

Organized in cooperation with

Predicting Remediation Technology Longevity using Spectral Induced Polarization

November 2023

<u>Jim Szecsody</u>, Tim Johnson, Judy Robinson, Mike Truex, Pacific Northwest National Laboratory Paul Tratnyek, Oregon Health and Science University

2023 Global Summit on Environmental Remediation @REMPLEX

PNNL is operated by Battelle for the U.S. Department of Energy

Outline

- permeable reactive barrier (PRB), this study: redox reactive PRBs:
 - measure injection extent (ERT, SIP)
 - performance over time (i.e., oxidation)
- spectral induced polarization (SIP) use in subsurface sediments
 - quantify temporary electron storage
 - frequency specific surface phase imaginary conductivity
- geochemical and SIP comparison of redox reactive surface phases
- geochemical and SIP comparison of four reductive technologies

Permeable Reactive Barrier (PRB)

No barrier; uncontrolled contaminant movement

• can SIP be used to evaluate PRB performance where well data is sparse or sorbing contaminants or to characterize heterogeneity effects?

Abiotic Redox Reactions and SIP

Reductive Component Additions to a Sediment

• real sediment with adsorbed Fe²⁺, FeS, microbial biomass addition: frequency specific SIP changes good geochemical-SIP correlations in a real sediment with model additions

microbial isolate addition

Abiotic Reduction: Na-dithionite and SIP

Geochemical Response

SIP Response

Abiotic Reduction: Ca-polysulfide and SIP

SIP Response Geochemical Response 1.4 **CPS-Treated Umatilla Sediment** ads. FeS/ sed. reductive capacity 0.03 umol/g (no treat) Treatment **Fe**²⁺ FeCO₃ Fe²⁺ ▲__43.1 umol/g 1.2 🛏 46.8 umol/g 0.032 16.3 none ■-54.0 umol/g o" untreated Ca-polyS reduced 0.33 112. ← 58.2 umol/g Ca-polyS red/ox. <0.01 36.2 **Geochemical-SIP** .0 * umol/g Correlation 10^{2} 0.8 r² **0**,' • σ^{''} 0.001 Hz CrO4 0.97 σ" 0.001 Hz RDX 0.77 0.98 **Δ** σ^{''} **0.001** Hz NO3 0.6 10¹ (**m/sm**) 200 FeS icond 1 0.4 ď, 10⁻² 10^{-3} 10^{0} 10^{-1} 10^{-} Frequency (Hz) σ'' decrease at 0.01 Hz 10^{-1} 10⁻³ 10^{-2} 10^{0} 10^{-1} 10^{1} reaction rate (mol mol Fe⁻¹ h⁻¹)

Abiotic Reduction: nZVI addition

Geochemical Response

Bioreduction

Geochemical/Microbial Response

SIP Response

Heterogeneities: SIP Identification of Reduced Zones

- reduced zone identification:
- high solids contrast between inclusion and matrix
- low groundwater conductivity
- electrode spacing and survey type

 imaginary conductivity inversion modeling at at 0.3 Hz (FeS sensitive)

• different ferrous iron phases control CrO₄, NO₃, RDX reduction and correlate to frequency-specific imaginary conductivity:

frequency (Hz)
0.1 to 10 Hz, increase
0.001 to 0.1, decrease
0.001-0.01, increase
1.0 to 30, increase

- SIP imaginary conductivity response somewhat sediment specific, so technology response in one sediment may not be the same in a different sediment
- SIP could predict redox changes for two technologies (Na-dith., CPS), partial prediction for bioreduction (cannot correlate to Fe²⁺ or microbial biomass)
- SIP could be very useful at field scale to predict reduced PRB long-term performance; limitations can be evaluated using sediments in laboratory studies

Organized in cooperation with

Questions?

2023 Global Summit on Environmental Remediation @REMPLEX

Spectral Induced Polarization (SIP) in Sediments

Electrical current (DC or AC) flow in:

- **1. fluid (significant)**
- 2. along surface, EDL (significant) [surface ppt., adsorbed ions]
- **3. in particles (small)**

AC Raw Data: freq. vs resistivity, phase

 ϕ phase angle: induced polarization or charge storage from ads. ions/solids (not solution ions)

Post-Model Data: w/system geometry

 σ' real conductivity: pore water

 σ'' imaginary conductivity: ~surface conductivity

$$\varphi = \tan^{-1}[\sigma''/\sigma']$$

$$\sigma' = (1/F) \sigma_w + \sigma'_{surf}$$

Induonation

larger capacitor = lower frequency shift