
An Approach to Ensuring Quality in Environmental Software

Table of Contents for PNNL-11880:
• Summary
• 1.0 Introduction
• 1.1. Purpose of This Document
• 1.2. Philosophy of System Development
• 1.3. Scope of Document
• 1.4. Document Overview
• 2.0 Software Systems Approach
• 2.1 Description of Systems

o 2.1.1 System Framework
o 2.1.2 Module
o 2.1.3 User

• 2.2 Information Security
o 2.2.1 Applications Security
o 2.2.2 Installation Security
o 2.2.3 Information Management

• 2.3 System Safeguards and Sensitivity
• 2.4 Potential Electronic Tracking System
• 2.5 Performance Metrics

o 2.5.1 System Framework
o 2.5.2 Module User Interface
o 2.5.3 Module Model
o 2.5.4 Module Pre/Post-Processor

• 3.0 System Development
• 3.1 System Detailed Requirements Analysis

o 3.1.1 Requirements Analysis
o 3.1.2 Requirements Documentation

• 3.2 System Design and Development
o 3.2.1 Definition of Database and File Structure
o 3.2.2 Code Design and Development
o 3.2.3 Development of Software User´s Guidance
o 3.2.4 Design and Development Documentation

• 4.0 System Modifications
• 4.1 Performance Metrics Development

o 4.1.1 Enhancements
o 4.1.2 Errors and Bugs

• 4.2 System Modification Documentation
o 4.2.1 Change Request
o 4.2.2 Change Documentation
o 4.2.3 Change Request Summary

• 4.3 Design and Development
• 5.0 System Integration, Testing, and Evaluation

• 5.1 New Systems
• 5.2 Modified Systems
• 5.3 General Test Scenarios
• 6.0 System Implementation
• 6.1 Technology Transfer

o 6.1.1 Client Implementation Support
o 6.1.2 Implementation Documentation
o 6.1.3 User Training

• 6.2 System Operations and Maintenance
• 7.0 References
• Appendix A - Guidance for Designing, Developing, Testing, and Implementing

Environmental Software Systems
• Appendix B - Roles and Functions of Project Team Members
• Appendix C - Example Software Design, Development, and Modification Forms
• Appendix D - Glossary

SUMMARY
The environmental software systems developed under this approach are often used to
determine impacts to the public, workers, and the environment from environmental
contamination. The resulting information from systems is used in the context of important
environmental decision making. It is vital, therefore, that the modeling results and the systems
that provide them be scientifically defensible and capable of withstanding the most rigorous of
technical reviews. In other words, the control and assurance of quality is a critical factor for
environmental software systems project team (project team) in the development of
environmental software systems.

This document describes the philosophy, process and activities that ensure a quality product
throughout the life cycle of the development, modification, testing, and implementation of
environmental software systems to analyze risk in multiple environmental media. Quality is
defined as the ability of a system to meet the client's needs. Meeting client needs starts with a
shared understanding of how the software must perform. It continues throughout the software
life cycle through attention to details.

The environmental software systems developed by the project team are designed using an
object-oriented approach. These systems offer increased benefits over those of the traditional
"hard wired" systems, such as the ease of maintenance and the retention of development and
testing legacy of individual components, which makes the design and testing of models and
future additions faster and less costly. These systems are developed using a modular
framework concept thtat allows users the flexibility to construct, combine, and couple
attributes to meet their specific needs. This framework concept allows a variety of models to
work within a single construct.

There are two parts to these software systems: an overall system framework and a set of
modules. Each module has three components: a user interface, a scientific model, and
pre/post-processors. Each of these pieces has a different set of quality criteria associated with
it. However, whatever form these software systems might take for a particular client, standard
processes apply to protect information from inappropriate use. These processes include
application security, installation security, and protection of confidentiality, integrity, and
availability of information.

The performance metrics for these software systems are grouped into eight categories:
compatibility, completeness, consistency, correctness, ability to be modified, robustness,
understandability, and testability. Many of the metrics in these categories are generally met in
our standard approach of object-oriented design.

Figure S.1 outlines the environmental software system development process with quality check
points highlighted. Although many existing models have been developed for U.S. Department of
Energy, those systems may also be applicable to other agencies or organizations. Because many
of our systems are designed for U.S. Environmental Protection Agency, or to be compatible with
their systems, our quality process was designed to be compatible with their EPA Directive
2182, System Design and Development Guidance (EPA 1997). Activities roughly equivalent to
their Essential Elements of Information are shown in Table S.1.

The information contained within this document can be applied to most environmental
software systems developed by the project team to analyze risk in multiple environmental
media, although in some cases, client needs will require an even greater level of assurance. For
specific projects, clients should refer to the proposal, statement of work, and/or the project
management plan for additional information on detailed quality requirements and activities
being planned.

Figure S.1 Ensuring Quality in Environmental Software System Development Process

Table S.1 Relationship of Laboratory Environmental Software Development Process to U.S.
Environmental Protection Agency's Essential Elements of Information (EPA 1997)

Essential Element of
Information*

Environmental Software Process Equivalent
(Section)

4 - System Implementation
Plan

Project Management Plan or Statement of
Work (3.1.2)

5 - System Detailed
Requirements Document

Requirements Package (3.1.2)

6 - Software Management
Plan

Project Management Plan or Statement of
Work (3.1.2) and this document

7 - Software Test and
Acceptance Plan

Software Test Package (5.1 and Appendix A)

8 - Software Design
Document

Software Development Package (3.2.4)

9 - Software Maintenance
Document

System Modification Documentation (4.2)

10 - Software Operations
Document

User's Guidance and Training (3.2.3)

11 - Software User's
Reference Guide

User's Guidance and Training (3.2.3)

12 - System Integration Test
Reports

Software Test Package (5.1 and Appendix A)

* Elements 1 through 3 are generally completed by clients in U.S. Environmental Protection
Agency before contract initiation with Pacific Northwest National Laboratory.

1.0 INTRODUCTION
A variety of environmental management regulations today require use of computer models of
varying sophistication for estimating impacts of activities on humans and environment. One
example is environmental remediation and restoration activities under Comprehensive
Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Another is
development, implementation, and enforcement of regulations concerned with protecting
human and ecological health from chemical and nonchemical human-induced contamination.
These types of regulations have led to a rapidly growing need for risk analysis software systems
that take a holistic approach to evaluating human health and ecological risks and hazards. Such
systems assess impacts from a more comprehensive environmental systems perspective, cross-
cutting various scientific disciplines. They also consider an increased number of interactions
between constituents, environmental media, and receptors (Whelan et al. 1997).

Pacific Northwest National Laboratory (Laboratory), operated by Battelle for U.S. Department
of Energy, has been in forefront of developing such systems for clients span federal agencies,
industry, and academia. project team´s software systems are often used to determine impacts
to public, workers, and environment from environmental contamination. resulting information
from system is used in context of important environmental decision making, affecting not only
regulatory agencies and potentially responsible parties, but decision stakeholders as well. It is
vital, therefore, that the modeling results, and the systems that provide them be scientifically
defensible and capable of withstanding most rigorous of technical reviews. In other words, the
control and assurance of quality is a critical factor of the project team in development of
software systems to analyze risk in multiple environmental media.

1.1 Purpose of This Document
This document describes the philosophy, process, and activities that ensure a quality product in
the development, modification, testing, and implementation of software to analyze risk in
multiple environmental media. In most cases, the process described has been used for a
number of years on dozens of projects, with similar positive results. The purpose of
documenting the process at this time is to:

1. Provide a ready source of information for training new project staff

2. Improve the understanding of the process and thus acceptance of the final product

3. Improve the reliability of software by ensuringthat all staff are following the same
protocols

4. Improve the maintainability of software by attention to careful documentation of
modifications.

The information provided should help clients, general users and project team members to
understand the importance of ensuring quality in the software development life cycle.
A cornerstone of process is adherence to Laboratory standards. The Laboratory quality
assurance standard states, "All staff shall document calculations, analyses, tests, and software
required to substantiate results and processes used to develop products/solutions. Program
managers shall manage assigned projects to a plan appropriately documents deliverables,
budget, schedule, management methods, organization and control systems" (Laboratory quality
assurance standard, Standards Based Management System, 1997b). In addition, the standard
makes provisions for several levels of quality assurance, noting that

When a project meets basic Battelle requirements (as provided in Standards-Based
Management System A-manuals and subject areas) or other project or activity
documents that sufficiently describe how customer requirements, drivers, and business,
technical, or environment, safety and health risks are met, no additional quality
assurance documentation is needed

Accordingly, this document provides the standard quality assurance planning necessary for
most projects to develop, modify, evaluate, or apply software to analyze risk in multiple
environmental media (some projects will require an even higher lever of assurance based on
client needs).
The Laboratory also has a software development standard (Laboratory computer software and
database control standard, Standards Based Management System, 1997a) that embodies the
quality standard and takes several steps further. The standard requires that

Management shall promote utilization of recognized system life-cycle management
techniques to ensure quality and repeatable delivery of information systems and
infrastructure services to both internal and external customers. Staff shall take
reasonable actions to safeguard the Laboratory, Battelle, and client information assets,
and computing and communications applications and resources against theft, loss,
misuse and disruption.

Accordingly, this document describes how quality is managed throughout the system life cycle
for environmental software systems (development, modification, testing, implementation, and
application) and security measures commonly in place throughout Laboratory.
1.2 Philosophy of System Development
We define quality as the ability of system to meet client needs. Meeting client needs starts with
a shared understanding of how the software must perform. It continues throughout the
software life cycle through attention to details. For example, we use object-oriented
programming constructs to control the flow of execution. This provides for well-defined
interface points between modules and the easier maintenance of software. We also maintain a
modular approach in the source program design and coding to ensure compatibility, easier
testing, and clear communication points. Finally, we practice good documentation in naming
conventions, symbolic parameters, paragraphing, blocking, indentation of source code,
specification of a single statement per line, the intelligent use of comments and error messages
so coding is easy to replicate, modify and maintain. These standard practices allow us to
develop high-quality software systems that satisfy our clients.

1.3 Scope of Document
This document is meant to stand alone. The information contained within can be applied to
most of the project team´s software systems to analyze risk in multiple environmental media,
although in some cases client needs will require an even greater level of assurance. For specific
projects, clients should refer to the proposal, statement of work, and/or project management
plan for additional information on detailed quality requirements and activities being planned.

In some cases, our clients ask us to apply the models we develop to a particular problem or
need (for example, in estimating risks of a major federal action for an environmental impact
statement). Model application requires a different type of quality assurance process. One
considers model selection, data collection, model implementation, sensitivity and uncertainty
analysis, and anchoring. This type of quality assurance process is not addressed in this
document.

1.4 Document Overview
The following sections provide an overview of software quality control and assurance activities
associated with a software life cycle (development, modification, testing, implementation, and
application). Section 2 provides a historical perspective of the development of such systems as
well as a general description of software systems and certain applications and information
security measures taken across projects. Section 3 describes the life-cycle process for the
development of new software systems. Section 4 provides similar information for modifications
to existing systems. Section 5 details test process used for both new and modified
systems. Section 6 describes the support provided to transfer technology and implement the
system at a client´s organization. Section 7 provides references cited elsewhere in this
document. Specific guidance for quality process can be found in Appendix A. Appendix
B describes roles and functions of project team members. Appendix Cprovides a glossary of
specialized terms used in this document.

2.0 SOFTWARE SYSTEMS APPROACH
The environmental software systems developed by the project team are designed using an
object-oriented approach. These systems offer increased benefits over those of tthe raditional
"hard wired" systems. Over the past 35 years, these traditional environmental software
systems have been developed for specific media (soil, groundwater, surface water, air, etc.) in
an effort to understand and predict environmental phenomena. Such systems are still being
developed today. The evolution of these models has followed a logical progression:

• In 1959, the Stanford Watershed Model was developed and represented as one of
first "integrated" models, as it linked multiple processes by simulating the land-phase
of a hydrologic cycle for an entire watershed.

• In 1969, Oak Ridge National Laboratory presented the Unified Transport Approach,
which coupled (i.e., "hard-wired") detailed numerical models, describing individual
environmental media. This model did not progress into general use because 1)
models were difficult to understand, operate, modify, and maintain; 2) data to
operate models were generally unavailable; and, most importantly, 3) computer
power to drive system was lacking at time.

• In 1984, the introduction of desk-top computing allowed for the first fully coupled
sequential multiple media model, which accounted for temporally and spatially
varying contamination within designated media. Each medium-specific model was
"hard-wired" into system, so replacing these components was not easy.

• Around 1990, the development of large multi-purpose frameworks began, which
"hard-wired" a suite of codes together and investigated not just the distribution of
constituents in environment but the relationships between a suite of issues deemed
valuable (e.g., regulatory criteria, data quality objectives, regulatory processes, etc.).

Unfortunately, one of the drawbacks of these "hard-wired" systems was in incorporating
individual components. The legacy of development and testing for the component was
compromised. Even when these components could be incorporated intact, modifications were
often necessary in other components. Therefore, the modification and maintenance of these
systems were costly and time-consuming. A clear solution was to move toward a more object-
oriented design, which is easier to maintain, retains development and testing legacy of
individual components, and thus makes design and testing of models and future additions
faster and less costly.

2.1 Description of Systems
That the project team develops software systems for risk analysis in multiple environmental
media within a modular framework allows users the flexibility to construct, combine, and
couple attributes meet their specific needs. This allows a variety of models to work within a
single construct. There are two parts to these software systems: an overall system framework
and a set of modules. Each module has three components: a user interface, a scientific model,
and a pre/post-processor. Each of these pieces has a different set of quality criteria associated
with it.

2.1.1 System Framework
The system framework typically consists of a set of modules that have been specified by
a client, an associated framework user interface, and data exchange specifications. The
purpose of a system framework is to:

o Minimize the data-exchange requirements between modules of framework
system

o Allow relatively easy inclusion of additional modules and models

o Allow for unlimited access to data

o Address linkage concerns for a variety of models.

The system framework typically includes a user-friendly interface to enable the user to
access these capabilities easily.
Depending on client needs, the framework may accommodate various levels of the
detail (i.e., resolution) of models and scale of assessment (e.g., medium-specific,
watershed, regional, and global). It may also access a number of site- or installation-
specific and national

Each system framework is developed and maintained by a team of researchers. The
team consists of at least one subject matter expert (individual responsible for
communicating client needs), a framework custodian (technical expert who oversees
code development for system framework), and an application expert (someone with
background in application of similar systems). There may also be component developers
to assist framework custodian, testers, and technical reviewers for subject matter or
code. Other project team members include the project custodian (who also serves as
quality assurance/quality control manager), and a documentation manager (assigned to
aid in development of documentation and/or online help programs), with an overall
project manager providing client interface and leadership. At the onset of specific
projects, the project manager selects appropriate individuals for each of these roles.
Additional information on roles and functions of each of these team members can be
found in Appendix B.

2.1.2 Module
Each module potentially contains three components: the user interface, the scientific
model and, for those systems that incorporate legacy models, pre-and/or post-
processors. Examples of modules include source term releases, vadose zone transport,
saturated zone transport, surface water transport, air transport, exposure pathway
analysis, dose estimates, health impacts, and sensitivity/uncertainty support tools.

Each module is developed and maintained by a team of researchers. For each module,
there will be a subject matter expert (e.g., hydrologist for groundwater module, health
physicist and biochemist for dose exposure module, etc.), a module custodian (technical
expert who oversees code development for a module), and an application expert
(someone with background in subject area and experience applying similar models).

There may also component developers to assist module custodian, testers, a
documentation manager assigned to aid in the development of documentation and/or
online help programs, and technical reviewers for subject matter or code. Other project
team members include the project custodian (who also serves as quality
assurance/quality control manager) and task leader (generally in charge of development
of each module), with an overall project manager providing client interface and
leadership. At the onset of specific projects, the project manager selects appropriate
individuals for each of these roles. Additional information on roles and functions of each
of these team members can be found in Appendix B.

2.1.2.1 Model
A model is set of scientific calculations define a particular module. Several
models have been developed over the past 10 years by researchers focusing on
developing fully integrated, physics-based, intermedia modules that allow a
more transparent connection between individual medium-specific models. The
grouping of these physics-based models takes a holistic approach to the
environmental assessment of potential constituent impacts as they simulate the
following:

1. Release of constituents into environment

2. Migration and fate through various environmental media (i.e.,
groundwater, surface water, air, and overland surfaces)

3. Resultant exposures and impacts

4. Support tools such as sensitivity, uncertainty, graphical interface
systems, and displaying results.

The overall scope of these models generally includes the evaluation of on- and
off-site impacts from active and inactive sites involving both chemical and
radioactive wastes. Although differing in their individual scopes, these multiple
media models tend to be "analytical" in nature (e.g., mainly compartmental,
analytical, semi-analytical, and empirical algorithms). Other numerical or
structured-value models can be used within this holistic approach or as an
outside model.

2.1.2.2 Module User Interface
The purpose of the user interface to a module is to make it easy to collect the
data necessary to run model. Besides gathering necessary data, the user
interface often provides online help to the user, reference storage options for
collected data, flexible unit inputs, and other user support functions.

2.1.2.3 Module Pre/Post-Processors
As mentioned earlier, it saves time and cost if models can be integrated into a
system framework intact. Legacy software has been tested and reviewed and
can be preserved and integrated by the addition of pre- and/or post-processors

to the module. These processors transfer reorganized data into specified format
of overall framework, thus allowing the inclusion of modules that were initially
created for a media-specific analysis to be used in this more holistic approach to
multiple media assessments. Whether a pre/post-processor is used depends on
the needs of the scientific model and the specification of the framework. Models
have been created or modified with specifications predefined that will likely not
need pre/post-processors before integration.

2.1.3 User
The anticipated user of this overall framework and its modules is expected to have some
environmental science knowledge and to be familiar with standard
WindowsTM application software. In addition, completion of a training session or online
tutorial is also recommended for potential users. Although user interfaces are generally
written to be intuitive and user-friendly, the basic understanding of the proper use and
interpretation of software is recommended.

2.2 Information Security
Whatever form our software systems might take for a particular client, standard processes
apply to protect information from inappropriate use. These processes include application
security, installation security, and the confidentiality, integrity, and availability of information.

2.2.1 Applications Security
All computer systems and related software at Laboratory are used for official business
and activities sanctioned by management. Protection systems are in place to prevent
sabotage or damage by viruses. Physical security measures include following:

o Staff close and lock door to offices when systems will be left unattended for
extended periods of time.

o Staff use protective measures such as screen savers and passwords.

o Staff know people who have routine access to area.

o Staff supervise use and maintenance of their systems.

o All systems are in managed buildings (access through security checkpoints).

o Approval is required before non-Laboratory personnel are granted access to
computing resources.

o Backed up copies of software and files are stored in other locations (see
information management below).

To protect against viruses, virus scans are performed monthly on all networked
computers and at least quarterly on standalone models. In addition, all disks and files
from unknown or questionable systems are scanned before use. The Laboratory uses a
nationally recognized virus scanning program capable of identifying most forms of
viruses including newer macro-viruses.

2.2.2 Installation Security
Most risk analysis software systems developed by the project team come in installation
disk sets. Users generally install disks into the same directory or folder. To ensure ease
of installation, all the software for risk analysis in multiple media is installed using
general Windows installation procedures. These procedures prompt users through the
installation process.

2.2.3 Information Management
All software systems covered by this approach are designed to meet client needs; each
client receives specific information and software to this end. However, in all cases,
master source codes remain the property of the Laboratory. Electronic copies are
backed up and kept in at least two different buildings as well as on a networked fixed
disk; a baseline printout is also kept separately. A completed form detailing all locations
is kept by module or framework custodian for respective components as well as the
project custodian. Additional guidance related to information management can be
found in Appendix A.

2.3 System Safeguards and Sensitivity
These risk analysis software systems are generally used to estimate the impacts to human
health from constituent releases to environment through several pathways of exposure. This
information is generally used to hypothesize impacts from new constituent sources or changes
to existing sources (such as effects from environmental remediation and restoration). This
information can also be used to monitor compliance with environmental regulations. Clients
may use it for a single activity or for analysis of a full suite of activities spanning multiple
installations and locations.

Because ways in which software can be used differ between clients, the system´s sensitivity can
also vary widely. Therefore, it is the client´s responsibility to determine the appropriate
safeguards and security necessary for their particular use. Project staff will discuss this need
with the client early in the planning process so that the client requirements can be built into the
system development.

2.4 Potential Electronic Tracking System
The processes detailed in this report are currently tracked via an electronic spreadsheet
program. There are, however, an increasing number of automated software quality assurance
tools designed for Internet, Intranet, and web-based use that can be considered to save time
and money. Change request tools introduce a consistency of communication that makes data
gathering a simple, painless process and encourages people to report defects and testing time.
Enhancement requests, defect reports, and changes can be easily managed from the initial
incident through resolution and testing. Version control management tools can reduce the risk
of change by enforcing and recording change process. The right change request and version
control tools can save time, ease software maintenance, and coordinate the work of multiple
team members. The project team is currently investigating the utility and feasibility of
incorporating one or more of these tools to maximize quality assurance process for clients.

2.5 Performance Metrics
The performance metrics for this approach considers eight areas: compatibility, completeness,
consistency, correctness, the ability to be modified, robustness, understandability, and
testability. Many of these areas are generally addressed in our standard use of object-oriented
design. The following are examples of performance metrics specific to four pieces of software
described above (Section 2.1).

2.5.1 System Framework
Answering yes to the following questions indicates that the system framework will
perform in accordance with quality expectations:

o Does the system framework design have a specification for data transfer
between modules?

o Do interface requirements ensure that external modules will be compatible?

o Does the requirements package include all requirements defined in the
project proposal (as documented in project management plan or statement of
work)?

o Is there internal consistency between the specification requirements?

o Does the documentation use standard terminology and definitions
throughout?

o Are requirements compatible with hardware and software used in operational
environments?

o Do the interface requirements define required responses to potential types of
errors and failure modes identified?

o Is there justification for the design/implementation constraints?

o Are requirements organized to allow for modifications?

o Are there requirements addressing fault tolerances and graceful degradation?

o Does the interface have guidance to aid the user?

o Are functional requirements in modular (object-oriented) form?

o Is formal or semiformal language used in the documentation?

o Does the documentation contain only necessary implementation details?

o Are the requirements clear and specific enough to be the basis for design
guidance and functional tests?

o Does the documentation differentiate between requirements and other
information provided?

o Is there a test defined for each general requirement?

2.5.2 Module User Interface

Answering yes to the following questions indicates that the module user interface will
perform in accordance with quality expectations:

o Does the requirements package include all requirements defined in the
project proposal (as documented in project management plan or statement of
work)?

o Are the module user interface requirements consistent with framework
specification requirements?

o Does the documentation use standard terminology and definitions
throughout?

o Are the requirements compatible with hardware and software used in the
operational environment?

o Do interface requirements define the required responses to potential types of
errors and failure modes identified?

o Is there justification for design/implementation constraints?

o Are requirements organized to allow for modifications?

o Are there requirements addressing fault tolerances and graceful degradation?

o Does the interface have guidance to aid the user?

o Are functional requirements in modular (object-oriented) form?

o Is formal or semiformal language used in the documentation?

o Does the documentation contain only necessary implementation details?

o Are requirements clear and specific enough to be the basis for design
guidance and functional tests?

o Does the documentation differentiate between requirements and other
information provided?

o Is there a test defined for each general requirement?

2.5.3 Module Model
Answering yes to the following questions indicates that the module model will perform
in accordance with quality expectations:

o Does the requirements package include all requirements defined in the
project proposal (as documented in project management plan or statement of
work)?

o Are formulations free of contradictions?

o Are specified algorithms and numerical techniques compatible?

o Are requirements compatible with hardware and software used in operational
environment?

o Are algorithms and regulations supported by scientific or other appropriate
literature?

o Is there justification for design/implementation constraints?

o Are requirements organized so as to allow for modifications?

o Are there requirements addressing fault tolerances and graceful degradation?

o Are functional requirements in modular (object-oriented) form?

o Is formal or semiformal language used in the documentation?

o Does the documentation contain only the necessary implementation details?

o Are requirements clear and specific enough to be the basis for design
guidance and functional tests?

o Does the documentation differentiate between requirements and other
information provided?

o Are mathematical functions defined in the documentation using notation with
well-defined syntax and semantics?

o Is there a test defined for each general requirement?

2.5.4 Module Pre/Post-Processors
Answering yes to the following questions indicates that the module pre/post-processors
will perform in accordance with quality expectations:

o Do processor requirements enable the compatibility of external model
components to be integrated into framework system?

o Are pre/post-processors requirements consistent with framework
specification requirements?

o Are requirements organized to allow for modifications?

o Are functional requirements in modular (object-oriented) form?

o Is there a test defined for processor requirements?

3.0 SYSTEM DEVELOPMENT
Software systems, developed by the project team, to analyze risk in multiple environmental
media follows a routine process (Figure 3.1), honed by years of experience with a variety of
clients. This development is influenced by client needs for information output, programming
standards and languages, and the development tools available. In general, this process entails
an analysis of client requirements, the design of the system to meet those requirements, and
production and programming, including testing. The guidance discussed in the following
sections can be found in Appendix A. Appendix Bdescribes the responsibilities of various roles
discussed.

3.1 System Detailed Requirements Analysis

Each project starts with a definition of the client´s needs. What problem must be solved? What
kinds of information are needed? Who are the ultimate users and how can the system best
meet their needs? This definition begins with an analysis of needs, a definition of the functional
components of hardware and software, and packaging of information.

3.1.1 Requirements Analysis
The requirements analysis is based on communication with the client and historical use
of these software systems by the project team. The project team has years of
experience in analyzing environmental issues and has developed significant tools for use
in understanding these issues. This experience along with understanding specific needs
of client is the basis for the requirements analysis, which is documented in a proposal or
statement of work for the client.

An important part of the requirements analysis is to define functional components of
hardware and software. These components are determined by the client´s hardware
environment and the environments of legacy software being incorporated into the
system.

3.1.2 Requirements Documentation
The information developed during the requirements analysis phase of project is
gathered into the requirements package. This requirements description includes two
levels of detail, general requirements and specific requirements. Many of the general
requirements are described in project documentation, such as the project management
plan with task descriptions and/or a statement of work for the project to ensure
accuracy and client understanding and support. Thr statement of work is approved by
the client before the initiation of work (the project management plan or statement of
work contains similar information as in U.S. Environmental Protection Agency´s "System
Implementation Plan" and "Software Management Plan," Essential Elements of
Information 4 and 6, respectively, in EPA 1997).

In addition to the statement of work and task descriptions, additional general
requirements can be documented and included into the requirements package. The
requirements package should be sufficiently detailed to be used as the foundation for
design and testing (the requirements package contains similar information as in EPA´s
"System Detailed Requirements Document," Essential Element of Information 5 in EPA
1997).

Figure 3.1. Process for Developing Environmental Software Systems

The information in the requirements package should, at a minimum, answer the
following questions:

o Which capabilities have been discussed with the client (which are they
expecting the project team to use on this project)?

o What additional capabilities are necessary to produce a quality product?

o What specific restrictions have been noted?

o What potential difficulties have been identified?

o What compatibilities are necessary for usability (confirm compatibility with
client´s systems)?

o Who are the project team members (subject matter expert, module or
framework custodian, application expert, etc.)?

Specific requirements for a system framework include the following:
o Module data interaction specifications

o Mathematical formulations

o File formats descriptions for those files that do not meet framework system-
level specifications

o Necessary help information

o Identification of ways to ensure a consistent look and feel with related
interfaces

o Expected deliverables for task.

3.2 System Design and Development
The system design and development is the process of taking the information in the
requirements package and translating it into software. This process is led by a module or
framework custodian (see Appendix B for a full description of roles and responsibilities for this
person), who may have assistance from other code developers as well as a subject matter
expert. When this process has been completed, any changes to the software must be approved
by the task leader and project manager.

3.2.1 Definition of Database and File Structure
Before the code is designed, the module or framework custodian (depending on
component) must determine appropriate databases and file the structures of input and
output from them. Module file structure should be consistent with the framework´s file
specification format. Pre/post-processors may be used to aid in the conversion of legacy
code file formats not already meeting those specifications. All file formats should be
designed to ensure the readability and compatibility with most spreadsheet programs,
and to incorporate the necessary information to communicate use and purpose of each
file.

3.2.2 Code Design and Development
the code design begins with a description by the module custodians and framework
custodian of major components of the design as they relate to requirements identified
in the requirements analysis phase of the project. Flowcharts, block diagrams, and the
relational matrix are often used to describe linkages and solution strategy. Guidance
describing multiple steps involved in the design and development of software systems
can be found in Appendix A.

3.2.3 Development of Software User´s Guidance
Software user guidance is developed for each module or framework. This user´s
guidance, often in the form of online help, is generally an associated real-time system
using hypertext language. However this type of help information is also made available
for printing in hard copy form to function as a traditional user´s guide (user guidance,
along with training discussed in Section 6.0, contains similar information as in EPA´s
"Software Operations Document" and "Software User´s Reference Guide," Essential
Elements of Information 10 and 11 in EPA 1997).

In addition, online tutorials may be developed for specified software systems. These
tutorials would serve as a supplement or replacement to traditional client training
arranged to aid in system implementation. These tutorials are intended to communicate
the necessary information needed to operate the system correctly. Information is
provided on the operation of the user interface and underlying models and their
appropriate use. The development of an online tutorial is determined in the project
management plan or statement of work.

3.2.4 Design and Development Documentation
The design and development activities are captured in a software development package,
which identifies the type of code (new, replacement, upgrade) and members of the
development team. It provides a generic description of the code, often in the form of a
flowchart or task description. It also lists deliverables specific to the task such as the
requirements analysis, user guidance, and testing approach. The software development
package is helpful throughout the process because it captures the developers´
understanding of requirements and provides an opportunity for internal and external
reviews of the design (software development package contains information similar to in
EPA´s "Software Design Document," Essential Element of Information 8 in EPA 1997).

Code testing is also documented in the software development package as well as the
software test package. The software development package contains a copy of the
software test package and is signed by the application expert. A description of what
comprises a software test package can be found in Section 5.
When completed, the software development package is reviewed by the task leader,
subject matter expert, and a module or framework custodian (depending on
component), and application expert. The information includes a baseline hard copy of
source code listing as well as a diskette copy labeled with the component name, version,
component developer names, and date. The diskette includes source codes, any
executable files, and any "readme" files with special instructions to users. The package
also documents the computer programming language used and any other additional
languages used. Changes to components of software after the software development
package is complete require the additional signature of the task leader.

Additional information for each piece of software is provided below.

3.2.5.1 Framework Design and Development Documentation

The software development package also captures a variety of information from
the design phase of the project for the framework-level system, such as design
requirements and communication file specifications. The software development
package provides for assurance the user guidance has been developed, as well as
reviews of documentation and the resolution of comments from those reviews.
When the design portion of the software development package is completed,
the design is approved by the subject matter expert, application expert, and the
framework custodian.

3.2.5.2 Module Design and Development Documentation
The software development package also captures information from the module
design phase of the project including design requirements and draft formulations
needed for a module´s scientific model. Depending on the sensitivity or
complexity of formulations, these formulations can be reviewed internally
and/or externally, with signatures and comments noted and addressed.
Reviewers can be other subject matter experts or code developers, or a
representative of the client. The design portion of the software development
package also addresses the need to develop pre/post-processors to enable the
module to function within the overall system framework. When the design
portion of software development package is completed, the module design is
approved by the subject matter expert.

4.0 SYSTEM MODIFICATION
Over the years, Pacific Northwest National Laboratory has developed a variety of software
systems for risk analysis in multiple environmental media such as MEPAS, RAAS, GENII, and
others. While some client needs necessitate development of entirely new systems, often
modifications to the existing systems are more cost-effective and useful. Modifications are
influenced by programming language constraints, detailed user requirements, data
requirements, and physical environment. The approach to modifications is detailed below.
Descriptions of the roles and responsibilities of key project staff can be found in Appendix
B. Example forms currently used in software modification tracking can be found in Appendix C.

4.1 Performance Metrics Development
As mentioned in Section 2.5, the performance metrics for our environmental software systems
consider eight areas: compatibility, completeness, consistency, correctness, the ability to be
modified, robustness, understandability, and testability. Many of these areas are addressed in
our standard approach of object-oriented design and thus have been addressed in the
development of the original systems. These systems may be modified for one of two reasons:
either a client or other user has suggested an enhancement they would like to purchase or the
project team or user has identified an error or "bug" in the system. The following are examples
of performance metrics specific to these types of modifications.

4.1.1 Enhancements

An enhancement might be made to the framework system or one of modules. When
enhancing a system framework, answering yes to following questions indicates that the
system will perform in accordance with quality expectations:

o Were modifications evaluated for appropriateness and feasibility?

o Were modifications to data communication specifications documented?

o Were modifications approved by the subject area expert, applications expert,
and framework custodian?

o Were modifications documented in such a way as to ensure reproducibility of
the process?

o Did the baseline test cases reproduce expected results?

When enhancing a module, answering yes to following questions indicates that the
module will perform in accordance with quality expectations:

o Were modifications evaluated for appropriateness and feasibility?

o Were modifications to model formulations documented?

o Were modifications approved by the subject area expert?

o Were modifications documented in such a way as to ensure reproducibility of
the process?

o Did the baseline test cases reproduce expected results?

4.1.2 Errors and Bugs
Once a potential problem with the system has been identified, the project team
attempts to reproduce the problem (i.e., determine the steps that led to the error
message or other problem). From this, the information, module or framework custodian
(depending on component) identifies a potential way to fix the problem; the proposed
method is approved by the cognizant subject matter expert. When implementing the
proposed change in the system, answering yes to the following questions indicates that
the problem has been solved:

o Was the change evaluated for appropriateness and effect of other segments
of code?

o Was the change approved by the subject area expert for a module or subject
matter expert, framework custodian, and application expert for a framework?

o Was the change documented is such a way as to ensure that the steps taken
can be reproduced?

o Were the baseline test cases reproduced with the expected affect on results?

4.2 System Modification Documentation
Once a software system has been developed to a baseline, modifications must be planned
carefully to ensure a minimal impact on existing users. The key to this is the tracking of

requested changes and their expected impacts on results (three pieces described below -
change request, change documentation, and change request summary - contain information
similar to in EPA´s "Software Maintenance Document," Essential Element of Information 9 in
EPA 1997).

4.2.1 Change Request
A change request may originate from a client, a project team member the client has
contacted, or a project team member who has identified a need for a system
modification. The process serves several purposes:

o Provides information on the potential location of the problem or
enhancement

o Identifies rhe problem or enhancement

o Provides information to determine the priority of the problem or
enhancement

o Documents under what circumstances the problem occurs

o Provides for concurrence between the framework or model custodian, subject
matter expert, and application expert.

Sometimes circumstances prevent the suggested change from being implemented. For
example, enhancements may be suggested for which a client is uninterested in paying
or someone may report an error in an outdated version of code. However, the change
request is documented regardless of whether the change is actually implemented. This
enables staff to track issues that, while not key to improvements today, may require
action later.
A change request may involve more than one problem/enhancement; in some cases,
several related problems are reported at one time. The request is duplicated later in the
process when each change is assigned a method of correction.

Once a change request has been initiated, it is routed through the project custodian,
who will assign a tracking number, enter that number into a database, and distribute
the information to the affected module or framework custodian(s). Sometimes a
problem is so critical that time does not permit the physical routing of change request.
In this case, the project staff send an electronic mail message to the project custodian
with a brief explanation of change. This information will be entered into the database
and a tracking number will be returned to the sender. Sometimes it is unclear as to
which modules are involved/affected by the proposed change. In this case, the project
custodian assigns a temporary tracking number until the change can be further
evaluated by the module or framework custodian.

4.2.2 Change Documentation
Once a change has been documented in the change request process, the module
custodian completes an evaluation of the change, which they then submit to the subject

matter expert for approval and a signature (at this point, multiple change requests that
were submitted together can be distributed so each change can be tracked separately).
If the change affects the system framework, an approval is based on a concurrence
between the subject matter expert, framework custodian, and the application expert.
The change attachment serves to document the following:

o Evaluation of the problem or enhancement by the subject matter expert(s)

o Changes made to code

o Tests run to ensure that the changes work properly

o Team members involved in the decision and change process.

If the change is denied, the module or framework custodian provides the completed
change package to the project custodian for archiving. If the change is approved, the
module or framework custodian begins the design and implementation of the proposed
change. The application expert then tests the changes made with a baseline set of
scenarios and any other testing scenarios necessary to confirm the expected affects of
the change. The module custodian also provides information to explain what changes
were implemented and how. Examples of such documentation includes printouts of
screens, code comparisons, etc.
If a solution triggers another problem or needed enhancement, the module or
framework custodian makes another change request and the process begins again.

4.2.3 Change Request Summary
When a change has been implemented, the module or framework custodian (depending
on component being changed) keeps a copy of the completed change package and
returns the original to the project custodian, who prepares a change request summary.
This package serves to:

o Summarize information from the change request form

o Document the reviews and approvals of the subject matter experts and
module or framework custodians

o Document the source code and backup updates.

The project custodian files the change request, change package, change request
summary, and any associated documentation for later reference. Copies of requests
originated by a client are also placed in the client folder.

4.3 Design and Development
Modification design and development follow similar guidance to the new system development
process found in Section 3.2. After the initial evaluation of modification and its potential
impacts to existing code and results, the system is modified and tested. Other design issues
considered by project team might include the following:

• Impacts to the software user´s guidance

• Information for updating the software development package

• Potential additional reviews.

5.0 SYSTEM INTEGRATION, TESTING, AND EVALUATION
All environmental software systems developed by the project team are tested by developers
before use external to Pacific Northwest National Laboratory. Each component is individually
tested, and the entire system is tested to ensure compatibility. The software test package is
developed by the application expert and is based on requirements for the system framework or
module being tested. The test package may also be evaluated by an independent tester to
ensure completeness and accurate results. Testing can often produce additional change to an
already baselined system. In this case, recommended changes to the software are routed
through the modification process to ensure the feasibility of those recommended changes
(modification process is discussed in Section 4.0). The testing and evaluation of results is
handled slightly differently for new systems verses changes to existing systems, as detailed
below.

5.1 New Systems
Testing of newly developed software is key in the environmental software systems quality
process (see Figure 3.1). Tests are documented in the software development package as well as
the software test package. Subject area experts and module or framework custodians provide
information to the application expert to summarize the reason for performing the tests and to
contribute to the scope of the test. The scope information may include information on the
software and documentation being tested, specific features to be tested, test case
specifications, and any features that are to be excluded from testing and why. The foundation
of testing is the requirements outlined in the requirements package and the development
package (software test package and test results contain similar information to EPA´s "Software
Test and Acceptance Plan" and "System Integration Test Reports," Essential Elements of
Information 7 and 12, respectively, in EPA 1997).

Before testing, the application expert identifies major testing tasks, activities, techniques, and
tools necessary to prepare for and perform testing. They also identify pass/fail criteria for each
item, suspension/resumption criteria, and test deliverables. Finally, they identify the staff
responsible for managing, designing, preparing, executing, and evaluating tests.

The application expert then prepares procedural steps for the test, describing such things as:

• Sequence of actions necessary for preparation before and during execution of the
test

• Methods or formats for logging results of test execution and test incidents

• How test measurements will be made

• Sequence of actions necessary for shutdown, restart, execution halt, and restoration
of hardware/software environment

• Actions necessary for dealing with anomalies that may occur during execution of the
test.

For each test case, the module or framework custodians also note:
• Logistic Information--unique identifier assigned to test case specification, a brief

description of items and features to be exercised by the test case, rationale for the
selection of the test case, and pass/fail criteria for all features to be tested.

• Input/Output Specifications--all inputs and relationships among inputs required to
execute the test case as well as all outputs and features required of test items.

• Requirements/Resources--characteristics and configurations of any hardware,
software, or unique facility required to execute the test case as well as any
constraints on the test executes test case and any dependencies between test cases.

At the conclusion of the testing, the applications expert, subject matter expert, and the module
or framework custodian agree to the comprehensiveness of testing. A baseline set of test cases
is documented as well as their results. These baseline test cases will be used to confirm the
continued integrity of the software system when future modifications are made.

5.2 Modified Systems
For modified systems, baseline test cases are used for confirming the effects on the overall
code in addition to testing needs identified in the evaluation, design, or change process. Often
changes are minor enough that minimal testing is required to ensure accurate implementation.
In this case, the application expert conducts the test and provides a printout to the project
custodian for inclusion into the change control files discussed in Section 4.0. When the
modifications are extensive, the application expert follows the same process as noted above for
the testing of new systems.

5.3 General Test Scenarios
General test scenarios are prepared for new and existing software that is being introduced into
this system quality approach. These scenarios are described as the minimum set of scenarios
that are necessary to ensure correctness of the software produced.

For a framework system, the scenarios evaluated are based on user-friendliness and module-
accessibility. Examples of the areas tested for framework systems include correct file execution,
accurate file communication, and user-understandability.

For a module user interface, the scenarios evaluated are based on user-friendliness and
accuracy in the data gathered for the model. Examples of the areas tested for the module user
interface include the representation of model capabilities, accurate file communication, and
user-understandability.

For a model, the scenarios evaluated are based on formulations and the purpose of model.
Examples of areas tested for models include the correct implementation of formulations,
accurate input/output data communication, and the potential combination of options.

For pre/post processors, scenarios evaluated are based on the correct data transfer and
compliance with the system framework file specifications.

6.0 SYSTEM IMPLEMENTATION
The last phase of software development and ensuring quality is system implementation;
however, expectations for the system implementation were first introduced in the
requirements analysis phase of project. Implementation means that the specific framework
developed for client can be transferred to the client to be applied at their organization by their
own staff. How this system is implemented is influenced by system development, user
acceptance, and operations constraints, as discussed below.

6.1 Technology Transfer
The transfer of usable software to the client is based on details depicted in a statement of work
or project management plan. Client agreements are often arranged with a requirement
software to be user-friendly and operable by a non-project team individual. The level of client
implementation support is arranged to aid the end user of the software tool in adjusting to the
look and feel of the system.

6.1.1 Client Implementation Support
Project agreements often include a client implementation support phase comprised of
the delivery of software to a client and a trial time with client support through initial
software usage. This support may be offered over phone, at the client location, or in
training sessions on use and foundations of the software being delivered. Technical
support can also be negotiated beyond the initial project agreement to enable a client
to expand on software capabilities or to aid in a client´s application of software tools.

6.1.2 Implementation Documentation
Implementation documentation is usually offered as an online feature of the software
system with additional documentation of file specification and formulations also
available. Additional information on software user´s guidance can be found in Section
3.2.3.

6.1.3 User Training
Training on the appropriate use of the software system is recommended. This training
should include information such as the capabilities of the user interfaces, reasoning for
the formulations that were implemented, and limitations of the system produced. This
training may occur through a formal training session, technical support of individual
users, an on-line tutorial, or another form of communication capabilities.

6.2 System Operations and Maintenance
The system operations and maintenance depends on the scope of the project. In some cases,
the operation and maintenance is included in the project and therefore falls into modification
aspects of this document (Section 4.0). In other cases, the project ends upon delivery of the
software to client; in this case, the client could negotiate continued system maintenance for
future use. Guidance of the proper use and operation of the system is provided in user training

as discussed above. Documentation packages gathered for developed software systems are
maintained and stored for the life of the product.

7.0 REFERENCES
EPA (U.S. Environmental Protection Agency). 1997. System Design and Development Guidance.
EPA Directive Number 2182, U.S. Environmental Protection Agency, Washington, D.C.

Standards Based Management System. 1997a (and as updated). "Computer Software and
Database Control Standard." https://sbms.pnl.gov/standard/94/9400t010.htm, Pacific
Northwest National Laboratory, Richland, Washington.

Standards Based Management System. 1997b (and as updated). "Quality Assurance Planning
Standard." https://sbms.pnl.gov/standard/87/8700T010.htm, Pacific Northwest National
Laboratory, Richland, Washington.

Whelan, G., K. J. Castleton, J. W. Buck, G. M. Gelston, B. L. Hoopes, M. A. Pelton, D. L. Strenge,
and R. N. Kickert. 1997. Concepts of a Framework for Risk Analysis in Multimedia Environmental
Systems (FRAMES). PNNL-11748, Pacific Northwest National Laboratory, Richland, Washington.

Gelston, G.M., R.E. Lundgren, J.P. McDonald and B.L. Hoopes. May 1998. An Approach to
Ensuring Quality in Environmental Software PNNL-11880, Pacific Northwest National
Laboratory, Richland, Washington

Prepared for:

Office of Research and Development
National Environmental Research Laboratory
U.S. Environmental Protection Agency

and

Office of Environmental Management
U.S. Department of Energy

and

Radiation Protection Division
Center for Risk Modeling and Emergency Response
U.S. Environmental Protection Agency
under Contract DE-AC06-76RLO 1830

Pacific Northwest National Laboratory
Richland, Washington 99352

