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A moisture function of soil heterotrophic
respiration that incorporates microscale processes
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Soil heterotrophic respiration (HR) is an important source of soil-to-atmosphere CO2 flux, but

its response to changes in soil water content (θ) is poorly understood. Earth system models

commonly use empirical moisture functions to describe the HR–θ relationship, introducing

significant uncertainty in predicting CO2 flux from soils. Generalized, mechanistic models that

address this uncertainty are thus urgently needed. Here we derive, test, and calibrate a novel

moisture function, fm, that encapsulates primary physicochemical and biological processes

controlling soil HR. We validated fm using simulation results and published experimental data,

and established the quantitative relationships between parameters of fm and measurable soil

properties, which enables fm to predict the HR–θ relationships for different soils across spatial

scales. The fm function predicted comparable HR–θ relationships with laboratory and field

measurements, and may reduce the uncertainty in predicting the response of soil organic

carbon stocks to climate change compared with the empirical moisture functions currently

used in Earth system models.
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Soil organic carbon (C) is the largest terrestrial C reservoir1,
and accurately predicting its decomposition rate in response
to environmental factors is critical for projecting atmo-

spheric carbon dioxide (CO2) concentration and thereby climate
change2,3. Next to temperature, moisture is the most important
environmental factor controlling microbial heterotrophic
respiration (HR)2,4, which constitutes about half of the total CO2

flux from soils5. Low moisture impedes HR rates by reducing
solute transport through soils and may force microorganisms into
dormancy under extremely dry conditions6,7. Conversely, high
moisture restrains soil HR rates by suppressing oxygen (O2)
supply from the atmosphere4. The relationship between HR rates
and moisture varies with soil types and characteristics8–10,
complicating the development of mechanistic models to predict
the response of HR rates to moisture change, as well as intro-
ducing uncertainty into the projections of the feedback of soil C
stocks to ongoing climate change11,12.

Empirical moisture functions are commonly used in earth
system models (ESMs) to account for the effects of moisture on C
turnover rate in soils13–15. These functions are often statistically
fitted using datasets from specific field sites, resulting in sig-
nificant uncertainty when they are applied to other sites or
expanded to regional and global scales11. Therefore, more general
mechanistic models that incorporate underlying physicochemical
and biological processes are needed to reduce the uncertainty in
predicting CO2 flux from soils4,16. Process-based models encap-
sulating effective diffusion of substrate and O2, as well as
microbial physiology and enzymatic kinetics have been developed
to simulate and predict soil CO2 flux17–20. Pore-scale models
based on microbial behaviors have also been established to
mechanistically examine organic C decomposition within soil
aggregates21, and were upscaled to simulate CO2 flux at soil
profile scales22,23. These mechanistic models described the
HR–moisture relationship well for specific soils17,20,22, but their
applications to projecting the response of soil HR rates to
moisture change for soils in general are strongly restrained,

mainly due to the lack of quantitative relationships between
model parameters and soil properties4,18,19.

Recently, Yan et al.24 developed a microscale model to simulate
the HR–moisture relationship. This model incorporated the pri-
mary physicochemical and biological processes controlling soil
HR, and generated HR–moisture relationships in agreement with
measurements for a heterogeneous soil core, elucidating how
microscale heterogeneity of soil characteristics affects the rela-
tionships. However, such microscale modeling is computationally
expensive and requires data on fine-scale soil properties, pre-
venting its applications in large-scale modeling of soil C
decomposition.

The objectives of this paper are to extend the work of Yan
et al.24 by developing a macroscopic moisture function, here
termed fm, that incorporates the underlying microscale processes
controlling soil HR (Fig. 1), and to establish the quantitative
relationship between parameters of fm and measurable soil
properties to allow for the model’s applications to different soils
across spatial scales. First, fm was derived based on the primary
physicochemical and biological processes controlling soil HR (see
Methods section). Then, fm was tested using simulation results
obtained by a microscale model modified from the previous Yan
et al.’s model24 (see Methods section). Furthermore, fm was
evaluated and calibrated using published incubation data from a
wide range of soil types. Lastly, fm was compared with laboratory
and field measurements, as well as empirical models to assess its
applicability and accuracy.

The moisture function derived in this study can be described
by Eq. (1), hereafter referred to as fm:

fm ¼
Kθþθop
Kθþθ

θ
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where fm is the relative HR rate (the value of which is normalized
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Fig. 1 The macroscopic moisture function, fm, and its links to microscale processes controlling heterotrophic respiration (HR) in soils. The red curve
qualitatively describes the soil HR–moisture relationship, fm, in soils. The inset conceptual figures depict the microscale processes controlling soil HR under
dry conditions (a), in which HR rate is limited by the bioavailability of organic carbon (C), and under wet conditions (b), in which HR rate is limited by O2

supply, respectively. The processes controlling the bioavailability of organic C and O2 include the desorption of soil-adsorbed organic C, diffusion of
dissolved organic C and O2, and exchange between dissolved and gaseous O2. See Methods section for the details of fm and the microscale processes
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by the HR rate at θop), θ is the water content, θop is the optimum
water content at which the HR rate peaks, Kθ is a moisture
constant reflecting the impact of water content on soil-adsorbed
organic carbon (SOC) desorption (Eq. 2 in Methods section), ns is
a saturation exponent reflecting the effects of pore connectivity
on dissolved organic carbon (DOC) diffusion (Eq. 3 in Methods
section), and ϕ is the soil porosity related to soil bulk density. As
described in Fig. 1, soil HR is rate-limited by the bioavailability of
organic C when θ < θop and is rate-limited by O2 supply when θ >
θop. Two integrated parameters, a and b, are introduced, mainly
controlling the shape of fm when θ < θop and θ > θop, respectively.
Parameter a, the SOC–microorganism collocation factor,
accounts for the effect of the collocation between SOC and
microorganisms on HR rates (Eq. 5 in Methods section); para-
meter b, the O2 supply restriction factor, accounts for the effect of
O2 supply on HR rates (Eq. 9 in Methods section). The function
fm was tested and calibrated using simulation results and

published experimental data, and predicted the comparable
HR–moisture relationships with laboratory and field measure-
ments. Therefore, fm can potentially reduce the uncertainty in
predicting the response of soil organic C stocks to climate change
compared with the empirical moisture functions currently used in
ESMs.

Results
Moisture function validation using microscale modeling. Four
different allocations of SOC and microorganisms (Fig. 2a–d) in a
simulated soil core were used to test the hypothesis that the
relationship between soil HR rates and water content can be
described by the SOC–microorganism collocation factor a, 0 ≤
a ≤ 1, when organic C is limiting (see Methods section). Figure 2e
illustrates that the macroscopic moisture function, fm, could
capture the simulated HR–moisture relationships obtained by the
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Fig. 2 Effects of the collocation between soil-adsorbed organic carbon (SOC) and microorganisms on the SOC–microorganism collocation factor a. SOC
and microorganisms are a uniformly allocated in the simulated soil core, b allocated in ten connected sections, c allocated in two connected sections, and d
allocated in two separate sections. e The relative heterotrophic respiration (HR) rates change with the relative water content for the different allocations of
SOC and microorganisms in a–d. The blue circles, red squares, black triangles, and pink crosses represent the simulated HR–moisture relationships
obtained by the microscale model (see Methods section) for the different collocations in a–d, respectively. The simulated HR rates were calculated by
averaging the CO2 flux at the soil–atmosphere interface of the soil core. The solid curves represent the moisture function, fm, with fitted a, a= 0, 0.40,
0.72, and 0.97, via the linear least-square regression
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Fig. 3 Effects of O2 distribution on the O2 supply restriction factor, b, in the simulated homogenous soil cores with different depths. a Change of b with O2

distribution, b=ω+ 3.5, where ω is the slope of log(∇O2)− log(ϕ− θ) curves (see Eq. 8 in Methods section). The gradient of O2 at the soil–atmosphere
interface, ∇O2, was calculated using the atmospheric O2 concentration and the simulated O2 concentration in the top numerical voxels of the soil cores.
The inset plots show the distributions of the relative O2 concentration with respect to the atmospheric O2 concentration under different relative water
contents (θ/ϕ= 0.85 and 0.68). SOC and microorganisms were completely collocated in the soil cores as in Fig. 2a. b Comparisons between the moisture
function, fm, and the simulated heterotrophic respiration (HR)–moisture relationship obtained by the microscale model (see Methods section) for the soil
core with a depth of 20 cm. The red circles represent the simulation results, and the solid line represents fm with b= 1.7, which was fitted via the linear
least-square regression
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microscale model for the soil core with different
SOC–microorganism collocations. The value of a increased as the
degree of collocation decreased, with a= 0 when SOC and
microorganisms were uniformly distributed (Fig. 2a) and a= 0.97
when they were completely separated (Fig. 2d). These results were
consistent for the simulated soil cores with different depths,
porosity values, and organic C contents (Supplementary Fig. 1).

Simulated homogenous soil cores with different depths were
used to test the hypothesis that the HR–moisture relationship can
be described by the O2 supply restriction factor, b, when O2 is
limiting (see Methods section). The simulation results illustrate
that b= 0 when the bottom of the soil cores was aerobic and b=
1.7 when the bottom was anoxic (Fig. 3a), regardless of soil depth.
Correspondingly, fm with b= 1.7 captured the simulated
HR–moisture curve best in terms of the errors calculated by the
least square (Fig. 3b). Importantly, the same results were found in
the simulated homogenous soils with different porosity values,
organic C contents, and saturation exponents (Supplementary
Fig. 2). For simulated heterogeneous soil cores, the concentrations
of O2 at the bottom of soil cores shifted progressively from fully
aerobic to anoxic as water content increased, resulting in a
smooth change of b from 0 to 1.7 (Supplementary Fig. 3a).
Correspondingly, fm with b= 1.4 captured the simulated
HR–moisture relationship best for the heterogeneous soil core
(Supplementary Fig. 3b).

Simulated homogenous soil cores with different soil properties
were further used to evaluate the analytical θop derived based on
the assumption that water content is optimal when bioavailable
DOC and O2 are both limiting (see Methods section). Figure 4
shows that the analytical values of θop calculated using Eq. (11) in
Methods section approximate the simulated ones obtained using
the microscale model for the soil cores with a wide range of
depths, porosity values, and SOC contents, especially when the
values of θop are relatively small. The overprediction of the

analytical θop primarily emerged in the soil cores with shallow
depths (see Supplementary Fig. 4).

Moisture function calibration using incubation data. Labora-
tory incubation data from different soil types were used to cali-
brate the moisture function fm (see Supplementary Data 1).
Figure 5 shows the comparisons between the measured
HR–moisture relationships and fm using fitted values of a and b
for three soil types (see Supplementary Fig. 5 for comparisons of
more soil types). The results show that fm generally described the
measured HR–moisture relationships well for a wide range of soil
types. Note that the value of b is not available for soils whose HR
rates were not measured under the condition of θ > θop, such as in
Fig. 5b.

The SOC–microorganism collocation factor, a, is strongly
related to soil clay content, cc, and a linear relationship was
derived based on the results from the different soil types (Fig. 6),
a= 2.8cc–0.046. The findings indicate that the collocation
between SOC and microorganisms decreases as clay content
increases. By contrast, the O2 supply restriction factor, b, shows
no correlation with soil properties measured in the experiments.
However, the observed values of b varied mainly in a range
between 0.5 and 1.0 (see Supplementary Data 1).

Applications of the moisture function. The applicability and
accuracy of fm were assessed by comparing the predicted
HR–moisture relationships with the measured ones in laboratory
incubations10 and field observations25. Figure 7 illustrates that fm
generated comparable HR–moisture relationships with the mea-
surements, especially for the laboratory incubations. The deter-
mination of θop is crucial for the accuracy of fm prediction. When
using the measured θop (red coarse dash lines) instead of the
analytical ones (blue coarse solid lines), fm better predicted both
laboratory and field measurements. By simply assuming θop/ϕ=
0.65 (black coarse dotted lines), a value commonly observed in
experiments of soil HR4,18,26, the predicted HR–moisture rela-
tionships was not as good as using the analytical or measured θop.
However, Fig. 7 illustrates that it can be used as an approximation
when neither the true nor the analytical θop is available.

As a final test, the predictions of fm were compared with
empirical moisture functions commonly used in ESMs. Although
in some cases using certain empirical functions, such as Myers15

for the sandy loam, generated a comparable or even better
HR–moisture relationship than fm, none of the empirical
functions performed well for both the sandy loam and loam
(Fig. 7). In particular, when the value of the analytical θop was
close to the true one, fm with parameter values estimated by soil
properties generated a much better HR–moisture relationship
than the empirical functions (Fig. 7a). Even if only soil bulk
density and clay content were given, fm with the parameter values
recommended by Table 1 in Methods section (black coarse dotted
lines in Fig. 7) generally predicted the measured HR–moisture
relationships better than most empirical functions.

Discussion
Establishing predictable relationships between soil HR rates and
moisture is essential to evaluate the feedback of soil organic C
stocks to ongoing climate change27. The current moisture func-
tions that describe this relationship are mainly empirical and
derived from single-site studies, introducing considerable uncer-
tainty in projecting CO2 flux from soils15, e.g., the error caused by
different empirical moisture functions were reported up to 4% of
the global C stock by 210011. This study develops a novel
moisture function, fm, by incorporating microscale processes that
control soil HR, one that may improve the prediction of soil CO2
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the microscale model (see Methods section); the analytical θop was
calculated using Eq. (11) in Methods section. The different symbols
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flux in response to climate change. Different from previous
mechanistic and process-based models that can only describe or
predict the HR–moisture relationship for specific soil samples or
field sites17–23,28, fm is able to predict the relationship for different
soils across spatial scales through establishing the quantitative
relationships between the parameters of fm and measurable soil
properties.

The function fm was developed by integrating theoretical
derivation, numerical modeling, and experimental calibration.
Theoretical derivation induced the mathematical expression of fm;
numerical modeling tested the assumptions used to derive fm; and
experimental calibration established the quantitative relationships
between parameters of fm and measurable soil properties. In
particular, microscale modeling enables us to assess hypotheses
that are difficult or impossible to test using experimental
approaches. For example, it is easy to examine how the

SOC–microorganism collocation quantitatively affects
HR–moisture relationships in the microscale modeling, but is
almost impossible in experiments due to the difficulty of con-
trolling microbial distributions and activities20,29. Certainly, one
needs to be careful in interpreting experimental observations
using modeling results. For example, Fig. 2 illustrates that the
SOC–microorganism collocation results in the different soil
HR–moisture relationships, but other factors, such as microbial
activity and nutrient availability, may be responsible for the
relationships in natural soils4,9. In general, microscale models
complement experimental tools, and provide a powerful means to
study the effects of various biogeochemical processes on HR in
natural soils30, such as the effect of enzymes on SOC decom-
position and associated HR rates19. Enzymes facilitate the
breakdown of organic matter, and their distribution and transport
are thus crucial for organic C turnover but difficult to measure in
soils7,19,31. Simulation analysis using enzyme-related microscale
models could help us to understand how enzymatic distribution,
transport, and kinetics influence SOC decomposition.

The determination of parameter values is a key step in applying
fm. The SOC–microorganism collocation factor, a, linearly
increased with soil clay content, reflecting the fact that the large
surface areas of clay adsorb a large amount of organic C that
cannot be accessed by microorganisms3,32. In addition, clay is
crucial for aggregate formation that also potentially occludes
organic C from microorganisms33,34. By contrast, the O2 supply
restriction factor, b, was not found mathematically relative to soil
properties. This may be because the supply rate of O2 at the soil-
atmosphere interface is affected by not only the average soil
properties but also their spatial distributions, and thus is difficult
to describe or express by either single or multiple soil proper-
ties35. For example, soil porosity is an important indicator for O2

availability9, but pore connectivity is probably more crucial for
aerobic respiration rates10,36,37. Similarly, both mass fraction and
spatial distribution of soil texture influence O2 distribution and
diffusion, especially in well-structured loamy or clayey soils38, in
which pore size and water saturation are highly hetero-
genous39,40. Therefore, more experiments are needed to specify
the value of b and to establish its quantitative relationship with
measurable soil properties, which should incorporate both gen-
eral soil properties (bulk density, characteristic diameter of grain,
clay content, specific surface area, etc.) and their spatial hetero-
geneity (pore and grain size distributions, aggregate distribution,
etc.)28,35,38,41. In spite of the complexity, b mainly varied in a
restricted range between 0.5 and 1 (see Supplementary Data 1),
illustrating certain degree of similarity in O2 supply change in
response to moisture variation for different soils. In addition, the
value of the optimum water content, θop, can be calculated using
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soil properties (Eq. 11 in Methods section). When soil properties
required to determine the parameter values of fm are not avail-
able, recommended values are provided for practical applications
(see Table 1 in Methods section). These recommended values
significantly simplify the application of fm, and produced com-
parable predictions with measurements (Fig. 7).

The function fm provides a simple way to assess the effects of
soil properties on soil HR–moisture relationships. For example,
when clay content, cc, increases, HR rates apparently decrease
under relatively dry conditions and the value of θop increases
(Supplementary Fig. 6a). Such results have been observed in
laboratory experiments in which different amounts of clay were
added to examine their impact on soil HR rates25,39,42, and are
also consistent with the analysis from a regression model based
on incubation data9. Contrarily, when soil depth, H, or organic C
content, CSOC, increases, HR rates increase under relatively dry
conditions and the value of θop decreases (Supplementary Fig. 6c,
e). In particular, the soil HR–moisture relationship is not sensitive
to the change of organic C in deep or C-rich soils, implying a
relatively weak sensitivity of deep and rich organic C decom-
position to moisture variation. This finding provides insights for
projecting soil CO2 flux in response to climate change, given that
a large amount of organic C is stocked in deep soils below 1m
and in peatland with high organic C content2,43,44. Moreover, the
HR–moisture relationship is found to be insensitive to the
diffusion-related exponents (Supplementary Fig. 6i–l), consistent
with experimental measurements from different textured soils45.
The usage of ns= 2 is thus a safe approximation for the appli-
cation of fm to different soil types (Table 1 in Methods section).
By contrast, the HR–moisture relationship is relatively sensitive to
the organo-mineral-related parameters (Supplementary
Fig. 6f–h), whose values varied up to two orders of magnitude for
different organic C species and mineral components46,47.
Therefore, more experiments are required to specify the values of
these organo-mineral-related parameters, especially Kθ, to refine
and test the predictions of fm.

Like any model, fm represents a trade-off between the con-
venience of model development and application, and the com-
plexity of soil HR, and it is important to note that the
development of fm adopted assumptions and simplifications that
may invalidate its application in some natural soils. For example,
we implicitly assumed that the concentration and gradient of
DOC do not affect the DOC release rate (Eq. 2 in Methods sec-
tion), which is valid only when the concentration of DOC is low.
If the SOC is highly concentrated or is distant from micro-
organisms, such as inside aggregates, fast desorption or slow

diffusion of DOC may result in its accumulation around the SOC
and thus reduce the DOC release rate19,33,48. Moreover, we
quantified the parameter a using only clay content and con-
strained its values to between 0 and 1 by assuming a= 0 and 1
under extremely low and high clay content, respectively. How-
ever, silt and sand also affect the SOC–microorganism colloca-
tion36,49, and thus influence soil HR–moisture relationships37.
The value of a could be below 0 at very low clay contents, or
above 1 at very high clay contents28,50. In addition, we neglected
the effect of water and air percolation thresholds on DOC and O2

diffusion (Eqs. (5)and (9) in Methods section), given than the
percolation thresholds primarily affect the HR–moisture rela-
tionship under extreme water saturation and mainly reduce the
absolute rather than the relative HR rates24.

Similarly, fm is based on the competitive diffusion between
organic C and O2, which may disable fm to capture the soil
HR–moisture relationship for situations in which other
mechanisms are of paramount importance3,4. For example,
microorganisms may die or shift to dormancy under extremely
dry conditions7, situations in which microbial physiology rather
than C diffusion determines respiration rates51. When dry soils
rewet, the respiration rate may rapidly increase for a brief period
partly due to the nutrients suddenly available for microbial
activity52,53, a phenomenon known as the Birch effect4,54. Fur-
thermore, alternative electron acceptors such as NO3

− and SO4
−

can interact with organic C and produce CO2 under wet condi-
tions50,54,55. Even under dry conditions, the heterogeneous dis-
tribution of water in soils may form anoxic microsites where
anaerobic respiration occurs56. These missing mechanisms toge-
ther with the aforementioned assumptions and simplifications
should contribute to the failure of fm in capturing some features
of measured HR–moisture relationships, such as the plateau
around the maximum HR rate observed in experiments52,57,58.
This plateau is mostly expected to emerge in soils maintaining
strong anaerobic HR, which counteracts the negative effect of O2

depletion59,60. Therefore, we argue that fm is most suitable for
soils whose moisture levels are not extreme, in which the diffu-
sion limits of organic C and O2 control HR rates24,53.

The performance of fm was assessed by comparison with
measured HR–moisture relationships from both laboratory
experiments and field observations (Fig. 7). fm generally agreed
well with the measured relationships especially with the labora-
tory data. The relatively large deviation between fm and the field
data could be attributed to factors that influence the
HR–moisture relationship in natural environments. For example,
the bioavailability of organic C and O2 in the field is determined
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by advection and dispersion rather than diffusion during
hydrological disruptions, such as precipitation and drainage, in
which massive organic matter leaches into deep soils43,61. Even
without such hydrological disruption, water movement caused by
plant transpiration may dominate the transport of organic C in
regions around the rhizosphere62. Moreover, natural soils often
feature aggregates and macro-pores as well as fractures, compli-
cating the transport and distribution of O2

63. In particular,
aggregates constrain O2 diffusion and may reduce O2 bioavail-
ability for microbial HR21, while macro-pores and fractures
facilitate O2 supply by delivering O2 into deep soils63. By contrast,
laboratory incubation experiments often use sieved soils that
destroy macro-pores and fractures, in which soils the O2 supply
rate tends to reduce more fast than in natural soils as water
content increases10,50. In addition, temperature always affects soil
HR rates by modifying microbial activity and solute diffusion2,64.
The changes in temperature and in the availability of organic C
and O2 make the HR–moisture relationship vary dynamically in
the field. Despite these potential factors, fm performed better than
most commonly used empirical moisture functions (Fig. 7b),
demonstrating its ability and robustness.

In summary, this study develops a novel moisture function, fm,
by incorporating the microscale processes that control soil HR,
and establishes quantitative relationships between the parameters
of fm and measurable soil properties. The feasible application of
fm enables it to predict the HR–moisture relationships for dif-
ferent soils across spatial scales, potentially reducing the uncer-
tainty of modeled C cycles in ESMs by improving on their current
empirical moisture functions. The function fm demonstrated its
applicability in predicting the HR–moisture relationships from
laboratory experiments and field observations, although some
mechanisms of soil HR are neglected in fm. These mechanisms
can be taken into account in future investigation using a similar
strategy as in this study, i.e., first incorporated in a microscale
context and then encapsulated into a macroscopic model.

Methods
Moisture function. Function development: The moisture function, fm, was
developed based on the primary physicochemical and biological processes con-
trolling HR in soils. Organic carbon (C) is assumed to initially adsorb onto soil
mineral surfaces and is consumed by microorganisms after two steps: the SOC
converts to DOC after desorption, and the DOC is diffused to regions where
microorganisms inhabit.

The flux of DOC released from SOC can be estimated by24

Ftotal
DOC ¼ θ

Kθ þ θ
αmSOC ð2Þ

where θ is water content [m3m−3], Kθ is a moisture constant reflecting the impact
of moisture content on C desorption [m3 m−3]24, α is the mass transfer coefficient
between SOC and DOC [s−1]46, and mSOC is organic C content per unit area of
soils [kg m−2]. The released DOC is biologically degraded after diffusing into
regions containing microorganisms, thus the turnover rate of SOC is related to the
degree of collocation between SOC and microorganisms.

In soils where SOC and microorganisms are completely separated, the flux of
bioavailable DOC for HR can be described by45

FDOC ¼ Ftotal
DOCϕ

ms�nsð Þθns ð3Þ

where ϕ is soil porosity [−], ms and ns are cementation and saturation exponents
[−], accounting for the effects of pore structure and water connectivity on DOC
diffusion45.

In soils where SOC and microorganisms are completely collocated, the released
DOC can be degraded locally without diffusion. Therefore, the flux of bioavailable
DOC for HR is the same as the flux of total available DOC

FDOC ¼ Ftotal
DOC ð4Þ

For most soils, microorganisms are partly separated from SOC: released DOC is
degraded either locally or after diffusion. We introduce a parameter a, the
SOC–microorganism collocation factor, to represent the degree of collocation
between SOC and microorganisms. Consequently, the flux of bioavailable DOC for

soil HR can be described by

FDOC ¼ Ftotal
DOCϕ

a ms�nsð Þθans ð5Þ

where a increases as the degree of collocation between SOC and microorganisms
decreases. Given that a= 0 when SOC and microorganisms are completely
collocated (Eq. 4) and a= 1 when they are completely separated (Eq. 3), 0 < a < 1 is
presumed when they are partly collocated. Therefore, Eq. 5 with 0 ≤ a ≤ 1
uniformly describes the relationship between HR rates and water content for soils
with full degrees of collocation between SOC and microorganisms.

When soil HR is limited by organic C bioavailability, the HR rate is determined
by the flux of bioavailable DOC and its response to water content should be the
same as for the flux of bioavailable DOC. Therefore, we hypothesize that, when
organic C is limiting, the relationship between soil HR rates and water content can
be described by the SOC–microorganism collocation, which is represented by a as
in Eq. (5).

Soil HR becomes O2 limited when water content is above the optimal value,
θ > θop. Considered that O2 diffusion through liquid can be ignored compared with
that through air65, the supply rate of O2 from the atmosphere to soils can be
estimated using the gaseous O2 diffusion at the soil–atmosphere interface,

FO2
¼ DGO∇O2

ϕ� θð Þ ð6Þ

where DGO is the effective diffusion coefficient of gaseous O2 at the
soil–atmosphere interface [m2 s−1], and can be estimated by66

DGO ¼ ϕmg�ng ϕ� θð ÞngDGO;0 ð7Þ

where mg and ng are cementation and saturation exponents accounting for the
effects of pore structure and air connectivity on O2 diffusion in soils45, respectively,
and DGO,0 is the diffusion coefficient of O2 in pure air [m2 s−1]. ∇O2 is the gradient
of gaseous O2 concentrations between the top soil surface and the atmosphere
[g l−1 m−1], and can be expressed by18

∇O2 ¼ kGO ϕ� θð Þω ð8Þ

where kGO is a coefficient representing the degree of oxygen depletion in soils, and
ω reflects the impact of soil pore connectivity on O2 transport. Substituting Eqs. (7)
and (8) into Eq. (6), we have

FO2 ¼ kGOϕ
mg�ng ϕ� θð ÞbDGO;0 ð9Þ

where b, b= 1+ ng+ ω, is a parameter reflecting the effects of soil characteristics
on O2 supply at the soil–atmosphere interface, called the O2 supply restriction
factor.

The supplied O2 diffuses into soils and enters water to form dissolved oxygen
(DO), which is eventually consumed by microorganisms. Regardless of O2 delivery
from plant roots, the flux of bioavailable DO for soil HR should be the same as the
flux of O2 supply from the atmosphere

FDO ¼ FO2
ð10Þ

When soil HR is limited by O2 bioavailability, its rate response to water content
should be the same as for the flux of bioavailable DO. Therefore, we hypothesize
that, when O2 is limiting, the relationship between soil HR rates and water content
can be described by the O2 supply restriction factor, b, as shown in Eq. (9).

Theoretically, the soil HR rate maximizes when bioavailable DOC and DO are
both limiting18, i.e., the supplied DO is stoichiometrically enough to react with the
bioavailable DOC, FDO= νDOFDOC, where νDO is the stoichiometric coefficient of
DO with respect to DOC [g g−1]. Correspondingly, the water content was regarded
as optimum water content, θop, that can be calculated by

νDO
θop

Kθ þ θop
αmSOCϕ

a ms�nsð Þθansop ¼ kGOϕ
mg�ng ϕ� θop

� �b
DGO;0 ð11Þ

Considered only water content related terms and normalized to the maximum
HR rate, the process-based moisture function, fm, can be expressed by

fm ¼
Kθþθop
Kθþθ

θ
θop

� �1þans
; θ<θop

ϕ�θ
ϕ�θop

� �b
; θ � θop

8><
>:

ð12Þ

Function parameterization and evaluation: Parameter and initial values used in
the simulations are presented in Supplementary Table 1. For the evaluation of
analytical θop (Fig. 4), a= 1 and b= 1.7 were used to calculate the values of
analytical θop because homogenous soils were utilized, and mSOC was calculated
using ρs(1− ϕ)HCSOC where ρs is the density of soil mineral39. kGO was estimated
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by the intercepts of log(∇O2)− log(ϕ− θ) curves with y-coordinate, whose value
equals log(kGO)+ ω log(ϕ− θ) (Fig. 3a). The simulation results showed that kGO
primarily changed with SOC content and its value could be estimated using kGO ¼
0:7465C0:512

SOC (Fig. 3a, Supplementary Fig. 2).
For the applications of fm to laboratory and field observations (Fig. 7), the values

of α and νDO were not given in the literature and were estimated using Eq. (11) in
Methods section, in which a, b, and θop were fitted using the measured data. Note b
= 0.75 was used for the sandy loam in the laboratory incubation10, where the
measured HR rates were available only for θ < θop. Consequently, α × νDO= 3.56 ×
10−8 s−1 for the sandy loam10 and 2.9 × 10−7 s−1 for the loam25.

Function application:The application of fm requires to determine six
parameters. The SOC–microorganism collocation factor, a, can be estimated using
clay content cc, a= 2.8cc− 0.046. For soils with low clay content (cc < 0.016 g g−1),
we assume a= 0; for soils with high clay content (cc > 0.37 g g−1), we assume a= 1.
The O2 supply restriction factor, b, is assumed as constant, b= 0.75, in practical
applications. The optimum water content, θop, can be calculated implicitly using
Eq. (11) in Methods section, and its value depends on soil properties, as well as the
values of a and b. If these properties are not available, we assume θop/ϕ= 0.65, a
value widely observed in laboratory and fields4,18,26. The soil porosity, ϕ, can be
estimated using bulk density ρb

67, ϕ ¼ 1� ρb
ρs
. The saturation exponent, ns, is

relatively invariable, and can be assumed to be constant45, ns= 2. The moisture
constant, Kθ, depends on organo-mineral associations, and its value can be
assumed to be constant, Kθ= 0.1, when unavailable24. The determination of
parameter values in the application of fm were summarized in Table 1.

Microscale model. Microscale processes: The original microscale model developed
by Yan et al.24 was simplified by neglecting the effects of water and air percolation
to test the moisture function, fm, developed in this study. Important processes that
affect soil HR rates are considered in the microscale model. These processes include
organic C partition between adsorbed and dissolved phases, O2 and CO2 diffusion
and partition in gas and liquid phases, and microbial metabolism of DOC and DO.
The transformation of SOC to DOC was described using a first-order kinetic
model68. Microbial metabolism was described using the dual Monod model with
respect to DOC and DO. The biogenic CO2 formed various dissolved inorganic
carbon species, which were assumed to be in local equilibrium with gas phase CO2

following the Henry’s law69. The gas phase CO2 was allowed to release into the
atmosphere through the top surface of soils. The dissolved and gaseous O2 were
also assumed to be at local equilibrium following the Henry’s law69, and were
supplied through diffusion from the top soils where they were in equilibrium with
the atmospheric O2. With these treatments, the controlling processes of HR in soils
could be described by24:

∂CDOC

∂t
� ∇ � DDOC∇CDOCð Þ ¼ ρs 1�ϕð Þ

θ
θ

Kθþθα CSOC � KcCDOCð Þ � kDOCCB
CDOC

CDOCþKDOC

CDO
CDOþKDO

ð13Þ

∂CSOC

∂t
¼ � θ

Kθ þ θ
α Csoc � KcCDOCð Þ ð14Þ

∂CB

∂t
¼ YkDOCCB

CDOC

CDOC þ KDOC

CDO

CDO þ KDO
� kBCB ð15Þ

∂ θCDOþ ϕ�θð ÞCGOð Þ
∂t � θ∇ � DDO∇CDOð Þ � ϕ� θð Þ∇ � DGO∇CGOð Þ

¼ �θνDOkDOCCB
CDOC

CDOCþKDOC

CDO
CDOþKDO

ð16Þ

∂ θCDICþ ϕ�θð ÞCGICð Þ
∂t � θ∇ � DDIC∇CDICð Þ � ϕ� θð Þ∇ � DGIC∇CGICð Þ

¼ θνDICkDOCCB
CDOC

CDOCþKDOC

CDO
CDOþKDO

ð17Þ

CDO ¼ Kh;oCGO ð18Þ

CDIC ¼ KpHKh;cCGIC ð19Þ

where CDOC is the DOC concentration [g l−1], CSOC is the SOC content [g g−1], CB

is the concentration of microorganisms [g l−1], CDO is the DO concentration
[g l−1], CGO is the concentration of gaseous O2 [g l−1], CDIC is the concentration of
dissolved inorganic carbon (DIC) [g l−1], CGICis the concentration of gaseous CO2

[g l−1], ϕ is soil porosity whose values may be different for each numerical voxel in
microscale simulations [−], θ is water content which was assumed the same for all
numerical voxels [m3m−3], Kc is the adsorption/desorption equilibrium constant
of DOC [l g−1], Y is the yield coefficient of microbial biomass [g g−1], kB is the
first-order decay coefficient of microorganisms [1 s−1],kDOC is the maximum rate
of DOC metabolism [g g−1 s−1], KDOC is the half-rate coefficient with respect to
DOC [g l−1], KDO is the half-rate coefficient with respect to DO [g l−1], νDIC is the
stoichiometric coefficient of DIC with respect to DOC [g g−1], DDOC is the effective
diffusion coefficient of DOC [m2 s−1], DDO is the effective diffusion coefficient of
DO [m2 s−1], DGO is the effective diffusion coefficient of gaseous O2 [m2 s−1], DDIC

is the effective diffusion coefficient of DIC [m2 s−1], DGIC is the effective diffusion
coefficient of gaseous CO2 [m2 s−1], Kh,o is the Henry constant for O2 [−], Kh,c is
the Henry constant for CO2 [−], and KpH is a coefficient related to equilibrium
reactions of DIC species and pH value:

KpH ¼ 1þ Ka1

Hþ½ � þ
Ka1Ka2

½Hþ�2 ð20Þ

where Ka1 and Ka2 are two equilibrium carbonic acid speciation constants
[mole m−3]70.

The diffusivity of dissolved and gaseous species in soils depend on the moisture
saturation degree, as well as pore water and pore air connectivity35. In this study,
this dependency is described using the following equations71,72

DD

DD;0
¼ ϕms�nsθns ð21Þ

DG

DG;0
¼ ϕmg�ng ϕ� θð Þng ð22Þ

where DD andDG are the effective diffusion coefficients of dissolved species
[m2 s−1] (e.g., DDOC, DDO, and DDIC in Eqs. (13), (16), and (17) and gaseous species
[m2 s−1] (e.g., DGO and DGIC in Eqs. (16) and (17), respectively, DD,0 andDG,0 are the
corresponding diffusion coefficients in pure water and air [m2 s−1], respectively, ms

andmg are cementation exponents [−], ns and ng are saturation exponents [−].ms, ns
and mg, ng are parameters considering the effects of tortuosity and pore connectivity
on diffusion of dissolved and gaseous species, respectively45,73.

Simulation and parameterization procedures: A previously developed code was
used to solve the governing equations (Eqs. 13–17), and the solving process was
reported in the previous study74. A spatial spacing of 20 µm was applied to
discretize the soil cores used in the simulations. The initial SOC concentration was
assumed to be proportional to solid mass fraction in each numerical voxel24. No
DOC was assumed to exist initially in the simulated soil cores. A measured
microbial concentration was used as the initial biomass concentration75. The initial

Table 1 Determinations of parameter values in the application of fm

Parameters Descriptions Value estimated by soil properties Value recommended if
not available

sources and
notes

a SOC–microorganism
collocation factor

Can be estimated by clay content (cc)

a ¼
0; cc � 0:016
2:8cc � 0:046;0:016<cc � 0:37
1; cc>0:37

8<
:

— Fig. 6

b O2 supply restriction
factor

Depend on O2 supply 0≤ b≤ 1.7 0.75 Supplementary
Data 1

θop Optimum water content Can be calculated implicitly by soil properties

νDO
θop

Kθþθop
αmSOCϕ

a ms�nsð Þθansop ¼ kGOϕ
mg�ng ϕ� θop

� �b
DGO;0

0.65ϕ 4, 18

ϕ Soil porosity Can be estimated by soil bulk density (ρb) and mineral density (ρs)
ϕ ¼ 1� ρb

ρs

— 67

ns Saturation exponent Depend on soil structure and texture 2 45

Kθ Moisture constant Depend on organo-mineral associations 0.1 24
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concentrations of the gaseous O2 and CO2 in soils were assumed to be in
equilibrium with the atmospheric concentrations under 1 atm and 25 °C. The
initial concentrations of dissolved O2 and CO2 were assumed in equilibrium with
gaseous O2 and CO2 following the Henry’s law. pH value was assumed to be
constant (pH= 6.8). Since the top surfaces of the simulated soil cores were
assigned to connect to the atmosphere, the concentrations of O2 and CO2 were
fixed on the top boundary. No flux boundary condition was applied to the walls.
The initial and parameter values are presented in Supplementary Table 1. SOC
content and microorganism concentration were fixed during the simulations to
produce steady-state CO2 flux.

Model calibration: Simulated and measured results were first compared to
evaluate the effectiveness of the microscale model in simulating soil HR rates as a
function of θ (Supplementary Fig. 7). The measured data in Supplementary Fig. 7
are from literature where soil samples were incubated in canning jars under
different water saturation conditions for 24 days26. This literature reported the
relationship between HR rates and θ for natural soils with different SOC contents
and bulk densities. The measured HR rates under different moisture saturation
degrees for all natural soils were used to validate the microscale model to reduce
the uncertainty caused by the different SOC contents and bulk densities. Since the
experiment did not provide spatial structures of the soil cores necessary for
microscale simulations, we created a homogeneous soil core to mimic the soil cores
used in the experiments. The simulated homogenous soil core had the same size as
the cores used in the experiment; the values of porosity, ϕ, and SOC content, CSOC,
were the averaged ones over all the natural soils used in the experiments, ϕ= 0.58
and CSOC= 0.02 g/g. The simulated HR–θ relationship agreed well with the
measured one (Supplementary Fig. 7), indicating that the microscale model can
capture the HR rates observed in the core-scale experiment.

Data availability. The measured data used to evaluate and calibrate the moisture
function, fm, was summarized in Supplementary Data 1. The codes used to cal-
culate the optimum water content, θop, and to determine fm are provided in
Supplementary Software 1–2. All the data and codes have been deposited on
Figshare—DOI: 10.6084/m9.figshare.6337574. The codes of the microscale model
used in this study will be available from the authors upon request (liucx@sustc.edu.
cn, yanzf17@tju.edu.cn), and will be deposited in the same folder on Figshare in the
near future.
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