Studying water in the lab – the sample

The Vacuum Chamber

Sample Holder

Adsorbed Water Sample

Studying water in the lab – the sample

The Vacuum Chamber

For scale: Length coronavirus spike (red) is ~10 nm

Adsorbed Water Sample

Studying water in the lab – pulsed laser heating

Technical Specs

- 170 and 300 K (-154 and 80°F) pulses N_p
- Maximum temperature (T_{max}) between Heating rate ~ 1×10¹⁰ K/s Cooling rate ~ 5×10⁹ K/s Collect IR spectra after a set number of
- All spectra are taken at 70 K

"Stop-motion" movie of chemical processes

THE JOURNAL OF CHEMICAL PHYSICS 144, 164201 (2016)

Previously, the group used pulsed heating to study the crystallization process

A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum

Yuntao Xu,^{a)} Collin J. Dibble,^{a)} Nikolay G. Petrik, R. Scott Smith, Alan G. Joly, Russell G. Tonkyn, Bruce D. Kay,^{b)} and Greg A. Kimmel^{b)} Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA

Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K

Yuntao Xu^a, Nikolay G. Petrik^a, R. Scott Smith^a, Bruce D. Kay^{a,1}, and Greg A. Kimmel^{a,1}

^aChemical Physics & Analysis, Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352

The Journal of Chemical Physics

ARTICLE

scitation.org/journal/jcp

Homogeneous ice nucleation rates and crystallization kinetics in transiently-heated, supercooled water films from 188 K to 230 K

Cite as: J. Chem. Phys. 150, 204509 (2019); doi: 10.1063/1.5100147 Submitted: 15 April 2019 • Accepted: 9 May 2019 • Published Online: 31 May 2019	Were Online	Export Clatton
Greg A. Kimmel, ^{a)} ⁽⁵⁾ Yuntao Xu, ^{b)} ⁽⁵⁾ Alexandra Brumberg, ^{c)} ⁽⁵⁾ Nikolay G. Pet	rik, 💿 R. Scott Sr	nith, 💿

PHYSICAL CHEMISTRY Ctte This: J. Phys. Chem. Lett. 2017, 8, 5736-5743

Homogeneous Nucleation of Ice in Transiently-Heated, Supercooled **Liquid Water Films**

Yuntao Xu,[†] Nikolay G. Petrik,[©] R. Scott Smith,[©] Bruce D. Kay,^{*©} and Greg A. Kimmel^{*©}

Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States

Reversible transformations between a high and a low temperature structure

Reversibility at temperatures

Analyze the data as a combination of hightemperature, low-temperature, and crystalline

We measured water relaxation across "No Man's Land"

Exploring a (potential energy) landscape

Two states and a distribution of activation energies

Experimental examination of "No Man's Land"

Observed reversible structural transitions

The supercooled liquid can be described by two structures

Water reaches a metastable state before crystallization

What do these findings mean for the scientific Pacific community? Northwest

Acknowledgements

- Wyatt Thornley
- Greg Kimmel
- Bruce Kay
- Scott Smith
- Nick Petrik
- Mike Tylinski

Thank you

We value your feedback!

https://www.surveymonkey.com/r/PNNL081820