

A 3D Printable Art Media: Alginate-based Bioinks Doped with Vibrant Mica Pigments

September 22, 2021

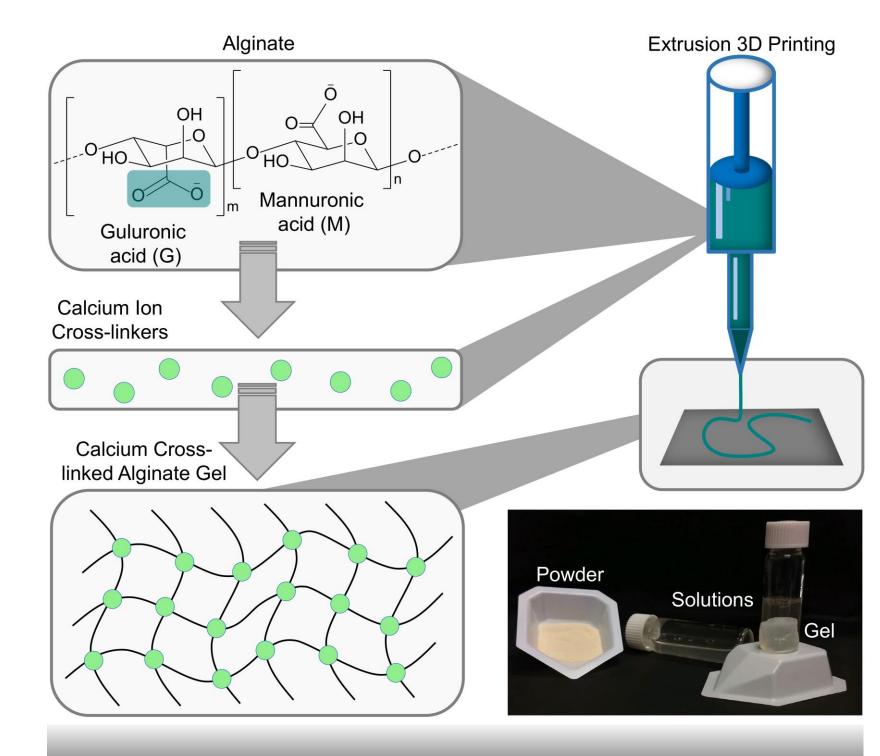
Anne M. Arnold, Zachary C. Kennedy, Joshua A. Silverstein, Jacob F. Ellis, and Janine R. Hutchison

Post Doctorate RA – Materials Chemist

PNNL is operated by Battelle for the U.S. Department of Energy

Motivation: 3D printing cells for tissue regeneration

- Traditional 3D printing uses high heat to melt plastic filament
- High heat will kill cells
- Bioinks are used as an alternative to plastics because they can be printed at room temperature



https://www.3dnatives.com/en/fused-depositionmodeling100420174/

Chemical structure of sodium alginate creates a liquid that can be 3D printed into a stable solid

- Sodium alginate is a biopolymer derived from seaweed
- Carboxylic acid groups on polymer chains can bind calcium ions
- Calcium ions form bridges between polymer chains to create a network

Anne M. Arnold, Zachary C. Kennedy, Joshua A. Silverstein, Jacob F. Ellis, and Janine R. Hutchison ACS Omega 2021 6 (29), 18694-18701. DOI: 10.1021/acsomega.1c01453

Sodium alginate is an ideal **binder for a 3D printable bioink composites**

Bio Art Attack Submission

3D Printed Bioart

Table 1. Criteria Considered when Selecting Alginate as the **Binding Medium for Bioink Composite**

Similar physicochemical properties compared to commercial binding medium	Xanthan gum is used as acrylic products, suggest physicochemical propert successful binding mediu
Tunable Cross-linking	Alginate cross-linking ca temperature using calciu for optimal workability
Minimal Color	Reduces color dampenir
Moderate Opacity	Opacity of the binding m coverage
Optimal Consistency, Workability, & Stiffness	8% (w/v) alginate solutio suspend pigments up to a 3D form, but are not to
Low-Cost	≤ \$0.10 USD / g (as of F
Widely Available	Available for purchase fr
Water Dispersible at Neutral pH	At neutral pH values, wa environmentally friendly associated with other sol
Non-toxic & Biocompatible	Alginate serves as an es in pharmaceutical and bi
nna M. Arnald Zachary C. Kannady, Jachua A. Silvaratain, Jacob E. Ellia	

Anne M. Arnold, Zachary C. Kennedy, Joshua A. Silverstein, Jacob F. Ellis, and Janine R. Hutchison ACS Omega 2021 6 (29), 18694-18701. DOI: 10.1021/acsomega.1c01453

a binding medium in commercial sting alginate, which has similar ties, could also serve as a ium

an be achieved rapidly, at room um chloride in a tunable fashion

ng of pigments

nedium promotes substrate

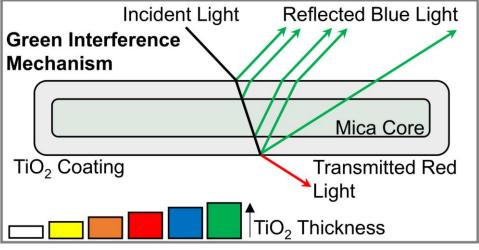
ons have optimal consistency to 8 days and stiff enough to retain oo thick to hinder workability

ebruary 2021)

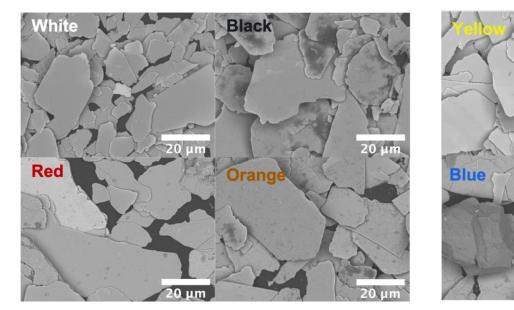
rom industrial and retail suppliers

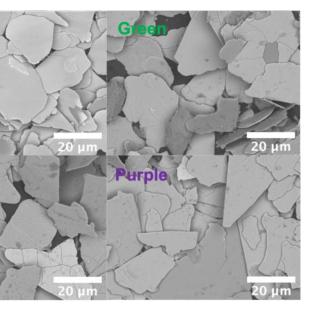
ater is a biologically and solvent, eliminating hazards olvent systems

ssential food additive and is used piomedical products


Mica pigment powders as an additive to sodium alginate bioinks

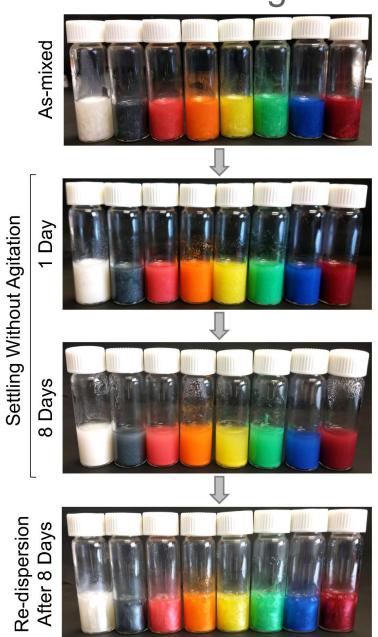
- Mica powders are vibrant, pearlescent pigments
- Mica flakes are coated in a thin metal oxide layer, which dictates the color via an interference mechanism
- Flake size and shape imparts pearlescence effect


Mica Pigment Powders


Mica Color Produced by an **Interference Mechanism**

Scanning Electron Microscopy Images of Mica Flakes (~20 µm)

Anne M. Arnold, Zachary C. Kennedy, Joshua A. Silverstein, Jacob F. Ellis, and Janine R. Hutchison ACS Omega 2021 6 (29), 18694-18701. DOI: 10.1021/acsomega.1c01453



Sodium alginate bioinks loaded with mica pigments are shelf-stable

- Mica pigments remain dispersed in sodium alginate up to 8 days
- Mica pigments are easily re-dispersed in sodium alginate
- Sodium alginate-mica bioinks are shelf-stable on the order of months
- Mica pigments serve as a surrogate for nanoplatelets

Mica Pigments Dispersed in Sodium Alginate

Anne M. Arnold, Zachary C. Kennedy, Joshua A. Silverstein, Jacob F. Ellis, and Janine R. Hutchison ACS Omega 2021 6 (29), 18694-18701. DOI: 10.1021/acsomega.1c01453

Mica Pigments Dispersed in Water

Poor Dispersion

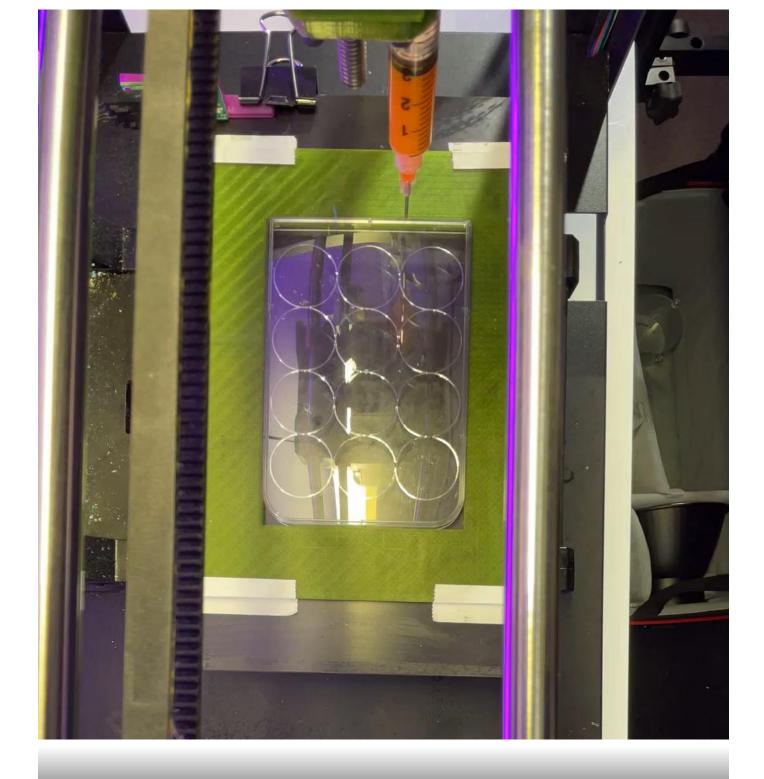
Pacific Northwest National Laboratory Sodium alginate-mica bioinks can be prepared in any color

Images courtesy of Andrea Starr

7

Sodium alginatemica bioinks can be 3D printed by hand to create unique 2D or 3D compositions

Images courtesy of Andrea Starr



Sodium alginate-mica bioinks can be 3D printed using dedicated hardware

- After printing, constructs can be crosslinked further with calcium chloride to provide more structure
- Prints can be preserved in a solution of 200 mM calcium chloride
- Prints are biodegradable and biocompatible for future mammalian cell printing

Video courtesy of Graham Bourque

- Addition of mica pigments to sodium alginate bioinks creates vibrant, pearlescent inks, and serve as a surrogate for nanoplatelets
- We have also explored additional additives (e.g., paint, glow in the dark, etc.) with success
- Our sodium alginate formulation can be 3D printed at room temperature with biocompatible properties
- Sodium alginate-mica bioinks can be 3D printed by hand or with dedicated printing hardware
- Biocomposites will advance tissue engineering

Thank you

