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H I G H L I G H T S  

• Affordable and market-rate building systems compared for 7,328 NYC multifamily buildings to examine if differences exist. 
• Two-sample t-test, chi-squared test of independence, and multivariate regression employed to assess relationships. 
• Affordable housing buildings tend to be newer, larger, and taller. 
• Affordable buildings have newer & more efficient systems. This trend faded when normalizing for building characteristics.  
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A B S T R A C T   

Low-income households in the United States experience higher than average energy burdens (defined as the 
proportion of household income spent on energy utilities), and many of these households struggle to simulta-
neously pay for rent, energy, and basic household necessities. The analysis presented here examines whether the 
underlying characteristics of buildings and their energy systems could contribute to this disparity for affordable 
housing residents in New York City. It combines an energy audit dataset of 7,328 multifamily buildings with a 
database of properties receiving local, state, or federal housing subsidies. The results of this analysis indicate that 
the building-level installed equipment in large (greater than 50,000 square feet) affordable housing buildings in 
New York City is more efficient than that in market-rate buildings, but this trend largely disappears when 
considering overall building characteristics, such as location, size, or age. Significant differences in the types of 
systems installed in affordable and market-rate housing are also observed, as well as the types of energy effi-
ciency recommendations made by energy auditors. However, these latter data were not normalized by building 
system characteristics, as that analysis is much more difficult to interpret for categorical data such as heating 
system type. These findings indicate that retrofit policies and building performance standards focused on 
affordable housing will likely need to account for underlying differences in building characteristics between 
affordable and market-rate housing to achieve intended impacts.   

1. Introduction 

A significant number of households in the Unites States struggle to 
afford to pay their utility bills (gas and electric) and provide essential 
services, such as home heating, electricity, safe indoor air quality, and 
other important services. One way to measure the affordability is energy 
burden, which is a simple representation of the percentage of gross 
household income spent on energy costs. A quarter of U.S. households 

face a high energy burden (more than 6% of income spent on energy 
bills) and 13% face a severe energy burden (more than 10% of income 
spent on energy bills) [1]. Low-income, older adults, persons with 
disability, Black, Hispanic, and Native American households experience 
higher energy burdens, on average, a trend present in both cities and 
rural areas [1–4]. This study aims to investigate the underlying causes of 
high energy burdens for low-income populations by comparing installed 
building system types and efficiencies between affordable and market- 
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rate multifamily housing in New York City. The results could be used to 
determine the types of interventions that would be most beneficial for 
improving the energy efficiency of multifamily affordable housing, thus 
alleviating energy burdens for residents of these buildings (depending 
on the how utility costs are factored into rent) and improving occupant 
health and comfort. 

Significant prior research has been conducted to quantify energy 
burdens for different populations and explore possible causes and 
compounding stressors. Some communities are especially vulnerable to 
experiencing both high energy and rental burdens. Hernández et al. 
studied this double burden in low-income, renter households with 
children and found that different demographic groups experience these 
burdens in different ways, with African American households more 
likely than other groups to experience both burdens simultaneously [5]. 
Lin (2018) looks at energy burden through a household’s ability to 
pay—that is, total income minus housing cost, showing that for low- 
income and renter households the high housing cost they face drasti-
cally decreases their available household budget (“residual income”) to 
cover energy costs [6]. 

There are myriad drivers for energy burden inequities in the built 
environment. These include:  

• Physical – Poorly insulated homes and inefficient appliances 
consume more energy.  

• Socioeconomic – Existing financing and investment structures often 
are inaccessible to renters or low-income homeowners. 

• Behavioral – Some communities, such as those with elderly occu-
pants, may have different energy needs.  

• Policy – Utility incentive programs traditionally have not been 
structured to reach low-income and underserved communities, and 
programs that are focused on low-income communities are under-
funded [1]. 

While weatherization (e.g., WAP), bill-assistance (e.g., LIHEAP), and 
utility and government solar and energy storage programs exist to 
reduce household energy costs, current programs remain largely inac-
cessible to low-income households [7]. Moreover, most assistance fo-
cuses on short-term fixes rather than long-term strategies to reduce 
energy burden, even as studies indicate energy burden disparities be-
tween low and high-income households continue to increase [7,8]. In 
addition, the evaluation metrics for these programs often focus on dis-
tribution of funds or number of households assisted, rather than even-
tual impacts of the programs towards the stated goal of improving 
energy affordability [9]. 

While energy burdens are a direct function of a household’s annual 
income, higher energy costs for low-income households exacerbate the 
energy burden disparity. Studies have shown that the highest and lowest 
income households tend to have higher than average energy usage per 
square foot (EUI), the former likely because of the presence of high-end 
appliances and energy-intensive occupant behavior, and the latter due 
to higher occupancy per square foot and energy system inefficiencies 
[3]. Heating and cooling EUIs are higher for regions with more low- 
income households, and controlling for income, non-white households 
experienced even higher EUIs [10]. 

The higher EUIs and thus higher energy burdens experienced by low- 
income and minority households are caused, in part, by the lower 
intrinsic energy efficiency of their homes and a lack of access to energy 
efficient appliances. Studies have shown a strong connection between 
building attributes and energy use [11–13]. For example, van den Brom 
et al found in a study of 1.4 million Dutch households that the energy- 
performance gap, the difference between actual and calculated energy 
consumption, is due to not only the occupant behavior but also the 
inherit building attributes [12]. In terms of access to equipment, low- 
income households are less likely to participate in energy efficiency 
programs or own energy efficient appliances, especially those with high 
up-front costs [14]. Low-cost appliances such as energy efficient light 

bulbs present their own challenges, as these technologies are less 
available and more expensive in high-poverty regions [15]. Rentership 
exacerbates these challenges, as those who do not own their homes are 
less likely than homeowners to have access to energy efficient appli-
ances, even when controlling for household characteristics [16,17]. 
Lewis et al. show that African Americans are more likely to live in older, 
less energy efficient homes due to generations of structural racism, such 
as redlining practices that deny financial assistance to consumers based 
on the area where they live [18]. 

Beyond the physical structure of buildings and installed appliances, 
the energy required to maintain a livable indoor air temperature can be 
driven by location within a city. Urban heat islands (regions of a city 
with higher-than-average summer temperatures due to a higher density 
of heat-absorbing material such as asphalt and concrete and a lower- 
density of mitigating shade and green spaces) can lead to a 19% in-
crease in cooling energy consumption [19]. Census block groups with 
larger populations of Black, Hispanic, and Native American populations 
are more likely to experience higher temperatures in summer heat waves 
[20]. Furthermore, Hoffman et al. (2020) examined the relationship 
between historically redlined neighborhoods and urban heat islands and 
found that for the vast majority of areas studied (94%), formerly red-
lined areas experience hotter summertime land surface temperatures 
than non-redlined areas. Hotter conditions in formerly redlined areas 
exacerbate cooling needs for residents, increase energy burdens for 
communities living in urban heat islands, and link to increased mortality 
from heat events [21,22]. Residency in formerly redlined neighborhoods 
is also associated with other health impacts, such as increased asthma- 
related emergency room visits [23]. 

Physical and mental health impacts can also be tied directly to high 
energy burdens. Low-income households can experience a “heat-or-eat” 
dilemma during periods of cold weather and have been shown to spend 
less on food during cold periods to account for higher energy costs [24]. 
One study found that 40% of surveyed low-income households had to 
reduce or forgo basic household needs (such as medicine and food) to 
pay for energy bills and that 2.1% needed to seek medical attention due 
to a lack of heating, while only 5.5% received assistance for bill payment 
or appliance repair. This “energy insecurity”, defined as “… an inability 
to adequately meet basic household energy needs”, can lead to three 
inter-related consequences: 1) illness and stress, 2) financial challenges, 
and 3) housing instability [25,26]. 

Energy burdens and a lack of energy efficiency in buildings are often 
worse for renters, particularly in multifamily housing. The “split- 
incentive” problem largely drives this, wherein building owners who 
would need to make capital investments to reduce building energy costs 
do not recoup any of the energy cost savings of those improvements if 
tenants are paying for their utilities [27]. Rental housing, especially 
multifamily, is associated with fewer energy efficient features than other 
housing types and higher energy costs per square foot [28–30]. 

Affordable housing program structures often exacerbate the landlord 
tenant split-incentive problem. For example, in project-based Section 8 
and public housing, landlord subsidies are directly tied to utility costs, so 
landlords are effectively disincentivized from reducing energy costs 
[31]. Utilities are also more likely to be included in rent than for similar 
market-rate housing, capped at a specific level for most subsidy pro-
grams, thus providing little incentive for landlords and tenants to save 
energy [32]. Subsidized housing property owners generally do not have 
to compete for tenants as well, leaving no incentive to make units 
attractive to potential renters [31]. As a result, affordable housing 
buildings tend to consume more energy than similar market-rate 
buildings, with public housing consuming the most energy per square 
foot [33]. However, some affordable housing programs, such as the Low- 
Income Housing Tax Credit (LIHTC), employ different subsidy structures 
providing stronger incentives to increase energy efficiency [31]. 

A significant opportunity exists to improve energy efficiency and 
reduce energy burdens for low-income and minority households, 
particularly those residing in multifamily affordable housing. Research 
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focused on New York City multifamily housing using energy audit data 
found that if energy conservation measures with a payback period of 
fewer than 10 years were implemented in subsidized housing energy 
burdens could be reduced by 2% of annual household income for the 
lowest income groups studied [3]. Pivo (2012) found that if the same 
number of energy efficiency features were installed in multifamily rental 
housing as other housing types, low-income rental households could 
save $400–600 per year on energy costs [29]. However, Kontokosta 
(2020) found that requiring mandatory audits, alone, does not provide a 
significant enough incentive for building owners to invest in energy 
efficiency improvements, especially beyond low-cost or retro-commis-
sioning measures [34]. 

There is a significant push to improve energy efficiency in affordable 
housing, particularly in New York City, which is the focus of this paper. 
In “One New York: The Plan for a Strong and Just City,” the New York 
City Mayor’s Office lists affordable housing as one of the key challenges 
for the city and describes initiatives to improve lighting and boiler ef-
ficiency in New York City public housing [35]. In 2020, the New York 
State Energy Research and Development Authority and New York’s 
investor-owned utilities committed to investing $880 million through 
2025 to improve clean energy adoption for low- and middle-income 
households and affordable multifamily housing [36]. In 2019, the 
New York City council passed Local Law 97 requiring buildings over 
25,000 square feet (approximately 50,000 residential and commercial 
properties) to meet energy efficiency and greenhouse gas limits by 2024 
and 2030 [37]. The law offers alternative requirements for rent- 
regulated units and buildings participating in project-based federal 
housing programs to comply by implementing prescribed energy effi-
ciency measures to reduce building energy consumption [38]. 

In light of this opportunity and a current focus on improving energy 
equity in buildings, this work aims to compare building system parame-
ters between affordable and market-rate housing in New York City to 
uncover differences that lead to higher energy costs and worse health 
outcomes for residents of affordable housing. This study builds on pre-
vious research that uncovered differences in access to energy efficient 
appliances from survey data by analyzing detailed equipment-level in-
ventories collected by energy auditors. The results of this work indicate 
that energy systems and equipment are actually newer and more efficient 
in affordable housing as compared with market-rate housing, but when 
building metadata (such as age and gross square footage) are considered, 
this trend largely disappears and there is not a statistically significant 
difference in efficiency between the two housing types based on the data 
included here. Further, the types of energy-serving equipment and rec-
ommended upgrades are different enough in affordable and market-rate 
buildings that these will need to be considered for development of 
affordable housing-focused energy efficiency programs. This work adds a 
unique contribution to the literature by analyzing detailed system-level 
data not present in earlier studies. Existing studies [26,27] that 
compare energy efficient systems between affordable and market-rate 
multifamily housing, while larger in geographic scope, do not contain 
nearly as much detail on the equipment installed in these buildings. 

Section 2 describes the methodology of this analysis, including the 
datasets and statistical methods used; Section 3 presents the study re-
sults; Section 4 discusses implications for these findings on improving 
affordable housing energy efficiency; and Section 5 presents conclusions 
of this work. 

2. Methodology 

This work compares energy efficiency in affordable housing and 
market-rate housing in New York City based on detailed system-level 
(heating, ventilation, and air conditioning (HVAC); lighting; and enve-
lope) data obtained from energy audits. It leverages a unique dataset of 
energy audits from New York City’s Local Law 87 combined with pub-
licly available affordable housing data and includes a regression analysis 
across many of the building system parameters. Merging these datasets 

enables a building-level comparison of the type of equipment and ma-
terials installed in affordable versus market-rate housing. 

2.1. Data sources 

2.1.1. Audit data 
The energy audit dataset used in this analysis was generated from 

submitted Energy Efficiency Reports as part of New York City’s Local 
Law 87, which mandates energy audits and retro-commissioning for 
large buildings every 10 years [39]. It includes data from reporting years 
2013–2020, or roughly 80% of New York’s building stock larger than 
50,000 gross square feet. The first six years of data were obtained from 
the New York City Mayor’s Office of Climate and Sustainability, while 
the last two years of data were entered directly into the U.S. Department 
of Energy’s Audit Template tool by building energy consultants [40]. 

Out of the 10,334 total buildings included in this dataset, 7,328 were 
identified as multifamily buildings (defined here as buildings with more 
than 80% of square footage dedicated to multifamily housing use) and 
were included in this analysis. Other common use types include K-12 
schools, offices, and warehouses. 

Each audit record typically contains 368 pieces of information on a 
building, including overall building characteristics, envelope construc-
tion, HVAC system type and parameters, and lighting characteristics as 
well as a set of energy conservation measures identified and recom-
mended by building auditors. Building inputs that were particularly 
useful for this study include:  

• Building Use Type and associated Gross Floor Area 
• Roof Type, Wall Type, Window Type, and associated thermal prop-

erties (R-Values)  
• Lighting Type and Building Use Type Served  
• HVAC Heating and Cooling Source and Use Type Served  
• Energy Efficiency Measure (EEM) Category and Name  
• Estimate EEM Cost Savings. 

New York City Energy Efficiency Reports require the entry of the 
percentage of building-use types identified as common or tenant areas 
and a breakdown of the percentage of lighting types, HVAC system 
types, and hot water system types that serve these areas. Additional 
detail regarding the fields used in this analysis is provided in Section 
2.2.1. 

2.1.2. Demographic data 
The NYU Furman Center’s Subsidized Housing Database (SHIP) was 

used to enrich the audit data by labeling buildings as affordable or 
market-rate and providing information on specific subsidies associated 
with each building [41]. This dataset was used previously by Reina et al. 
(2017) to explore variation in energy consumption between subsidized 
and market-rate buildings and among buildings receiving different 
subsidy types [33]. The SHIP database combines over 50 separate 
datasets to track all publicly subsidized affordable rental housing 
properties in New York City. It includes data from the New York City 
Department of Finance, the New York City Department of Housing 
Preservation and Development, the New York City Housing Authority 
(NYCHA), the New York State Department of Housing and Community 
Renewal (HCR), and the U.S. Department of Housing and Urban 
Development (HUD). Note that the SHIP database includes information 
on a property-level (defined by the tax lot) and could consist of multiple 
buildings, while audit data are compiled at the building level. 

SHIP includes data from seven subsidy types [42]:  

1. HUD financing and incentives, including Section 202 and Section 
811 programs  

2. HUD project-based rental assistance  
3. LIHTC  
4. Public housing managed by NYCHA 

G. Pennell et al.                                                                                                                                                                                                                                 



Applied Energy 323 (2022) 119557

4

5. Mitchell-Lama program  
6. New York state property tax incentive programs, including 421-a and 

420-c  
7. New York City housing production programs and zoning incentives 

and requirements. 

The SHIP database does not include data on which properties include 
units receiving HUD voucher-based rental assistance (Section 8), as re-
cipients can take their vouchers to any eligible building so the subsidy is 
not tied to the specific property. The NYU Furman Center does have 
additional datasets, such as the Neighborhood Indicator dataset, which 
includes information on the percentage of rental units occupied by 
housing choice voucher recipients for geographic areas down to indi-
vidual neighborhoods [43]. 

The SHIP database includes information on 13,193 properties con-
taining nearly 800,000 residential units, many receiving more than one 
subsidy [43]. However, some of the properties are no longer receiving an 
active subsidy, and the database also includes properties that received 
421-a Tax Incentives that do not require a certain number of units to be 
set aside as affordable. Excluding properties that only received a 421-a 
Tax Incentives subsidy, 3,579 properties received an active subsidy in 
2017 [42]. 

2.2. Analysis methodology 

2.2.1. Organization of audit data 
As an audit data record for a single building contains hundreds of 

fields on the building’s systems, envelope, and condition, these fields 
had to be downselected to a subset for use in this analysis. Fields were 
chosen based on their relevance to energy equity, including system ef-
ficiency parameters that could affect residents’ energy costs or air- 
sealing and ventilation fields that could impact the health of building 
occupants. Several other fields were chosen as metadata parameters to 
make sure any statistically significant findings were not skewed by other 
factors (such as building age). A complete list of the metadata and 
equity-related fields used in this analysis are shown in Table 1 and 
Table A1, respectively. 

It is important to note that not all fields included in an audit report 
are filled in for each building record. In particular, 2019 and 2020 data 
were obtained through the Audit Template tool database, and therefore, 
data for those years were subject to data validation and completeness 
tests that did not apply to the 2013–2018 data. As such, several of the 
parameters of interest (such as heating plant efficiency) were only pre-
sent in the 2019 and 2020 data and others had too few entries across the 
full dataset to be used in the analysis. In Table A1, parameters that are 
present only in 2019 and 2020 data are indicated. 

As the audit data for a given building can include several different 
use-types and many different systems, for each of the relevant system 
types (e.g., HVAC, lighting, etc.), the system that serves the majority of 
the multifamily portion of the building was chosen in this analysis. For 
envelope and construction parameters and heating and cooling plants, 
the first component of each type that was listed was used. For most 
buildings, only one Roof, Window, Wall, Heating Plant, or Cooling Plant 
component was included in the data, but for approximately 25% of the 
buildings, additional Window components were included, and 17% of 

the buildings included an additional Heating Plant. These secondary 
components were not used in this analysis. For both lighting and HVAC 
components, the component was chosen that served the largest per-
centage of common area or tenant space, respectively. Common area 
was used for lighting because the percentage of common area space that 
a lighting fixture served was filled in much more frequently than the 
percentage of tenant space. Likewise, tenant area was used for HVAC 
because the percentage of space served by the system was included 
equally for both tenant and common area space, and it was assumed that 
the HVAC system corresponding to the tenant spaces would have a more 
significant impact on tenant energy costs, comfort, and health. Future 
work could expand on this analysis to analyze multiple HVAC and 
lighting systems for each building. 

Some fields included in the audit data can be entered using a variety 
of different units and were therefore converted to a single consistent unit 
for the analysis. This includes the heating plant rated efficiency and the 
cooling system rated efficiency. The heating plant rated efficiency can be 
entered in units of either Annual Fuel Utilization Efficiency (AFUE) or 
Thermal Efficiency (Et), and was converted to Et using the following 
formula from [44]: 

Et = (0.0051427 × AFUE)+ 0.3989 (1) 

Cooling system rated efficiency can be entered in units of Energy 
Efficiency Ratio (EER), Seasonal Energy Efficiency Ratio (SEER), or 
Coefficient of Performance (COP), and was converted from EER or SEER 
to COP using the following formula from [44]: 

COP = 7.84 × 10− 8 × EER × Q+ 0.338 × EER (2)  

where Q is the cooling capacity in BTU/h. 
All of the fields used in the analysis were reviewed and clearly 

incorrect values (e.g. years with 5 digits) were removed from the 
dataset. 

2.2.2. Organization of demographic data 
Data from the SHIP database were used to label and categorize 

buildings from the audit dataset as affordable or market-rate housing. 
Two different criteria were used to generate two different sets of 
buildings categorized as ‘subsidized’ and ‘affordable’. For both defini-
tions, all other buildings from the audit dataset not falling within one of 
the criteria were considered market-rate housing. 

The ’Subsidized’ set includes any building with a record in the SHIP 
database, indicating that the property has received any subsidy during 
the data collection period (with the first subsidy from the dataset 
starting in 1936 and ending in 1984). There are 13,193 properties in 
the first set, receiving the following subsidy types: 1) homeownership, 
housing stability, and quality; 2) land and financing; 3) planning and 
zoning; 4) rental subsidies and assistance; 5) supportive/special needs 
housing; and 6) tax incentives. As noted above, this includes properties 
that received a 421-a Tax Incentives subsidy and others that may or may 
not require a majority of units marked as affordable. Thus, a second, 
narrower definition, ’Affordable’, was used to designate a second set of 
buildings. For this definition, a building must have received a subsidy 
that would make or require the majority of its units to be affordable. 
Because many of the properties from the SHIP database received mul-
tiple subsidies, a property must have received at least one of the sub-
sidies identified below to fall under this second definition:  

• Properties with HUD financing or insurance subsidies, including 
Section 221d and Section 223 subsidies (332 properties). HUD 
financed properties have a requirement to make 100% of their units 
affordable.  

• Properties with HUD contracts, such as those receiving project-based 
rental assistance (932 properties). While some of the units in these 
properties may be market-rate, the NYU Furman Center estimates 

Table 1 
Audit metadata fields.  

Field name Number of buildings including field 

Year Completed 7,328 
Total Floor Area (ft2) 7,243 
Number of Floors 7,317 
% Common Area (for multifamily space) 7,328 
Borough 7,328 
Tenants Directly Metered (Electric) 7,328 
Tenants Directly Metered (Gas) 7,328  
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that 8% of the units in properties receiving this subsidy type are 
affordable [42].  

• Properties receiving low-income housing tax credits including the 
New York State Homes and Community Renewal (NYS HCR) Low 
Income Housing Tax Credit and the federal LIHTC (2,527 proper-
ties). As for the properties with HUD contracts, some of the prop-
erties receiving this subsidy type may be market-rate housing, but 
75% of units receiving this subsidy type are affordable housing [42].  

• Properties receiving subsidies from the Mitchell-Lama program, 
which includes land and property tax abatements and subsidized 
mortgages (260 properties). While all units in properties receiving 
these subsidizes must be affordable housing, they may be targeted 
toward moderate-income households.  

• Properties with property tax incentives with an affordability 
requirement, including the 420-c and 421-a Affordable Housing Tax 
Incentive program (1,988 properties). Note that the 421-a Afford-
able Housing Tax Incentive program is a subset of the larger 421-a 
program, the latter of which includes many market-rate housing 
units. However, the two subsidy programs considered here have a 
100% affordable unit requirement. 

In total, 4,318 properties from the SHIP database receive at least 
one of these subsidies. Note that only a fraction of these properties will 
correspond to buildings in the audit dataset as the SHIP database in-
cludes buildings of all sizes, not just large buildings required to comply 
with New York City’s audit requirement. The number matching to the 
audit dataset will be discussed in the next section. It is important to note 
that public housing owned and managed by NYCHA is not included in 
this affordability criteria. While NYCHA housing has a 100% afford-
ability requirement, no NYCHA properties were in the audit dataset 
obtained for this analysis. In addition, the SHIP database includes 
properties receiving a subsidy at any point in time, starting from 1936, 
and some of these subsidies are no longer in place. However, for this 
analysis, buildings receiving a subsidy from either of the criteria at any 
point in time were included, as it was assumed that the building systems 

considered would not change significantly once a subsidy had expired. 
Follow-on work could explore this assumption to determine if the 
expiration of a subsidy was associated with a significant difference in 
building and system characteristics. 

2.2.3. Joining datasets 
To compare building and system characteristics between affordable 

and market-rate buildings, the audit data was matched to the SHIP 
database using the Building Block Lot (BBL) identifier. BBLs are used to 
describe tax lots in New York City and can include multiple buildings on 
the same tax lot or property. Each property from the SHIP dataset in-
cludes a BBL identifier that may correspond to one or more buildings 
from the audit dataset. Therefore, it was assumed that all buildings 
associated with a BBL from the audit data had the same affordability 
status as indicated by the SHIP entry corresponding to that BBL. 

As mentioned in the previous section, two different affordability 
criteria were used for this analysis: 1) ’Subsidized’ properties, which 
include any property in the SHIP database, and 2) ’Affordable’ proper-
ties, which are a subset of subsidized properties corresponding to sub-
sidy programs in which the majority of units are affordable units. Any 
building from the audit dataset not mapping to a SHIP property for each 
of the criteria was considered market-rate housing. It is possible that this 
included many buildings with some portion of the building set aside for 
affordable units, but given the data used in this analysis, it was not 
possible to identify these buildings. However, this would only serve to 
dampen any relationships found in this analysis, and thus would make 
any trends underestimates. In addition, if the majority of the units in a 
building are market-rate, it was assumed that landlords would have an 
incentive to improve energy efficiency similarly to if the entire building 
was market-rate. Table 2 lists the affordability criteria with an associ-
ated number of properties and the number of matched buildings from 
the audit dataset. Fig. 1 depicts two Venn diagrams demonstrating how 
buildings were categorized according to the two definitions. 

Table 2 
Number of SHIP properties and audit data by affordability criteria.  

Selection 
criteria 

SHIP Properties 
meeting criteria 

Audit data 
buildings 
meeting criteria 

Audit data buildings 
not meeting criteria 
(market-rate) 

Subsidized 13,193 1,347 5,981 
Affordable 4,839 770 6,558  

Fig. 1. Venn diagrams describing how buildings from the audit dataset were categorized as affordable or market-rate according to the two definitions. In both 
diagrams, the blue circle represents buildings from the audit dataset, the yellow circle depicts all properties in the SHIP database, and the green circle denotes 
properties in the SHIP database receiving subsidies deemed to correspond to properties where the majority of units are affordable. In the diagram on the left, the 
purple and yellow wedges represent buildings labeled as market-rate and subsidized, respectively, according to the first definition. In the diagram on the right, the 
purple and green wedges represent buildings labeled as market-rate and affordable, respectively, according to the second definition. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Example contingency table for window glass type with counts of buildings with 
each window glass type by affordability status.  

Affordability status Double 
pane 

Double pane with 
low-e 

Single 
pane 

Subsidized buildings 1,111 121 86 
Non-subsidized 

buildings 
4,746 517 368  
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Table 4 
Two-sample t-test results for numerical building parameters using the subsidized housing definition.  

1R-values are entered in units of ft2 × oF × h/Btu. 
2U-values are entered in units of Btu/(ft2 × oF × h). 
3Cooling system rated efficiency values are converted to COP (coefficient of performance) units as described in Section 2.2.1. 
4Heating plant rated efficiency values are converted to Et (Thermal efficiency) units as described in Section 2.2.1. 

Table 5 
Two-sample t-test results for numerical building parameters using the affordable housing definition.  

1R-values are entered in units of ft2 × oF × h/Btu. 
2U-values are entered in units of Btu/(ft2 × oF × h). 
3Cooling system rated efficiency values are converted to COP (coefficient of performance) units as described in Section 2.2.1. 
4Heating plant rated efficiency values are converted to Et (Thermal efficiency) units as described in Section 2.2.1. 
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2.2.4. Determining relationship between building characteristics and 
housing type 

2.2.4.1. Relationship between building characteristics and affordability 
status. Several statistical methods were used to determine if a building’s 
characteristics were related to its affordability status, depending on the 
type of building data—numerical or categorical. In both cases, an 
analysis was performed first to determine the presence of a strong 
relationship between the building parameter and affordability status. If 
a significant result was obtained, another analysis was performed (only 
for numerical parameters) to determine if the trend could be explained 
from any combination of the building metadata parameters. For 
example, if a strong relationship was found between affordability status 
and wall R-value, a second analysis was performed to determine if this 
relationship could be explained by the differences in typical building age 
and gross square footage between affordable and market-rate buildings. 
The second analysis was not performed in cases where no significant 
relationship was found between the parameter and affordability status. 
These analyses were all performed for both affordability definitions. 

For numerical data (e.g., heating system efficiency), a two-sample t- 
test was performed to determine the initial relationship between each 
building parameter and affordability status, using the parameter values 
for affordable buildings and market-rate buildings as the two sample 
populations [45]. If the t-test returned a p-value less than 0.05, the 
relationship between the building parameter and affordability status 
was considered significant. 

For categorical data (e.g., roofing type), a chi-squared test of inde-
pendence was performed to determine the initial relationship [46]. 
Before performing these tests, a contingency table was constructed for 
each categorical variable. It recorded the number of buildings corre-
sponding to each category for both affordable and market-rate buildings. 
Any category for which less than five buildings were included for either 
affordability status was removed from the analysis, as chi-squared tests 
of independence only return robust results when five or more samples 
are included for each cell in the contingency table [47]. Smaller sample 
sizes (between 5 and 30) were still included in the analysis, since the 
sample size assumption for the chi-squared test of independence was 

met. An example contingency table is shown in Table 3. If a p-value of 
less than 0.05 was returned, the relationship between building charac-
teristic and affordability status was considered significant. The t-test and 
chi-squared test allow for straightforward comparison between afford-
able and market-rate housing stock. However, they do not allow for 
control of other factors that may influence the study outcomes (e.g., 
building age, location, size). Therefore, a regression model is used to 
provide more detailed analysis when a statistically significant relation-
ship is found. 

For only the numerical building parameters, if a significant rela-
tionship was found with affordability status, a multivariate regression 
then was performed to eliminate the effects of any metadata parameters 
on the initial relationship. A linear regression was performed for each 
numeric building parameter and affordability definition to predict the 
parameter’s value using the affordability status and the metadata pa-
rameters as independent variables (Eqs. (3) and (4)). No scaling was 
performed on the parameters. 

building parameter = β0subsidized+ β1meta parameter + ε (3)  

building parameter = β0affordable + β1meta parameter + ε (4) 

Each model began with all metadata parameters included in the 
analysis (Table 1). The parameter with the highest corresponding p- 
value was dropped after each iteration, excluding the affordability sta-
tus, until all parameters had a p-value of less than 0.05 (for numeric 
parameters) or a p(z-value) less than 0.05 (for categorical parameters). If 
all parameters but the affordability status had p-values or p(z-values) 
less than 0.05, the building parameter was recorded as not having a 
statistically significant difference between the corresponding afford-
ability definition classifications. If the p-value of the affordability status 
was significant, the affordability status coefficient, p-value, ̂yaffordable (or 
ŷsubsidized), and ŷmarket were recorded for numeric building parameters. 
These regressions were not performed for categorical parameters 
because interpreting the results of multiple models per parameter can be 
challenging and ambiguous. Performing such regressions could be an 
area for future study. 

If a statistically significant model was found between the building 
parameter and affordability status, four diagnostic tests were performed 
on the model: 1) a linearity test, 2) a normality test, 3) a homoscedas-
ticity test, and 4) an outlier test [48]. Models that did not pass these tests 
were eliminated. The multivariate regression analysis represents a more 
robust form of investigation than the aforementioned t-test and chi- 
squared test. By controlling for these metadata parameters, differences 
between affordable and market-rate housing can be isolated more 
accurately. However, although several building characteristics are 
included in the metadata, ordinary least squares regressions cannot 
conclusively eliminate omitted variable bias and thus prevent identifi-
cation of causal relationships. 

2.2.4.2. Relationship between recommended measures and affordability 
status. The audit dataset includes a list of auditor-recommended EEMs. 
This information includes the measure category, measure name, 
description, and cost and energy savings, among other fields. To un-
derstand how the overall condition of affordable housing buildings and 
systems may vary from market-rate buildings and systems, the fre-
quency in which each EEM was recommended, the average cost savings 
per square foot, and the average number of recommended EEMs were 
compared between affordable and market-rate buildings. For this anal-
ysis, the definition of affordable was restricted to the more limited 
second definition described above, which only includes properties 
where the majority of units have an affordability requirement. 

The only significant cleaning step for this analysis was to remove 
duplicate measures recommended for the same building. For example, 
many buildings will include multiple recommended measures related to 
lighting upgrades if, for instance, the building requires different types of 
lighting in different areas of the building. However, this analysis only 

Table 6 
Chi-squared results for categorical parameters. The enumerations for each op-
tion are shown in Figs. 2–5.  

Building Variable Subsidized z- 
value 

Affordable z- 
value 

Roof Type (n = 6,236) 5.76E-06 1.30E-05 
Cool Roof (n = 7,117) 0.03 0.93 
Green Roof (n = 7,117) 5.58E-03 4.41E-03 
Wall Type (n = 6,860) 2.62E-11 4.02E-07 
Window Framing Material (n =

7,048) 
0.01 1.90E-04 

Window Glass Type (n = 6,593) 1.17E-06 0.11 
Window Operable (n = 7,145) 7.45E-03 0.03 
Exterior Lighting (n = 7,305) 0.17 0.69 
Lighting Fixture Type (n = 7,305) 9.59E-44 7.47E-43 
Lighting Ballast Type (n = 4,552) 1.38E-15 5.77E-10 
Lighting Controls (n = 7,328) 9.23E-05 3.70E-09 
Heating System Type (n = 7,077) 1.15E-37 9.49E-13 
Heating System Fuel Type (n = 5,941) 6.55E-61 9.65E-51 
Thermal Zoning (n = 1,328) 0.36 N < 5 
Cooling System Type (n = 5,472) 8.25E-04 3.87E-02 
Central Distribution Type (n = 7,198) 4.05E-147 5.47E-115 
Delivery Equipment Type (n = 7,158) 6.19E-163 3.02E-162 
Air Supply Corridors (7,291) 2.63E-22 6.39E-10 
Outdoor Air (n = 619) 5.66E-05 2.19E-04 
HVAC Controls (n = 4,596) 4.11E-05 7.23E-12 
Heating Plant Type (6,717) 1.25E-211 3.04E-171 
Heating Plant Fuel Type (n = 7,176) 3.72E-62 1.99E-56 
Heating Plant Venting Type (1,191) 5.07E-07 1.37E-03 
Heating Plant BAS (n = 7,246) 4.97E-05 2.40E-05 
Cooling Plant Type (n = 263) 6.05E-03 0.09 
Cooling Plant BAS N < 5 N < 5  

G. Pennell et al.                                                                                                                                                                                                                                 



Applied Energy 323 (2022) 119557

8

considered unique instances of each measure type for a given building. 
For the cost savings per square foot and the number of EEMs per 

building, the mean was calculated for each of the subgroups (affordable 
and market-rate) and t-tests were performed to determine if the differ-
ences in these parameters was significant for affordable and market-rate 
buildings. 

To determine the most common recommended measures for the two 
subgroups, the number of buildings for which each measure and mea-
sure category was recommended was tabulated by affordability status, 

and a chi-squared test of independence was performed for each measure 
type and category. Before running these tests, any measure or category 
that was found for less than five buildings in either subgroup was 
removed from the analysis. Measure categories and names described as 
“Other” also were removed, as these are difficult to interpret. For both 
the t-tests and the chi-squared tests, if a p-value of less than 0.05 was 
obtained, the difference between affordable and market-rate buildings 
was assumed to be significant. 

Fig. 2. The percentage of buildings with each roof type, green roof designation (True/False), wall type, window framing, and window operability designation for 
both affordable and market-rate buildings. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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3. Results 

3.1. Relationship between building characteristics and affordability status 

3.1.1. T-tests with numerical parameters 
Tables 4 and 5 show results of the two-sample t-tests performed on 

numeric parameters for the subsidized and affordable definitions, 
respectively. The median observed values for the subsidized or afford-
able and market-rate populations are shown as well as the p-value, 
standard error, and confidence intervals. P-values less than 0.05 are 
highlighted in yellow and the median values are highlighted such that 
the more energy efficient or more recent value (for year installed) is 
shown in darker green. Of the 14 numeric parameters tested, 10 show a 
statistically significant difference between subsidized and market-rate 
housing and affordable and market-rate housing, although one of the 
statistically significant parameters is different between the subsidized 
and affordable analyses. 

3.1.2. Chi-squared tests with categorical parameters 
Table 6 shows the results of the chi-squared tests of independence for 

all categorical parameters for both the subsidized and affordable 
definitions. 

A z-value of less than 0.05 results in rejection of the null hypothesis, 
meaning that the two distributions of the parameter for subsidized or 
affordable and market-rate housing are independent (highlighted in 
yellow). Of the 24 parameters tested, 22 show a dependence between 
building parameters and the subsidy status and 19 show a dependence 

between building parameters and the affordable status. A few parame-
ters did not have enough samples for all of the categories to provide a 
robust analysis and are indicated by ‘N < 5’ in the table. 

Figs. 2–5 show the observed percentages of each enumeration be-
tween affordable and market-rate housing for the HVAC system, enve-
lope, lighting, and plant parameters, respectively. Only parameters with 
a significant z-value (less than 0.05 are shown). The percentages for 
subsidized and market-rate housing are not shown for brevity, but they 
exhibit similar trends. 

Many of the differences between building system types and charac-
teristics observed in affordable and market-rate housing may be 
explained by building metadata parameters, such as building size and 
age. These metadata parameters will be examined between housing 
types in the next section. 

From these figures, a few key differences are observed. For envelope 
parameters (Fig. 2), market-rate buildings are more likely to have roofs 
with wooden decks and walls constructed of wooden and steel frames 
than affordable buildings, although these still account for a small frac-
tion of the total number of buildings. For lighting parameters (Fig. 3), 
market-rate buildings have a slightly higher occurrence of inefficient 
incandescent lighting, a similar occurrence of LED lighting, and are 
more likely to contain compact-fluorescent than fluorescent-tube light-
ing than affordable buildings. For HVAC and plant parameters (Figs. 4 
and 5), key differences between affordable and market-rate buildings 
are that affordable housing is more likely to have hydronic systems with 
hot water baseboards and market-rate housing is more likely to include 
steam systems with radiator or convectors. 

Fig. 3. The percentage of buildings with each lighting fixture type, lighting ballast type, and lighting control type for both affordable and market-rate buildings.  
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3.1.3. T-tests and Chi-squared tests with metadata parameters 
Tables 7 and 8 show the results of the two-sample t-tests performed 

on numeric metadata parameters and Table 9 shows the chi-squared 
tests of independence for categorical meta-data parameters. For the 
numerical parameters, the median values for each subgroup are shown, 
as well as the p-value and the confidence intervals. For the categorical 
parameters, the z-value is shown. P or z-values less than 0.05 are 
highlighted in yellow, and for the numerical parameters, the larger of 
the two medians is highlighted in darker green. Of the seven meta-data 
parameters tested, all show a statistically significant difference between 

subsidized and market-rate housing and all but common area percentage 
served show a statistically significant difference between affordable and 
market-rate housing. 

Fig. 6 shows the distribution of enumerations across categorical 
metadata parameters and the range in values for numerical parameters 
for affordable and market-rate housing. Of note, many more affordable 
housing buildings are located in the Bronx or Brooklyn Boroughs than 
market-rate buildings, affordable housing buildings are less likely to 
meter tenants for electric and gas use, and affordable buildings are likely 
to be newer, larger, and taller than market-rate buildings. 

Fig. 4. The percentage of buildings with each heating system type, heating system fuel type, cooling system type, central distribution type, delivery equipment type, 
air supply corridors, outdoor air, and HVAC control type for both affordable and market-rate buildings. 
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3.1.4. Multivariate regressions for statistically significant numerical 
parameters 

Tables 10 and 11 show the linear regression results for numerical 
building system parameters for the subsidized and affordable defini-
tions, respectively. Only parameters that were identified as significant 
from the t-tests were investigated in this part of the analysis. For each 
building parameter, the regression coefficient for the affordability status 
is listed with the robust standard error in parentheses and asterisks 
representing the statistical significance of the coefficient (see legend at 
bottom of Table 10). Also shown are the average predicted values for all 
subsidized or affordable and market-rate buildings using these linear 

models and the R2 for the models. Only parameters with an affordability 
coefficient p-value less than 0.05 are shown in these tables. More 
detailed results from these models are shown in Tables B1 and B2. 

While 10 numerical building system parameters showed a statisti-
cally significant relationship (p-value less than 0.05) with affordability 
status from the t-tests, only four were still significant (for either 
affordability definition) when considering metadata parameters. Even 
among these four parameters, all models resulted in very low R2 values 
despite statistically significant coefficients. Our interpretation of these 
results is discussed in more detail in Section 4. 

Fig. 5. The percentage of buildings with each heating plant type, heating plant fuel, venting type, heating BAS designation, cooling plant type, and cooling BAS 
designation for both affordable and market-rate buildings. 
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3.2. Comparison of measure recommendation frequency 

Auditor-recommended EEMs for each building were compared in 
aggregate between affordable and market-rate buildings to explore if 
auditors were more likely to recommend a different number or different 
types of measures for the two building types. The mean number of 
unique EEMs recommended per building was reasonably similar be-
tween the two types (Table 12), with a mean of 5.3 for affordable 
buildings and 5.6 for market-rate buildings. A t-test comparing the dis-
tributions for the two building types returned a p-value of 0.034, barely 
low enough to reject the null hypothesis that the number of EEMs for 
affordable and market-rate buildings were drawn from the same distri-
bution. Histograms and smoothed kernel density estimates of the num-
ber of EEMs per building are shown in Fig. 7a, with affordable buildings 
shown in orange and market-rate buildings in blue, indicating different 
distributions for the two building types. 

Interestingly, market-rate buildings are more likely to have a very 
low (1–4) or very high (7+) number of recommended EEMs, while 
affordable buildings are more likely to have a moderate number of 
recommended EEMs (4–7). Future work could further explore this trend 
to identify if the market-rate buildings with a very low or very high 
number of recommended EEMs differ in terms of their building or sys-
tem characteristics. 

The total savings of all recommended measures for each building (see 
Table 12) were compared between affordable and market-rate buildings. 
Predicted savings were normalized by square footage to account for the 
fact that larger buildings are likely to realize more dollar savings from 
the same EEMs as smaller buildings, assuming they are implemented 
building-wide. Savings were calculated by each individual energy 
auditor and do not include information on whether EEMs are targeted at 
owner or tenant savings. It may be possible to extrapolate who benefits 
from the savings based on the type of measure and the metering 
configuration for the building, and that could be an area for follow-on 

work. For affordable buildings, the average predicted savings was 
$0.37 per square foot, and for market-rate buildings, the average was 
$0.36 per square foot. A t-test between the two distributions returned a 
p-value of 0.54, which is too high to reject the null hypothesis that the 
variables were drawn from the same distribution. The histograms and 
kernel density estimates in Fig. 7b also show similar distributions. 

Table 13 shows the percentage of buildings with an EEM from each of 
the possible categories for both affordable and market-rate buildings as 
well as the chi-squared test of independence p-value comparing the 
counts of buildings between affordable and market rate. Only EEM 
categories present in at least 10% of buildings for each building type 
were included. Cells showing the percentages of buildings are color- 
coded dark to light green for the highest to lowest percentage for the 
top five categories for each building type. P-values less than 0.05 are 
highlighted in yellow. 

While the chi-squared p-values show that about half of the categories 
have statistically significant differences in counts between the two 
building types, both affordable and market-rate buildings have roughly 
the same top five EEM categories in a similar order. 

The percentage of buildings with specific EEMs is shown in Table 14. 
Only EEMs present in more than 5% of buildings for either type are 
included, as well as only EEMs with chi-squared p-values less than 0.05. 
The top five recommended EEMs for both affordable and market-rate 
buildings are color-coded in green with dark to light denoting more to 
less frequently recommended. Among the top five recommended mea-
sures, measures more likely to be recommended in affordable buildings 
include Air Seal Envelope and Add VSD Motor Controller and measures 
that are more likely recommended in market-rate buildings include Add 
or Upgrade BAS/EMS/BMS, Add Pipe Insulation, Upgrade Operating 
Protocols, and Separate SHW from Heating. Some of the differences in 
recommended measures may be explained through building metadata, 
which is an area for future research. In addition, as some energy 
consulting companies are more likely to perform audits on either 
affordable or market-rate buildings, some bias may be introduced if 
some companies are more likely to recommended specific EEMs. How-
ever, the auditing company is not included for enough of the building 
records to perform a robust comparison here. 

4. Discussion 

This analysis compares building-system parameters between 

Table 7 
T-test results for metadata parameters for the subsidized definition.  

Table 8 
T-test results for metadata parameters for the affordable definition.  

Table 9 
Chi-squared results for metadata parameters for both the subsidized and 
affordable definitions.  

Building Variable Subsidized z-value Affordable z-value 

Borough (n = 7,328) 1.65E-96 1.68E-40 
Tenants Directly Metered for Electric 1.14E-05 1.56E-15 
Tenants Directly Metered for Gas 3.32E-20 1.99E-36  
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affordable and market-rate housing in New York City using two defini-
tions of affordable housing—one broader definition and one that is more 
restrictive. Parameters were first compared to affordability status alone 
to determine if there was a statistically significant relationship. If one was 
found, a second analysis was performed to determine if that relationship 
could be driven by metadata parameters, such as building size or age. 

A large number of the parameters considered did show a statistically 
significant relationship with the building’s affordability status, as indi-
cated by a p-value of less than 0.05. Interestingly, among the numerical 
parameters, subsidized and affordable buildings tended to have better 
insulation and newer and more efficient systems than market-rate 
housing. However, all metadata parameters also showed a significant 
relationship with affordability status, with affordable housing more 

likely to be associated with newer, larger, and taller buildings. Specif-
ically, a typical (median) affordable housing building was built in 1979 
and is 120,000 square feet and 8 stories tall, whereas a typical market- 
rate building was built in 1950 and is 80,000 square feet and 6 stories tall. 

There was also a noticeable difference in categorical parameters 
between affordable and market-rate housing, especially in roof and wall 
construction types, lighting fixture types, and heating system types. For 
the latter, affordable buildings are more likely to contain hydronic 
systems with hot water baseboards and market-rate buildings are more 
likely to include steam systems with radiator or convectors. While cat-
egorical parameters such as construction and heating system type were 
not used as metadata for the numerical parameters in the regression 
analysis, it is possible that correlations exist for some parameters, such 

Fig. 6. Distribution of metadata parameters for the audit dataset. (a) Percentage of buildings with each categorical enumeration. (b) Distribution of each of the 
numerical metadata parameters, with the box showing the middle two quartiles, the whiskers showing the full range, the horizontal line inside each box showing the 
median, and outliers shown as points beyond the whiskers. 
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as roof construction type with roof R-value and heating system type with 
heating efficiency. 

When regressions were performed on building parameters with sta-
tistically significant t-test p-values, most of the models (6 out of 10) did 
not have statistically significant coefficients for the affordability status 
parameter, indicating that building metadata characteristics (e.g., 
building location, age, size, etc.) were responsible for the observed 
relationship between affordable and market-rate buildings. 

The remaining four models that had statistically significant coeffi-
cient p-values also had very low R2 values (all less than 20%). When a 
multivariate regression results in statistically significant p-values for 
coefficients but very low overall R2 values, this often indicates that while 
there is a correlation between the dependent variable (building system 
parameter) and independent variables (affordability status and 

metadata parameters), the overall trend is not strong and potentially 
very noisy [49]. The low R2 values do not affect the assumptions of the 
multivariate regression, but could indicate that the correlation itself is 
weak, the dataset quality is poor, or variables that could improve the 
model are missing. Future work could be done to identify other variables 
with more explanatory power. 

In the case of parameters such as roof or wall R-value, the third 
explanation is likely, as the roof and wall construction types could very 
likely help to explain differences in their R-values, but these parameters 
were not included as metadata. Similarly, for heating plant rated effi-
ciency, that parameter is likely related to the heating system type and 
age, which were shown to have different likelihoods for affordable and 
market-rate housing. The fourth building system parameter with a sta-
tistically significant regression model was the year the heating system 
was installed. It is surprising that while this parameter shows a significant 
relationship with affordability status under both definitions, the age of 
the building has the smallest coefficient (and therefore lowest impact on 
the year the heating system was installed) and highest robust standard 
error of the models where the age of the building parameter is significant. 

These analyses all indicate that affordable and market-rate housing 
are located in buildings with very different key characteristics and that 
once these characteristics are taken into account, differences among 
installed building system parameters such as envelope type, lighting, 
and HVAC systems characteristics are not significant. However, even 
though these differences can be explained by factors such as building 

Table 10 
Regression results for numerical parameters for the subsidized definition.  

1R-values are entered in units of ft2 
×

oF × h/Btu. 
2Heating plant rated efficiency values are converted to Et (Thermal efficiency) units as described in Section 2.2.1 Robust standard errors in parentheses. 
* p < 0.05. 
** p < 0.01. 
*** p < 0.001. 

Table 11 
Regression results for numerical parameters for the affordable definition.  

1R-values are entered in units of ft2 × oF × h/Btu. 
2Heating plant rated efficiency values are converted to Et (Thermal efficiency) units as described in Section 2.2.1 Robust standard errors in parentheses. 
*p < 0.05. 
**p < 0.01. 
***p < 0.001. 

Table 12 
Average EEMs per building and savings per square foot for affordable and 
market-rate buildings.  

Metric Mean for 
affordable 

Mean for market- 
rate 

p-value 

EEMs per building  5.3  5.6 3.40E- 
02 

Savings per sq ft ($/sq 
ft)  

0.37  0.36 5.36E- 
01  
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age, size, location, common area percentage, and metering configura-
tion, the intrinsic characteristics of these buildings are still significantly 
different, and thus the type of energy efficiency interventions that will 
be effective for the “typical” building may not have as large of an effect 
for many affordable housing buildings with different characteristics. 
This idea is further explored by comparing the energy efficiency rec-
ommendations across housing types. 

The comparison of recommended EEMs between affordable and 
market-rate housing showed that the five most likely EEM categories 
were mostly consistent between the two housing types, although there 
were some statistically significant differences in the likelihood of a given 
category being included. In particular, while Lighting and Service Hot 
Water improvements were the two most likely EEM categories for both 
housing types, they were slightly more likely to be recommended (with a 
p-value <0.05) for market-rate buildings. This makes sense for lighting, 
as market-rate buildings are more likely to have incandescent fixture 
types, at least in common areas (Fig. 3). 

More differences arose between affordable and market-rate housing 
when comparing the likelihood of specific recommended EEMs. Of note, 
Air Seal Envelope, the most commonly recommended measure for 

affordable housing, was recommended in 5% fewer market-rate build-
ings. This is particularly interesting given that the average insulation R- 
values for affordable housing are higher than those of market-rate 
housing. This could imply that while the structural features of build-
ings are perhaps more tied to their size and age, deficiencies such as 
those requiring air sealing, do not follow the same trend and are more 
dependent on how the building is maintained or the initial construction 
quality. 

It is important to note that Add Pipe Insulation is significantly more 
likely to be recommended in market-rate buildings, but this is likely to 
be tied to the different heating system types that are more prevalent 
across affordable and market-rate buildings. As seen in Figs. 4 and 5, 
affordable housing buildings are more likely to include hydronic sys-
tems, whereas market-rate housing buildings more likely have steam 
systems. Because steam systems require higher temperatures than hy-
dronic systems adding pipe insulation in buildings with steam systems 
likely would lead to larger cost savings, which may explain why that 
measure has been recommended more frequently in market-rate hous-
ing. Similarly, Add VSD Motor Controller was recommended in signifi-
cantly more affordable than market-rate housing buildings. This could 

Fig. 7. Histograms (bars) and kernel density estimates (lines) for (a) the number of EEMs per building and (b) the total EEM savings per square foot for affordable 
buildings (orange) and market-rate buildings (blue). In both cases, the data was normalized to show probability instead of counts to make the data for the two 
building types more directly comparable, as the sample size for market-rate buildings is much larger than that of affordable buildings. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 13 
Percentage of buildings with EEMs of each category for affordable and market-rate buildings.  
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indicate that many of the hydronic systems in affordable housing 
buildings are constant volume and therefore have a big opportunity for 
savings. This would be less applicable in market-rate buildings, which 
are mostly steam systems. 

Differences in the prevalence of recommendations for these and 
other measures between affordable and market-rate buildings lend 
further support to the idea that the interventions commonly recom-
mended for the majority of buildings may not be as effective for 
affordable housing. Thus, retrofit programs focused on affordable 
housing should be customized to the specific characteristics of the 
buildings. In addition, prescriptive paths for building performance 
standards, which are being implemented more-and-more, may need to 
consider the particular characteristics and challenges of improving 
affordable housing buildings, such as focusing on operations and 
maintenance or improving newer systems [50]. 

There are some limitations of the audit data used in this analysis, 
specifically with respect to multifamily housing. For instance, many 
multifamily housing buildings use window air conditioners as the pri-
mary method of cooling. Recording the incidence of in-unit appliances is 
not required and thus not often captured in many of the Audit Template 
reports [51]. Additionally, studies have shown that load shapes in ZIP 
codes of lower-income areas were reflective of heavy use of space 
heaters in the winter, and this also may not be captured in the audit data 
[52]. An additional limitation is that this study does not take residents’ 
behavior, such as energy limiting behavior into account. Another caveat 
is that this analysis is restricted to New York City buildings subject to 
Local Law 87 (gross square footage greater than 50,000) and therefore 
does not account for differences in building conditions for residents in 
smaller buildings not covered by the ordinance or geographic and 
climate effects. 

In addition, the SHIP dataset used to distinguish between affordable 
and market-rate housing does not include information on the percentage 
of units in each building set aside as affordable. To divide buildings into 
subgroups, the authors made assumptions as to which subsidy types 
were more likely to have a high percentage of affordable units, but on an 
individual building level, it is certainly possible that majority-affordable 
buildings were included in the market-rate subgroup and vice versa. 
Finally, NYCHA owns and manages a large percentage of the affordable 
housing units in New York City, and some studies (e.g., Reina, 2017 
[33]) have shown that public housing consumes more energy per square 

foot than any other subsidized housing type in New York City. Unfor-
tunately, none of those buildings were included in this analysis due to 
data unavailability, and a natural next step would be to expand this 
analysis to include public housing. 

The overall results of this study, which indicate that large affordable 
housing buildings in New York City are newer and more energy-efficient 
than their market-rate counterparts, at first seem at odds with previous 
research indicating that low-income residents have less access to energy 
efficiency [14–18]. However, there are likely key differences in the 
datasets studied here and in previous work. For instance, this analysis 
only focuses on large buildings (greater than 50,000 square feet) and the 
vast majority of the audit data only includes information on building- 
scale systems and not in-unit appliances, the latter of which is the 
focus of much of the previous work on low-income access to energy 
efficiency. New York City may also be a unique test case, as it has one of 
the oldest public housing programs in the nation [53]. It is also possible 
that including the data from NYCHA buildings would yield a different 
result. 

While this analysis has revealed several interesting trends, it is 
apparent that examining installed building characteristics may not be 
able to explain the differences in energy burdens and energy usage be-
tween residents of affordable and market-rate housing previously 
observed in other studies [26,27]. Much more could be gleaned from 
these datasets or new datasets in future work, however. For example, 
additional datasets could be used to explore differences in the preva-
lence and usage of in-unit appliances such as window air conditioners 
and space heaters between affordable and market-rate buildings or how 
well the buildings are maintained. The SHIP database could also be 
further explored, including comparing building system parameters 
across different subsidy types and programs. In addition, only a subset of 
the building system parameters from the audit data were used for this 
analysis, and future work could explore other parameters, or do a deeper 
dive into the interrelationship between building systems and recom-
mended measures. In particular, this work only considered one HVAC 
system per building for simplicity, while in reality, most buildings in this 
dataset have multiple HVAC systems. A deeper analysis could explore 
how the types and percentage area served of multiple systems varies 
across the affordability status of the building. 

Finally, this work only examined how building system parameters 
varied based on whether a building received subsidies and was likely to 

Table 14 
Percentage of buildings with EEMs of each type for affordable and market-rate buildings.  
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have a majority of affordable units. To more fully explore how building 
systems and equipment can impact energy equity, the analysis should be 
extended to examine differences in building systems across other de-
mographic indicators, such as buildings in neighborhoods with a high 
percentage of racial minority residents, buildings primarily housing 
elderly or disabled residents, or buildings located in areas with higher 
pollution or other environmental stressors. 

5. Conclusions 

In this study, building system parameters from energy audit data, 
including envelope, lighting, and HVAC system characteristics, were 
compared between affordable and market-rate housing buildings to 
determine if differences in building characteristics could be responsible 
for the higher energy burdens and energy usage experienced by low- 
income housing residents previously observed in other studies. 

The results indicate that large (greater than 50,000 square feet) 
affordable housing buildings in New York City tend to have more effi-
cient and newer systems than market-rate buildings; however, this 
finding is explained by the tendency for affordable housing buildings to 
be larger, newer, and taller than their market-rate counterparts. We also 
found that auditor-recommended improvements were somewhat 
different between affordable and market-rate housing, possibly driven 
by the differences in energy system types between the two housing 
types, and a higher prevalence of air-sealing recommendations was 
observed for affordable housing buildings, indicating a potential 
disparity in building upkeep. While the results of this analysis do not 
indicate a linkage between building system characteristics and energy 
burden, especially since tenants’ energy burdens will be sensitive to the 
specific metering configuration for the building and the requirements of 
the applicable subsidy programs, they do suggest that retrofit programs 
or building performance standards may need to consider the particular 
characteristics and challenges of affordable housing buildings in their 
policies. 
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Appendix. Audit data building system parameters 

Table A1 shows all of the building system parameters considered for 
this analysis with the system type, number of buildings from the 
multifamily dataset that include a value for the field, and if the 
parameter is included in the 2013–2018 data. 

Appendix B. Full regression results 

The full model results for the numerical parameter regressions are 
shown in Tables B1 and B2. These include the coefficients for the 
affordable status parameter as well as the coefficients for each metadata 

Table A1 
Audit building system parameters.  

Field name System 
Type 

# of buildings 
including field 

In 2013–2018 
data? 

Roof Construction Type Envelope 6,236 Y 
Roof R-value Envelope 6,620 Y 
Cool Roof Envelope 7,117 Y 
Green Roof Envelope 7,117 Y 
Wall Construction Type Envelope 6,860 Y 
Wall Insulation R-value Envelope 1,328 N 
Window Framing Type Envelope 7,048 Y 
Window Glass Type Envelope 6,593 Y 
Window Operable Envelope 7,145 Y 
Window U-value Envelope 162 N 
Window to Wall Ratio Envelope 4,142 Y 
Slab Insulation Envelope 266 N 
Foundation R-value Envelope 124 N 
Exterior Lighting Lighting 7,305 Y 
Lighting Fixture Type Lighting 7,069 Y 
Lighting Ballast Type Lighting 4,552 Y 
Lighting Controls Lighting 7,328 Y 
Heating Type HVAC 7,077 Y 
Heating Fuel HVAC 5,941 Y 
Heating Year Installed HVAC 5,176 Y 
Heating Efficiency HVAC 34 N 
Burner Year Installed HVAC 4,606 Y 
Cooling System Type HVAC 5,742 Y 
Cooling Year Installed HVAC 1,696 Y 
Cooling Efficiency HVAC 453 N 
Thermal Zoning HVAC 1,328 N 
Central Distribution 

Type 
HVAC 7,198 Y 

Delivery Equipment 
Type 

HVAC 7,158 Y 

Air Supply Corridors HVAC 7,291 Y 
Outdoor Air HVAC 631 N 
HVAC controls HVAC 4,596 Y 
Heating Plant Burner 

Year Installed 
Plant 5,673 Y 

Heating Plant Year 
Installed 

Plant 6,298 Y 

Heating Plant Rated 
Efficiency 

Plant 1,152 N 

Cooling Plant Year 
Installed 

Plant 1,293 Y 

Heating Plant Type Plant 6,717 Y 
Heating Plant Fuel Type Plant 7,176 Y 
Heating Plant Venting 

Type 
Plant 1,191 N 

Heating Plant BAS Plant 7,246 Y 
Cooling Plant Type Plant 263 Y 
Cooling Plant BAS Plant 6,362 Y  
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parameter. Parameters for which a coefficient are not shown were 
eliminated in the iterative analysis because the coefficient did not have a 
statistically significant p-value (less than 0.05). 
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