

What Do Bats Have to Do with It?

Tuesday, March 9

Featuring: Amy Sims PNNL Research Scientist

DEMYSTIFYING COVID:

A Special Edition Seminar Series

COMMUNITY SCIENCE & TECHNOLOGY SEMINAR SERIES @PNNL The perthose of present reflect PNNL, or the

The perspectives expressed here are those of the scientists involved in the presentations and do not necessarily reflect the official perspectives of PNNL, the U.S. Department of Energy, or the U.S. Government.

Where are you joining from? (3/9/2021)

PNNL is focused on **DOE's MISSIONS** and addressing critical NATIONAL **NEEDS**

PNNL is an ECONOMIC ENGINE

81 Patents

36 Licenses

\$1.67B Total Economic Output (FY19)

8,200 Jobs Generated in Washington (FY19)

50+ years developing goodwill

Historical FY19 Historical **FY19 Historical** 347,000 \$28.5M \$0.52M 30,000 >120

Philanthropic Investments

Team Battelle Volunteer Hours

Visit pnnl.gov/events

FY19

56

Community Organizations

DEMYSTIFYING COVID:

A Special Edition Seminar Series

EVERY TUESDAY IN MARCH 5:00-6:00 P.M.

MARCH02 Hindsight is 2020: The Science **Behind COVID-19**

Presented by Steve Wiley

What lessons have we learned over the last few months? What's left for us to uncover? And seriously what is the difference between a cold, a flu, and COVID symptoms?

MARCH09

What Do Bats Have to Do with It?

Presented by Amy Sims

Bats, pangolins, and humans—oh my! This talk will explore the role wild animals play in the emergence of new diseases.

MARCH**16 Behind the Mask: The Science on** Stopping the Spread

Presented by Katrina Waters

What measures keep our communities safe? And why do some strange, sometimes serious health effects linger even after COVID-19 has gone, including a loss of taste and smell or COVID toe? Join us to find out.

MARCH23

Presented by Kristin Omberg

If you're confused about COVID-19 testing and vaccines, you're not alone. This talk will explore the science behind the 400+ diagnostic tests and 200+ vaccine candidates produced over the last year.

Presented by Tim Scheibe

Using mathematical models, scientists across the globe are beginning to arrive at a more complete picture of how and why COVID-19 spread across geographical locations and human populations.

Testing, Testing, 1, 2, 3 (And What's Up With The New Vaccine, Anyways?)

Model Me This: COVID-19 Scientific Predictions and Where We Go from Here

COMMUNITY REPRESENTATIVES

United Way of Benton & Franklin Counties

Kate McAteer

Vice Chancellor | Academic and Student Affairs WSU Tri-Cities

Justin Raffa Artistic Director

> Mid-Columbia Mastersingers

Tri-Cities Campus Heritage University

Martin Valadez

Interim Executive Director

Tri-Cities Hispanic Chamber of Commerce

Regional Director

TODAY'S SPEAKER

Amy Sims

Virologist

EVERY TUESDAY IN MARCH 5:00-6:00 P.M.

VIRAL INFECTION OVERVIEW

Today's discussion: transmission in the viral infection process

Terminology

Pandemic

• An outbreak of a disease that is prevalent over a continent or the world

NOTE: An **epidemic** is more localized

Transmission

Spreading a disease

Mutation

• Changes to the genome of a pathogen or organism that may affect transmission, symptoms, or prior immunity

Infectious/Contagious

• The state of being able to transmit a disease to another person

Vaccine

• A preventative measure to build immunity against a specific disease

Model

• A representation of a disease or process that can recapitulate key aspects

Reservoir

• Any person, animal, plant, soil, or substance in which an infectious agent normally multiplies

COVID-19 vs. SARS-CoV 2

- SARS-CoV 2 (severe acute respiratory syndrome coronavirus 2) is the virus that causes COVID-19
- COVID-19 (coronavirus disease 2019) is a potentially severe respiratory infection caused by SARS-CoV 2

Talk overview

Virus replication and disease outcomes in animal hosts and humans

Human coronaviruses before the global COVID-19 pandemic

SARS-CoV 2 genome changes over the course of the pandemic

Current and future COVID-19 treatment options

COVID-19 disease symptoms and SARS-CoV 2 transmission

What happens next? How do we prepare for the future?

Talk overview

Virus replication and disease outcomes in animal hosts and humans

Human coronaviruses before the global COVID-19 pandemic

SARS-CoV 2 genome changes over the course of the pandemic

Current and future COVID-19 treatment options

COVID-19 disease symptoms and SARS-CoV 2 transmission

What happens next? How do we prepare for the future?

Coronavirus has emergence potential

- Coronaviruses infect a wide range of animal species
- Animal-to-human coronavirus transmission has been occurring for thousands of years
- As humans and animal habitats overlap, transmission events become more likely

Do bats infected with coronaviruses get sick?

- Bats infected with coronaviruses do not have any symptoms of disease
- Current studies suggest that bats have reduced immune responses, making them an ideal animal reservoir for many viruses
- Bats are a critical part of the ecosystem

What do we still have to learn?

- How animal host to human transmission events occur and why some require additional animal species
- How to prevent transmission events from animal hosts to humans
- How to encourage public health
 measures to prevent future outbreaks

"Well whatever he has, it's contagious."

Talk overview

Virus replication and disease outcomes in animal hosts and humans

Human coronaviruses before the global **COVID-19** pandemic

SARS-CoV 2 genome changes over the course of the pandemic

Current and future COVID-19 treatment options

COVID-19 disease symptoms and SARS-CoV 2 transmission

What happens next? How do we prepare for the future?

Timeline of human coronavirus identification

- Before 2003, human CoV caused the common cold in healthy individuals
- Only seven human CoV have been identified to date
- SARS-CoV "1"
 - ~8,000 cases, ~800 deaths
 - ~10% mortality
 - No longer circulating (epidemic 8 months)
- MERS-CoV
 - ~2,500 cases, ~850 deaths
 - ~34% mortality
 - 2013 to present

DOI: 10.5281/zenodo.3746871

18

Talk overview

Virus replication and disease outcomes in animal hosts and humans

Human coronaviruses before the global COVID-19 pandemic

SARS-CoV 2 genome changes over the course of the pandemic

Current and future COVID-19 treatment options

What happens next? How do we prepare for the future?

COVID-19 disease symptoms and **SARS-CoV 2** transmission

SARS-CoV 2 infects many areas in respiratory tract

- MERS-CoV and SARS-CoV 1 replicate primarily deep within the human lung
- SARS-CoV 2 replicates in several regions of the respiratory tract, not just deep within the lung
- Facilitates transmission but also diagnostic testing

Nasal

COVID-19 infection symptoms and disease severity

- Flu-like symptoms with loss of smell/taste most common
- Possible to have nausea, diarrhea, and skin rash
- Severe disease progression includes acute respiratory distress syndrome (ARDS), neurological complications, kidney injury, shock, multiorgan failure

Typical presentations: Fever Dry cough Exhaustion Anorexia Smell and taste disorder Myalgia Shortness of breath

Less frequent presentations: Nausea Diarrhea Sore throat Rhinorrhea Headache Cutaneous manifestations

Cardiac injury Liver dysfunction **Bacterial** co-infection

Co-morbidities associated with severe presentations: Cardiovascular diseases Diabetes Hypertension Chronic lung illness Kidney disease

Severe presentations: Neurological complications Acute respiratory distress syndrome (ARDS) Multisystem inflammatory disease in children (MIS-C) Acute kidney injury Thrombotic complications Shock and multi-organ failure

SARS-CoV 2 and loss of sense of smell/taste

- Infection with a range of other respiratory viruses that replicate in the upper airways/nasal cavity can result in loss of smell and taste but usually with less frequency than is being seen with COVID-19
- Unclear if this is a result of inflammation of the nasal cavity or infection of olfactory sensory neurons as proposed above

What do we still have to learn?

- Adults with pre-existing medical conditions and why they result in more severe disease outcomes
- Multisystem Inflammatory Syndrome in Children (MIS-C)
- Why are the elderly more likely to have severe disease outcomes?
- Does blood type influence disease outcomes?

Talk overview

Virus replication and disease outcomes in animal hosts and humans

Human coronaviruses before the global COVID-19 pandemic

SARS-CoV 2 genome changes over the course of the pandemic

Current and future COVID-19 treatment options

COVID-19 disease symptoms and SARS-CoV 2 transmission

What happens next? How do we prepare for the future?

How do viruses mutate?

- Viral enzymes make mistakes each time the genome is copied, resulting in large mutant populations
- Animal hosts/reservoirs where the virus can replicate without an effective immune response allow for a larger mutant population
- Mutations can be beneficial or harmful to the virus

Schematic representation of a viral quasispecies. Viral genomes are represented as horizontal lines, and mutations as symbols in the lines. Upon infection with an RNA virus—even with a single particle, as depicted here—viral replication leads to a mutant spectrum of related genomes, termed quasispecies

Why is SARS-CoV 2 changing over time?

- Viruses require hosts to replicate
- Because viruses make mistakes each time they replicate, they can adapt to new hosts rapidly
- Viruses that can infect people faster have a distinct advantage
- Scientists are learning more about the virus as mutants are identified

Talk overview

Virus replication and disease outcomes in animal hosts and humans

Human coronaviruses before the global COVID-19 pandemic

SARS-CoV 2 genome changes over the course of the pandemic

Current and future COVID-19 treatment options

COVID-19 disease symptoms and SARS-CoV 2 transmission

What happens next? How do we prepare for the future?

Types of CoV treatment options

Antivirals

Virus particles multiply inside the body

Antiviral drug prevents virus from multiplying

Anti-inflammatories

Immune system dangerously overreacts to virus

Anti-inflammatory drug calms immune response

Antibody treatments

Antibody specific to coronavirus binds to it and kills it

Phases of clinical trials for treatment options

Are there any serious side effects?

- How does the vaccine dose relate to any side effects?
- Is the vaccine causing an immune response?

Phase 2 Several Hundred Volunteers

Researchers try to answer these questions:

- What are the most common short-term side effects?
- What's the body's immune response?
- Are there signs that the vaccine is protective?

olunteers

Researchers try to answer these questions:

- How do disease rates compare between people who get the vaccine and those who do not?
- How well can the vaccine protect people from disease?

Phase 4 Vaccine is Approved

Researchers try to answer these questions:

 FDA approves a vaccine only if it's safe, effective, and benefits outweigh the risks.

 Researchers continue to collect data on the vaccine's long-term benefits and side effects.

FDA Emergency Use Authorization

Adapted from Building Vaccine Confidence in Health Systems and Clinics developed by CDC COVID-19 response vaccine task force

Source: https://covid19community.nih.gov/resources/understanding-clinical-trials

What are the current treatment options?

Treatment Option	Type of Treatment Option	Currently Approved in U.S.	Cu
A	Antiviral	YES	
В	Antibody (patient) treatment		
С	Antibody (synthetic) treatment		
D	Antiviral + anti-inflammatory		
E	Antibody treatment		

EUA = emergency use authorization

urrently Approved for EUA

YES YES

YES

YES

30

When will more treatment options be available?

Type of Treatment	Numbers under Investigation	Phase in
Antivirals	4	
Anti-inflammatory	16	
Antibody treatments	12	

These are the most up-to-date numbers for January and February 2021.

n Clinical Trials

2 or 3

2 or 3

Talk overview

Virus replication and disease outcomes in animal hosts and humans

Human coronaviruses before the global COVID-19 pandemic

SARS-CoV 2 genome changes over the course of the pandemic

Current and future COVID-19 treatment options

COVID-19 disease symptoms and SARS-CoV 2 transmission

What happens next? How do we prepare for the future?

What happens next? Preparing for the future

- Scientists and medical professionals continue to learn about the virus and ways to treat patients and prevent infections
- Things everyone can continue to do in the short term:
 - Social distancing
 - Wearing masks effectively in public
 - Wash hands often
- Things everyone can do in the long term
 - Wear a mask and remain away from others if you are sick

WHAT'S NEXT?

Next week: we will discuss exposure and infection

VIRAL INFECTION OVERVIEW

EVERY TUESDAY IN MARCH 5:00-6:00 P.M.

Behind the Mask: The Science on Stopping the Spread

Katrina Waters Lab Fellow **Biological Sciences Division Director**

Testing, Testing, 1, 2, 3 (And What's Up With The New Vaccine, Anyways?)

Kristin Omberg Group Leader **Chemical and Biological Signatures**

SUBMIT YOUR QUESTIONS VIA THE DISCUSSION CHAT

EVERY TUESDAY IN MARCH 5:00-6:00 P.M.

DEMYSTIFYING COVID:

A Special Edition Seminar Series

Thank you

