Recovering critical minerals from the phosphate fertilizers could reduce their accumulated concentration levels in the agricultural soils

#### Chandra Tummala<sup>1</sup>

Mohammed Dardona<sup>1</sup> Sai Praneeth<sup>1</sup> Sanjay Mohanty<sup>2</sup> Timothy Dittrich<sup>1</sup>

<sup>1</sup>Department of Civil and Environmental Engineering, Wayne State University

<sup>2</sup>Department of Civil and Environmental Engineering, University of California, Los Angeles





### **Motivation for this work**



• We spread around 200 -250 lbs of phosphate fertilizer every year for harvesting two crops per year.



### **Introduction to REEs and phosphorus**

IUPAC Periodic Table of the Elements





#### Applications



- In 2006, restrictions imposed by China on the REE exports has created a shortage
- As of 2021 around 60% of world's REE are controlled by one country

### Rare earth elements present in the phosphate rock



![](_page_3_Picture_2.jpeg)

#### Gondwana Research Volume 27, Issue 2, February 2015, Pages 776-785

![](_page_3_Picture_4.jpeg)

GR focus review

### Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?

Poul Emsbo<sup>a</sup> ♀ ⊠, Patrick I. McLaughlin<sup>b</sup>, George N. Breit<sup>a</sup>, Edward A. du Bray<sup>a</sup>, Alan E. Koenig<sup>a</sup>

![](_page_3_Picture_8.jpeg)

Ore Geology Reviews Volume 138, November 2021, 104342

![](_page_3_Picture_10.jpeg)

Enrichment of rare earth elements in the early Cambrian Zhijin phosphorite deposit, SW China: Evidence from francolite micropetrography and geochemistry

Zeyang Zhang <sup>a b c</sup>, Yuhang Jiang <sup>a b</sup> Q 🖾, Hecai Niu <sup>a b</sup>, Jieqi Xing <sup>a b c</sup>, Shuang Yan <sup>a b</sup>, Ao Li <sup>a b c</sup>, Qiang Weng <sup>a b c</sup>, Xiaochen Zhao <sup>a b c</sup>

### **REEs were added to P-fertilizers in China to increase crop productivity**

![](_page_4_Picture_1.jpeg)

![](_page_4_Picture_2.jpeg)

- Enrichment in the agricultural lands
- Accumulation in the roots
- REE uptake in fruits
- Discharge in runoff streams
- Excess REEs reduced crop growth
- Concentrations of REEs found in the human blood

# Application of organic phosphate fertilizers can be the reason for REEs release

![](_page_5_Picture_1.jpeg)

![](_page_5_Figure_2.jpeg)

- Phosphate ores are crushed to finer sizes and applied as organic phosphate fertilizers in order to avoid the production of the phosphogypsum
- The concentration of REE present in the phosphate source transferred to the fertilizers
- Concentration of REEs present in fertilizers = unknown

### Methodology

Characterize the fertilizers and evaluate TREE concentration

![](_page_6_Picture_3.jpeg)

Optimize leaching parameters

Extract REE and determine leaching

![](_page_6_Picture_5.jpeg)

mechanism

![](_page_6_Picture_7.jpeg)

Precipitate REE

![](_page_6_Picture_10.jpeg)

Synthesize solid-liquid sorption media

Recover REE using adsorption

![](_page_6_Picture_13.jpeg)

Microwave digestor (CEM, MarsXpress Mars 5)

![](_page_6_Picture_15.jpeg)

X-ray diffraction analyzer (Bruker, D2 phaser)

![](_page_6_Picture_17.jpeg)

Scanning electron microscope (Jeol, JSM-7600F) and Energy Dispersive Spectroscopy (EDS) analyzer (EDAX-AMETEK)

![](_page_6_Picture_19.jpeg)

ICP-MS (Agilent technologies, 7850)

# Information about three commercial P-fertilizers used in this study

![](_page_7_Picture_1.jpeg)

- Three commercial fertilizer have different color and particle size
- These are crushed to fine sizes manually using a hand pestle and were sieved with 125-micron sieve
- Clay particles removed during the beneficiation of the phosphate rock form the waste phosphate clay

![](_page_7_Picture_5.jpeg)

### **Characterization of the commercial P-fertilizers**

![](_page_8_Picture_1.jpeg)

Utah

Montana

![](_page_8_Figure_3.jpeg)

Florida

- Particle size is less than 155 microns
- Fluorapatites mineral based phosphate rocks are sources for the manufacturing of these fertilizers

### Total metal concentrations found in the fertilizers

![](_page_9_Picture_1.jpeg)

- Application of higher metal concentration in the agricultural fields can lead to the enrichment
- On the other side, these metal poses value and provides an opportunity to recovery

![](_page_9_Figure_4.jpeg)

### Value present in the phosphate fertilizers

![](_page_10_Figure_1.jpeg)

Total value of metals and REE

- Montana = \$75.3/mt
- Florida = **\$75.6/mt**
- Utah = **\$77/mt**

• Value of REE : Utah > Florida > Montana

![](_page_11_Picture_1.jpeg)

#### Table 1: Comparison with the AAPFCO heavy metal standards

|    | w070 (F-1)          | AAPFCO_7%<br>available<br>phosphate<br>limit | 030 (F-2)           | AAPFCO_3%<br>available<br>phosphate<br>limit | 0120 (F-3)          | AAPFCO_12%<br>available<br>phosphate limit |
|----|---------------------|----------------------------------------------|---------------------|----------------------------------------------|---------------------|--------------------------------------------|
|    | mg kg <sup>-1</sup> | mg kg <sup>-1</sup>                          | mg kg <sup>-1</sup> | mg kg <sup>-1</sup>                          | mg kg <sup>-1</sup> | mg kg <sup>-1</sup>                        |
| Ni | 65±7.6              | 1750                                         | 33±0.88             | 1500                                         | 25.3±1.7            | 3000                                       |
| Cu | 58.7±5.1            | -                                            | 13.5±5.3            | -                                            | 28±1.5              | -                                          |
| Zn | 611.6±62.7          | 2940                                         | 93.3±7.8            | 2520                                         | 330±1.4             | 5040                                       |
| Cd | 53±6                | 70                                           | 4±0.1               | 60                                           | 18.1±0.4            | 120                                        |
| Pb | 21.2±1.5            | 427                                          | 17.7±0.66           | 366                                          | 7.9±0.02            | 732                                        |
| As | 54.2±4.3            | 91                                           | 5.1±0.7             | 78                                           | 9.7±0.5             | 156                                        |
| Со | 2.5±0.2             | 952                                          | 8±0.4               | 816                                          | 1.63±0.5            | 1632                                       |

Table 2: Comparison with CDFA heavy metal standards

|    | w070 (F-1)          | CDFA_7%<br>available<br>phosphate<br>limit | 030 (F-2)           | CDFA_3%<br>available<br>phosphate<br>limit | 0120 (F-3)          | CDFA_12%<br>available<br>phosphate<br>limit |
|----|---------------------|--------------------------------------------|---------------------|--------------------------------------------|---------------------|---------------------------------------------|
|    | mg kg <sup>-1</sup> | mg kg <sup>-1</sup>                        | mg kg <sup>-1</sup> | mg kg <sup>-1</sup>                        | mg kg <sup>-1</sup> | mg kg <sup>-1</sup>                         |
| Cd | 53±6                | 48                                         | 4±0.1               | 20                                         | 18 1+0 4            | 48                                          |
|    |                     |                                            |                     | 20                                         | 10.120.1            | 10                                          |
| Pb | 21.2±1.5            | 140                                        | 17.7±0.66           | 100                                        | 7.9±0.02            | 240                                         |

- Association of American Plant Food Control Officials (AAPFCO)
- California Department of Food and Agriculture (CDFA)
- AAPFCO engaged in the administration of fertilizer laws and regulations in the USA, Canada and Puerto Rico
- Metal regulation are dependent on the percentage of available phosphate present in the fertilizer
- Cd and As doesn't meet CDFA phosphate fertilizer limits

### REE concentration found in the commercial P-fertilizers is higher than flyash

![](_page_12_Figure_1.jpeg)

- Digestion with the concentrated aquaregia is considered as a standard to measure the elemental concentration in samples
- EPA 3051A microwave assisted acid digestion method was followed
- more than 80% of the TREE present in the phosphate fertilizer present were made up of La, Ce, Nd, Pr, and Y

# Effect of the solid-liquid ratio and concentration of HCl on the REE leaching

![](_page_13_Figure_1.jpeg)

- At lower liquid-solid ratios, the slurry density is higher which can slow down the leaching
- Higher acid concentrations can increase the cost of the leaching process. Optimum concentration to leach the REE is 1.5 M

### Effect of the temperature and kinetics on the REE leaching

![](_page_14_Figure_1.jpeg)

• Our results show that temperature doesn't have a significant effect on the concentration of REE leached

• We found that in the first 10 minutes, the percentages of REE leached from the phosphate fertilizers are as follows: Montana is 96%, Florida is 76% and from Utah is 82%

### Fertilizer solid residue left in the leaching process mainly composed of quartz-based minerals

![](_page_15_Picture_1.jpeg)

|         | weight<br>(g) | 1.5M HCl<br>added (g) | weight<br>(g) | the<br>undissolved<br>solids (%) |
|---------|---------------|-----------------------|---------------|----------------------------------|
| Montana | 25.11         | 500.19                | 6.4835        | 25.8                             |
| Florida | 25.43         | 500.30                | 9.7670        | 38.4                             |
| Utah    | 25.09         | 500.3                 | 5.0635        | 20.1                             |
|         |               |                       |               |                                  |

![](_page_15_Figure_3.jpeg)

XRD analysis before and after leaching process showed that fluorapatite minerals dissolved

### Separation of REEs from the fertilizer leachate via precipitation

![](_page_16_Picture_1.jpeg)

![](_page_16_Figure_2.jpeg)

- Results from the precipitation experiments showed that more than 95% of the REE in all three fertilizer leachates precipitated when the pH was raised to 2.5
- This sudden spike in the precipitation of REE between pH 1.5 and 2.25 could be due to co-precipitation along with Fe which precipitates Fe(OH)3 above pH 1.5

### SEM and EDS analysis of the precipitate

![](_page_17_Figure_1.jpeg)

### **Solid-liquid vs solvent extraction**

![](_page_18_Picture_1.jpeg)

- REE lost in solvent
- Expensive
- Solvent reusable

![](_page_18_Picture_5.jpeg)

Ref: Dardona et al., 2023

- More efficient
- Adsorbents can be reused

### Existing solid-liquid adsorption media doesn't work at low pH conditions

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

Diethylenetriaminepentaacetic acid (DTPA)

Reference: Hovey, Jessica L., et al. "Sorption of rare-earth elements onto a ligand-associated media for pH-dependent extraction and recovery of critical materials." Separation and Purification Technology 258 (2021): 118061.

### **TODGA based adsorbent media synthesis**

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

N,N,N,N tetraoctyl Diglycolamide

![](_page_20_Picture_4.jpeg)

• Add methanol to TODGA

![](_page_20_Picture_6.jpeg)

- Rotate them one hour to mix them
- Add organo silica to it and rotate

![](_page_20_Picture_9.jpeg)

![](_page_20_Picture_10.jpeg)

Use Vaccufuge to
evaporate methanol

**TODGA media** 

### **REE concentration in the fertilizer precipitate dissolved in 4M HCI**

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

### REE adsorption and desorption using TODGA in 4M HCl

![](_page_22_Figure_1.jpeg)

• Valuable HREE can be extracted using TODGA media under highly acidic conditions

### Conclusions

![](_page_23_Picture_1.jpeg)

**Fertilizer samples** 

![](_page_23_Picture_3.jpeg)

fertilizer

![](_page_23_Picture_4.jpeg)

![](_page_23_Picture_5.jpeg)

Leaching setup

![](_page_23_Picture_7.jpeg)

Fertilizer solid residue

- Fluorapatite based phosphate fertilizers can have ٠ high REEs concentrations
- Concentration of REEs found in the phosphate • fertilizers varied between 360 to almost 1100 mg/kg
- More than 85% of REEs can be leached from phosphate fertilizers using 1.5M HCl solution at room temperature
- Fluorapatite minerals got dissolved during the leaching process and quartz minerals remained in the undissolved residue
- REEs got co-precipitated along with Ca, Fe and Al phosphate at pH 2.5
- TODGA adsorbed REEs at low pH ٠

![](_page_23_Picture_15.jpeg)

![](_page_23_Picture_16.jpeg)

Precipitate

![](_page_23_Picture_18.jpeg)

Adsorption

### **Future works**

![](_page_24_Picture_1.jpeg)

Tummala et al., 2023

• Concentrate phosphates from leftover leachate onto iron coated waste nutshells and use as slow-release fertilizer

![](_page_24_Picture_4.jpeg)

• Synthesize zeolites from the leftover fertilizer solid residue in leaching process

### Acknowledgements

![](_page_25_Picture_1.jpeg)

#### References

- Emsbo, P., McLaughlin, P. I., Breit, G. N., du Bray, E. A., & Koenig, A. E. (2015). Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis?. *Gondwana Research*, 27(2), 776-785.
- Dardona, M., & Dittrich, T. M. (2019, May). Investigating the potential for recovering REEs from coal fly ash and power plant wastewater with an engineered sorbent. In *World Environmental and Water Resources Congress 2019*. Wayne State Univ., Detroit, MI (United States).
- Hovey, J. L., Dardona, M., Allen, M. J., & Dittrich, T. M. (2021). Sorption of rare-earth elements onto a ligand-associated media for pH-dependent extraction and recovery of critical materials. *Separation and Purification Technology*, 258, 118061.
- Moldoveanu, G. A., & Papangelakis, V. G. (2016). An overview of rare-earth recovery by ion-exchange leaching from ion-adsorption clays of various origins. *Mineralogical Magazine*, 80(1), 63-76.
- Dardona, M., Mohanty, S. K., Allen, M. J., & Dittrich, T. M. (2023). From ash to oxides: Recovery of rare-earth elements as a step towards valorization of coal fly ash waste. *Separation and Purification Technology*, 314, 123532.
- Maes, S., Zhuang, W. Q., Rabaey, K., Alvarez-Cohen, L., & Hennebel, T. (2017). Concomitant leaching and electrochemical extraction of rare earth elements from monazite. *Environmental science & technology*, *51*(3), 1654-1661.
- SHEET, F. (2022). Securing a Made in America Supply Chain for Critical Minerals. *The White House*.
- Tummala, C. M., Dardona, M., Praneeth, S., Mohanty, S. K., & Dittrich, T. M. (2023). Iron-coated nutshell waste bioadsorbents: Synthesis, phosphate remediation, and subsequent fertilizer application. *Environmental Research*, 117468.
- Wu, S., Wang, L., Zhao, L., Zhang, P., El-Shall, H., Moudgil, B., ... & Zhang, L. (2018). Recovery of rare earth elements from phosphate rock by hydrometallurgical processes—A critical review. *Chemical Engineering Journal*, *335*, 774-800.
- Otero, N., Vitoria, L., Soler, A., & Canals, A. (2005). Fertiliser characterisation: major, trace and rare earth elements. *Applied geochemistry*, 20(8), 1473-1488.
- Ramos, S. J., Dinali, G. S., de Carvalho, T. S., Chaves, L. C., Siqueira, J. O., & Guilherme, L. R. (2016). Rare earth elements in raw materials and products of the phosphate fertilizer industry in South America: Content, signature, and crystalline phases. *Journal of Geochemical Exploration*, 168, 177-186.
- Lie, J., & Liu, J. C. (2021). Selective recovery of rare earth elements (REEs) from spent NiMH batteries by two-stage acid leaching. *Journal of Environmental Chemical Engineering*, 9(5), 106084.
- Zhang, W., & Honaker, R. Q. (2018). Rare earth elements recovery using staged precipitation from a leachate generated from coarse coal refuse. International Journal of Coal Geology, 195, 189-199.

# Thank you

### Extra slides

### Element precipitation at different pH

![](_page_29_Figure_1.jpeg)

### **TODGA showed a good selectivity towards HREEs in 8M HNO<sub>3</sub>**

![](_page_30_Figure_1.jpeg)

Fertilizer name