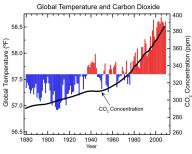


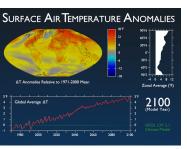
Centering Historically Disinvested Communities in a Warming Planet

Vivek Shandas

Professor, Urban Studies and Planning

Acknowledgements

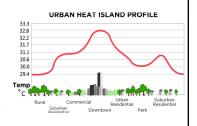

Jackson Voelkel, Chrissi Antonopoulos, Yasuyo Makido, Joey Williams

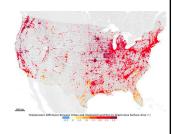


1

Why Energy Justice Matters

- Observable trends are underway
 - Rapid acceleration of temperatures and extremes
- Buildings amplify heat
 - Unaccounted for climate risks is the built environment
- Existing building mediate....
 - Current development strategies (n'borhoods)
 - Environmental processes
 - Private party decisions about internal/external processes
 - Extent of regulations, policies, and programs to address climate threats

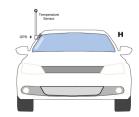




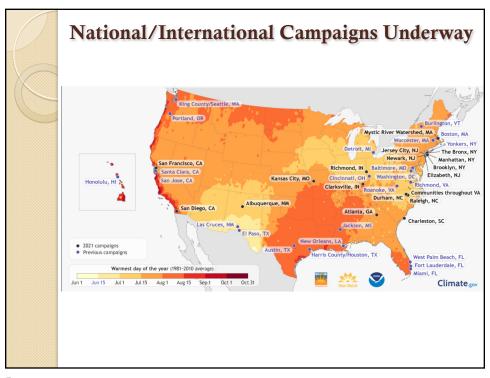
2

Common Descriptions of the UHI

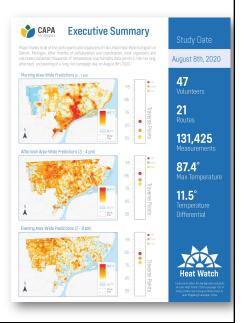
- 1. Traditional use of a 'reference site' to assess urban temps
 - 1. Use of weather stations (spatial)
 - 2. Nighttime differences (temporal)
- 2. Satellite description of the land surface temperature (LST)
 - 1. Atmospheric brightness & emissivity
- 3. Integrating satellite with ground-based measurements
 - i. Aim of developing a predictive model for air temperatures

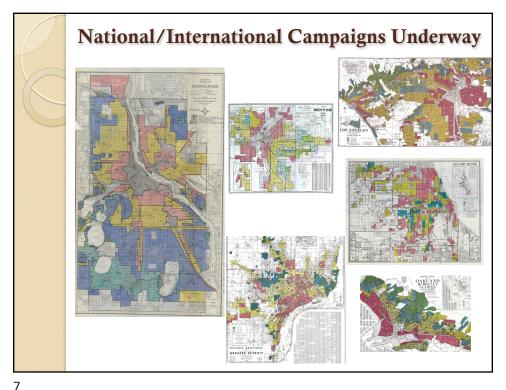


3

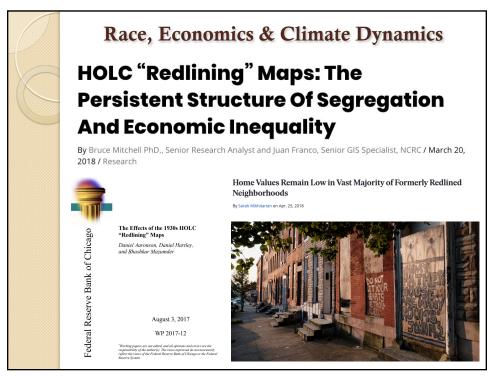

Field Campaigns for Hyper-Local UHI Data

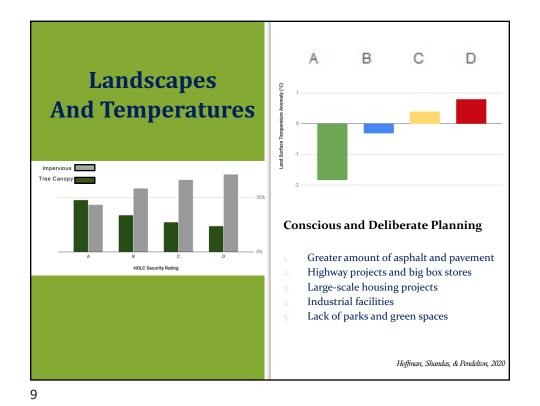
- Volunteers affix temperature sensors to vehicles
- Drive pre-planned routes across city
- Near-surface air temp/humidity
- Precision at 10m (~90m for satellite images)

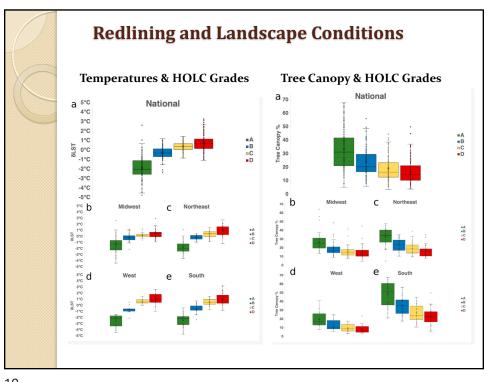




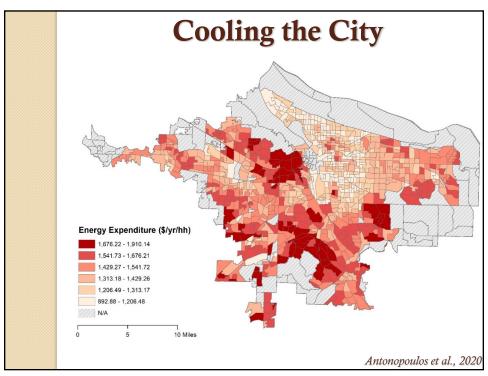
5


Advancing Cooling Interventions

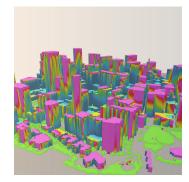

- Spatial distribution of heat: Detailed maps at 10-meter resolution across the city.
- <u>Social vulnerability</u>: Which communities are exposed to higher or lower temperatures.
- <u>Distribution of green assets</u>: Do street trees, parks and water bodies result in lower temperatures? Evenly distributed?
- <u>Built environment</u>: Which structural types and design features correlate with high or low temperatures?
- Housing policy: To what extent can land use couple with technology (i.e. battery storage) to reduce vulnerability during rapid warming and extreme climate-induced events?



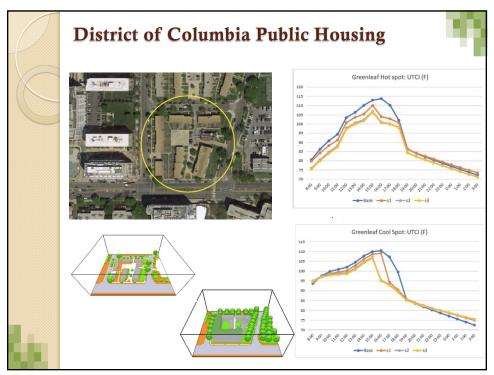
•



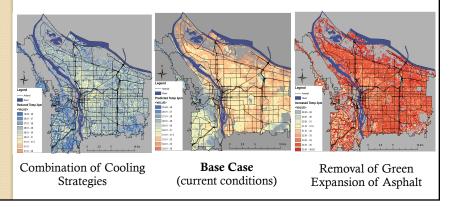
Ranking	State	City	D-A Rating Difference (°F)
1	OR	Portland	12.8
2	co	Denver	12.0
3	MN	Minneapolis	10.8
4	GA	Columbus	10.3
5	FL	Jacksonville	9.9
6	CT	East Harford	9.7
7	TN	Chattanooga	9.6
8	IN	Indianapolis	9.5
9	VA	Roanoke	9.5
10	PA	Philadelphia	9.4
11	KY	Louisville	9.4
12	MD	Baltimore	9.3
			Hoffman Shandas & Pendelton 2020


Hoffman, Shandas, & Pendelton, 2020

11


Predicting Changes in Temperatures

- Complex Fluid Dynamics Modeling (ENVI-Met[™])
 - Microclimate assessments
 - Thermodynamics
 - Atmospheric physics
- Interventions across diverse land use types
 - Large lots, urban districts, suburban, commercial, etc.
 - Density applications
 - Cool roofs, green walls, street trees, etc.



13

Cooling the City

- Application of cooling interventions to all land use types
 - Combination of strategies: overall city temperatures cool by over 9⁰ F(left)
 - Asphalt City: Increase of temperatures by 12°F(right)

15

Next Steps and Opportunities

- Assess scales of interventions multiple buildings, intervention types, and development contexts
- Identify potential for centering multi-sectoral collaborations to test efficacy of 'in-situ' cooling interventions across multiple cities
- Identify policy options for advancing 'no net increase in neighborhood temperature'

