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Proposed ALERT concept as resilient control adaptation of cyber-physical systems

OBJECTIVE

Design and demonstrate online strategies for proactive and
adaptive tuning of existing optimal controls with quantifiably
assured margins of resilience to cyber-physical adversarial
events. Successful completion of this work will result in a suite
of Adaptive Learning-Enabled Resilient Tuning (ALERT)
controls with quantitative assurance of resilience, designed
for cyber-physical systems and demonstrated on microgrid
use cases.

ACHIEVEMENTS

» Design and validation of a resilience verification and real-
time resilient control adaptation algorithm on a modified
IEEE 123-node microgrid, using the PNNL/DOE
Framework for Networked Co-Simulation (FNCS) platform

* Two peer-reviewed articles on multi-timescale resilience
assurance published at the IEEE American Control
Conference (June 2022)

» QOrganized a session on resilient controls, optimization, and
learning methods at the American Control Conference, with
Invited speakers from DOE national labs and academia

* One proposal (worth $2.8M) on cross-infrastructural
resilience funded by the DOE Office of Electricity Sensors
program

* One Invited talk on distributed controls for resilience at the
5t Autonomous Energy Workshop by the DOE National
Renewable Energy Laboratory
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APPROACH

Implemented a co-simulation setup, connecting a
power-flow solver (GridLAB-D), a Python-based co-
simulation interface (FNCS), and a Julia-based
optimization module to demonstrate the ALERT
technology:

* Anislanded 123-node microgrid with solar
photovoltaics (PVs), storage, diesel generators
(DGs), and flexible loads

» (Generated adversarial scenarios combining
cyberattacks (e.g., replay attack on load forecast)
with physical disruptions (e.g., generation loss)
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ALERT Technology

The ALERT technology consists of three sub-
modules:

 Robust Predictive Dispatch to optimally allocate
set-points and reserves to distributed energy
resources (DERS)

* Resilience Verification via bi-level optimization to
guantify the largest tolerable adversarial (w) set

Solve for the largest perturbations in w: max {r| R(z*,w*+r) <0}

r: adversarial perturbation, R(.): resilience measure,
w*: best-known adversatrial input, x*: dispatched set-points

* Resilient Online Adaption of set-points via
sensitivity-based feedback control to safeguard
against adversarial events

Real-time update of set-points via feedback: © =x* + M - y(x,w)

y(.): measurements, M. optimal feedback control gain,
x* : dispatched set-points
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ALERT User-Interface Tool
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* Developed a prototype user-interface ALERT
tool to allow operators to investigate the impact
of various cyber-physical adversarial events

 Demonstrated the effectiveness of ALERT In
mitigating simultaneous cyber (load-masking
attack) and physical (generation loss)

adversarial events
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 Generated a pareto front to showcase the trade-
off between system operational efficiency and
margin of resilience under various operating

conditions
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Normal (i.e., no-threat/blue-sky) mode
displays highest operational efficiency,
with very little need for resiliency reserves

Extreme weather ("blackout”) mode

displays lowest operational efficiency, with
a need for high-resiliency reserves
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