

Northwest Evaluation Approaches for Transitioning from Active to Passive Remediation

September 23, 2020

Katie Muller and Mike Truex

PNNL is operated by Battelle for the U.S. Department of Energy

Outline

1) Transition Assessment Basics (Why, When and How)

- 2) Assessment Framework
- 3) Technical Justification
 - Tools and Methodology
- 4) Case Studies
- **5) After Transition**

Why Transition from Active to Passive?

RISK MANAGEMENT

- Able to Manage Risk
 - ✓ Balance of time, cost, feasibility and potential risk
- Remaining mass may not constitute unacceptable risk
 - ✓ Mass removal does not necessarily equate to risk reduction

When to Consider a Transition Assessment?

Concentration

- Predetermined condition is reached \checkmark Source strength, plume behavior, etc.
- Asymptotic behavior under current remedy
- Current remedy has become impractical
- Conditions warrant a TI evaluation or development of alternative RAOs

Time

Cost per kg contaminant removed

Diffusion Controlled

After NAVFAC, 2012

How to Consider a Transition Assessment

- Adaptative management framework can be used for active to passive transition
 - \checkmark Addresses uncertainties and enables interim actions
- Recent Guidance for Adaptive Site Management and End States
 - ✓ Remediation Management of Complex Sites (ITRC, 2017)
 - ✓ Groundwater Remedy Completion Strategy: Moving Forward with the End in Mind (EPA, 2014)
 - ✓ Groundwater Read Map- Recommended Processes for Restoring Contaminated Groundwater at Superfund Sites (EPA, 2011)
 - ✓ Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites. (National Research Council (NRC), 2013)
- Technical Basis for Active to Passive Transition
 - ✓ Soil Vapor Extraction (Truex et al., 2013)
 - ✓ Pump and Treat (Truex et al., 2015, 2017)

Complex Sites RMCS-1 http://rmcs-1.itrcweb.org

1. Refine Conceptual Site Model

- Determine dominant processes under passive conditions
- Identify key complexities at site
- Estimate uncertainties
- 2. Evaluate Site Objectives
 - Potential exposure pathways
 - Remedial Action Objective concentrations
 - Determine site constraints
- 3. Predict Passive Remedy Performance
 - Quantify potential impact of remaining source material
 - Estimate key fate and transport parameters
- 4. Monitor for Selected Performance Indicators
- 5. Refine and Update Model Parameters (if needed)

1. Refine Conceptual Site Model

- Determine dominant processes under passive conditions
- Identify key complexities at site
- Estimate uncertainties

2. Evaluate Site Objectives

- Potential exposure pathways
- Remedial Action Objective concentrations
- Determine site constraints
- 3. Predict Passive Remedy Performance
 - Quantify potential impact of remaining source material
 - Estimate key fate and transport parameters
- 4. Monitor for Selected Performance Indicators
- 5. Refine and Update Model Parameters (if needed)

- 1. Refine Conceptual Site Model
 - Determine dominant processes under passive conditions
 - Identify key complexities at site
 - Estimate uncertainties
- 2. Evaluate Site Objectives
 - Potential exposure pathways
 - Remedial Action Objective concentrations
 - Determine site constraints

3. Predict Passive Remedy Performance

- Quantify potential impact of remaining source material
- Estimate key fate and transport parameters
- 4. Monitor for Selected Performance Indicators
- 5. Refine and Update Model Parameters (if needed)

1. Refine Conceptual Site Model

- Determine dominant processes under passive conditions
- Identify key complexities at site
- Estimate uncertainties
- 2. Evaluate Site Objectives
 - Potential exposure pathways
 - Remedial Action Objective concentrations
 - Determine site constraints
- 3. Predict Passive Remedy Performance
 - Quantify potential impact of remaining source material
 - Estimate key fate and transport parameters

4. Monitor for Selected Performance Indicators

5. Refine and Update Model Parameters (if needed)

1. Refine Conceptual Site Model

- Determine dominant processes under passive conditions
- Identify key complexities at site
- Estimate uncertainties
- 2. Evaluate Site Objectives
 - Potential exposure pathways
 - Remedial Action Objective concentrations
 - Determine site constraints
- 3. Predict Passive Remedy Performance
 - Quantify potential impact of remaining source material
 - Estimate key fate and transport parameters
- 4. Monitor for Selected Performance Indicators
- 5. Refine and Update Model Parameters (if needed)

Relating Mass Estimates to Potential Site Impacts

Balance source and attenuation rates

Decision Tools:

- **Contaminant Concentrations and Trends**
- Contaminant Mass Discharge
- Attenuation Rates and Capacity
- Fate and Transport Assessment
- Comparison to Threshold Concentration (RAO)

Quantifying Source: Mass-In-Place

- Inventory of contaminant mass
 - Form (aqueous, sorbed, NAPL, gaseous, etc.)
 - Location (depth, saturated, unsaturated, different aquifers, aquitards, and porous medias)

Methods:

- Volume x Concentration Estimation
- Isoconcentration Contours

TCE Isoconcentration Contours

Contours Truex et al 2017

Quantifying Source: Mass Discharge

- Mass discharge is the mass of COC per time [M/T]
- Mass flux mass per area per time [M/L²/T]

Methods:

- Transect Method $(M_d = \sum C_i^* A_i^* q_i)$
 - \checkmark Increasing complexity
 - Variable groundwater velocity
 - Variable conc with depth (multilevel sampling)
- Pump tests (can use existing P&T systems)
- Passive flux samplers
- Rebound testing

Mass Flux ToolKit (GSI) Nichols and Roth, 2004

Natural Attenuation Rates and Capacity

- Estimate processes that reduce downgradient concentrations
 - Advective, dispersive mixing, sorption, abiotic/biotic degradation and transformations

Methods:

- Sampling of multiple downgradient wells along the flow path
- Tracer/Push-Pull Tests
- Compound Specific Isotope Analysis (CSIA)
- Microbial Analysis

EPA 2002

Estimating Impacts

Put Source and Attenuation estimates together

- Threshold-concentration
 - ✓ mass discharge attenuation < RAO?

Fate and transport assessments

Northwest NATIONAL LABORATOR

Software Tools

Mass Flux Toolkit (GSI, ESTCP) https://www.gsi-net.com/en/software/free-software/mass-flux-toolkit.html

SourceDK (GSI, 2011) https://cluin.org/products/dst/DST Tools/SourceDK.htm

Matrix Diffusion Toolkit (GSI, 2012) https://www.gsi-net.com/en/software/freesoftware/matrix-diffusion-toolkit.html

OF COMPLEX SIT @ P N N I

Natural Attenuation Software (NAS) https://www.nas.cee.vt.edu/index.php

BIOCHLOR (chlorinated solvents) https://www.epa.gov/water-research/biochlornatural-attenuation-decision-support-system

BIOSCREEN (Petroleum Hydrocarbons) (EPA, 1997, 2002) https://www.epa.gov/water-research/bioscreennatural-attenuation-decision-support-system

REMChlor/REMFuel https://www.epa.gov/waterresearch/remediation-evaluation-modelchlorinated-solvents-remchlor

Fate and Transport Models ✓ STOMP, MODFLOW, MT3D, RT3D

Site Location and ID: Industrial Site					
SYSTEM INITS					
Si Units O English Units					
HYDROGEOLOGY					
Transmissive Zone Description		Sand			
Transmissive Zone Effective Porosity	n.	0.35	0		
Low-k Zone Description		Silt	SR		
Low-k Zone Total Porosity	n°	0.43	(-)		
Transmissive Zone Seepage Velocity	V	3.70E-01	(m/d)		Calculate V ?
TRANSPORT					
Key Constituent (enter directly or choose from drop down lis Plume Loading Concentration Immediately Above Low-k	t) [TCE	TCE		
Zone in Vertical Plane Source During Loading Period	C. [1100	(mpA3		
Molecular Diffusion Coefficient in Free Water	D,	9.10E-10	(m2/sec)		
Transmissive Zone Apparent Tortuosity Factor Exponent	P	0.33	(-)		
Low-k Zone Apparent Tortuosity Factor Exponent	p*	0.42	(-)		
Bulk Density of Transmissive Zone	Pa	1.70	(g/mL)		
Bulk Density of Low-k Zone	P'a	1.50	(g/mL)		
Distribution Coefficient	K. [(m1.(a)		
or			1	C	alculated R
Transmissive Zone Fraction of Organic Carbon	100	3.80E-04	(-)		1,17
Low-k Zone Fraction of Organic Carbon	Poe	5.40E-04	()	1	1.18
Organic Carbon Partitioning Coefficient	Kar	9.33E+01	(L/kg)		

ADVECTION

epage Veloc

fective Porosi

(Alpha y) / (Alpha x

Retardation Facto

BIOTRAN SEOR

Active/Passive Transition Considerations

- Transient conditions after transition
- Contaminants in contained/treated zone must be balanced by attenuation
- Define size of attenuation zone and timeframe
- Need for verification of transition

Source

Compare Contaminant Contribution against Aquifer Attenuation Capacity

Attenuation

Advection & Dispersion

Sorption

Degradation & Transformation

Time, Distance, and Rate

Case Study

- Joint Base Lewis McChord
- System of P&T and source treatment
- Example: Sea Level Aquifer
 - Upgradient flux cut off
 - How long to P&T before transition to natural attenuation

- Remedy considered an attenuation zone and evaluation of active/passive transition for the P&T/NA system in the SLA
- Top figure, plume just before initiating P&T
- Bottom figure, estimated plume at end of P&T just before transition

- Prior to P&T, evaluated attenuation processes and plume migration to estimate attenuation rate
- Threshold concentration = $C_{RAO} / [e^{(-k \times t)}] = 20 \text{ ppb}$
- Predictive modeling estimates
- Initial verification through monitoring of downgradient plume natural attenuation during P&T

Case Study

 Accounting for attenuation processes and spatial aspects of the system through modeling

Case Study

~20 years of pumping

~28 years of pumping

REMPLEX CENTER FOR THE REMEDIATION OF COMPLEX SITES @ PNNL

Transition Criteria

- Threshold Concentrations or Mass Discharge
- Identify P&T timeframe, threshold concentration, mass discharge reduction goal, and timeframe for plume/source in relation to selected attenuation zone
- Document transition criteria
 - Setting of interim goals in ROD
 - Verification/reassessment

Source Control P&T Wells

Truex et al. 2017

Verification Approaches

- Active remedy performance assessment
 - Active zone
 - Downgradient zone
- Staged verification
 rebound testing
- Post-transition verification
 - contingency actions

Performance Assessment Example

Pacific

Northwest NATIONAL LABORATORY

Source/Groundwater and 3D Considerations

Dimensionality of Situation and Transport

Conceptual Site Model and Quantitative Assessment

- Analysis approach needs to consider CSM elements and complexity of transport
- Consider CSM refinement during active remediation
- Identify controlling features and processes
- Identify sufficient analyses and appropriate verification

Recharge Λ Λ Λ Λ Λ С wt% Source VZT m z m L2 m → q m/d

Truex et al. 2013

Other Active/Passive Transition Considerations

- Adaptive Site Management
 - Organizes active-passive transition within overall remediation management
- Time and space
 - Is there a zone where you can afford to have contamination during remediation and allow time to reach ultimate concentration goal?

during remediation

Other Active/Passive Transition Considerations

- Time and Space
 - May need additional considerations when lingering sources are present – extended time, **ARAR** waivers
- Contingency actions for passive elements
 - e.g., as identified in the **MNA** directive
- Passive monitoring elements to evaluate changing conditions

Thank you

Katie Muller katherine.muller@pnnl.gov

Mike Truex mj.truex@pnnl.gov

- DOE. 2020. Performance Monitoring Plan for the 200-ZP-1 Groundwater Operable Unit Remedial Action. DOE/RL-2009-115, Revision 3. Department of Energy Richland Operations Office, Richland, WA.
- EPA. 2014. Groundwater Remedy Completion Strategy: Moving Forward with the End in Mind.
- EPA. 2011. Groundwater Read Map- Recommended Processes for Restoring Contaminated Groundwater at Superfund Sites.
- EPA. 2002. Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies. EPA/540/S-02/500.
- ITRC. 2017. Remediation Management of Complex Sites.
- Nichols, E., and T. Roth. 2004. "Flux Redux: Using Mass Flux to Improve Cleanup Decisions," L.U.S.T.Line 46 (March). Lowell, Mass.: New England Interstate Water Pollution Control Commission. www.neiwpcc.org/lustline/lustline_pdf/LustLine46.pdf.
- National Research Council (NRC). 2013. Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites. National Academies Press, Washington, D.C.

References cont.

- Oostrom, M, MJ Truex, GD Tartakovsky, and TW Wietsma. 2010. Three-dimensional simulation of volatile organic compound mass flux from the vadose zone to groundwater. Groundwater Monitoring and *Remediation*. 30 (3): 45–56. doi: 10.1111/j1745-6592.2010.001285.x
- Truex, MJ, MJ Nimmons, CD Johnson, and TG Naymik. 2007. "Logistics Center Sea Level Aquifer Feasibility" Study." DSERTS NO. FTLE-33, Fort Lewis Public Works, Building 2102, Fort Lewis WA.
- Truex, MJ, M Oostrom, and ML Brusseau. 2009. "Estimating Persistent Mass Flux of Volatile Contaminants from the Vadose Zone to Groundwater." Ground Water Monitoring and Remediation. 29(2):63-72.
- Truex, MJ, CD Johnson, DJ Becker, MH Lee, and MJ Nimmons. 2015. *Performance Assessment for Pump*and-Treat Closure or Transition. PNNL-24696, Pacific Northwest National Laboratory, Richland, WA.
- Truex, MJ, DJ Becker, MA Simon, M Oostrom, AK Rice, CD Johnson. 2013. Soil Vapor Extraction System Optimization, Transition, and Closure Guidance. PNNL-21843, Pacific Northwest National Laboratory, Richland, WA.
- Truex, MJ, CD Johnson, DJ Becker, K Lynch, T Macbeth, and MH Lee. 2017. Performance Assessment of Pump-and-Treat Systems. Ground Water Monitoring and Remediation. doi: 10.1111/gwmr.12218

